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Abstract

Linear systems have been used extensively in engineering to model and control the

behavior of dynamical systems. In this note, we present the Expectation Maximization

(EM) algorithm for estimating the parameters of linear systems (Shumway and Sto�er,

1982). We also point out the relationship between linear dynamical systems, factor

analysis, and hidden Markov models.

Introduction

The goal of this note is to introduce the EM algorithm for estimating the parameters of

linear dynamical systems (LDS). Such linear systems can be used both for supervised and

unsupervised modeling of time series. We �rst describe the model and then briey point out

its relation to factor analysis and other data modeling techniques.

The Model

Linear time-invariant dynamical systems, also known as linear Gaussian state-space models,

can be described by the following two equations:

xt+1 = Axt +wt (1)

yt = Cxt+ vt: (2)

Time is indexed by the discrete index t. The output yt is a linear function of the state, xt, and

the state at one time step depends linearly on the previous state. Both state and output noise,

wt and vt, are zero-mean normally distributed random variables with covariance matrices Q

and R, respectively. Only the output of the system is observed, the state and all the noise

variables are hidden.

Rather than regarding the state as a deterministic value corrupted by random noise,

we combine the state variable and the state noise variable into a single Gaussian random
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variable; we form a similar combination for the output. Based on (1) and (2) we can write

the conditional densities for the state and output,

P (ytjxt) = exp

�
�
1

2
[yt � Cxt]

0R�1[yt � Cxt]

�
(2�)�p=2jRj�1=2 (3)

P (xtjxt�1) = exp

�
�
1

2
[xt �Axt�1]

0Q�1[xt �Axt�1]

�
(2�)�k=2jQj�1=2 (4)

A sequence of T output vectors (y1;y2; : : : ;yT ) is denoted by fyg; a subsequence (yt0;yt0+1; : : : ;yt1)

by fygt1t0; similarly for the states.

By the Markov property implicit in this model,

P (fxg; fyg) = P (x1)
TY
t=2

P (xtjxt�1)
TY
t=1

P (ytjxt): (5)

Assuming a Gaussian initial state density

P (x1) = exp

�
�
1

2
[x1 ��1]

0V �1
1 [x1� �1]

�
(2�)�k=2jV1j

�1=2: (6)

Therefore, the joint log probability is a sum of quadratic terms,

logP (fxg; fyg) = �
TX
t=1

�
1

2
[yt � Cxt]

0R�1[yt �Cxt]

�
�
T

2
log jRj

�
TX
t=2

�
1

2
[xt �Axt�1]

0Q�1[xt �Axt�1]

�
�
T � 1

2
log jQj

�
1

2
[x1 � �1]

0V �1
1 [x1 � �1]�

1

2
log jV1j �

T (p+ k)

2
log 2�: (7)

Often the inputs to the system can also be observed. In this case, the goal is to model

the input{output response of a system. Denoting the inputs by ut, the state equation is

xt+1 = Axt +But +wt: (8)

where B is the input matrix relating inputs linearly to states. We will present the learning

algorithm for the output-only case, although the extensions to the input{output case are

straightforward.

If only the outputs of the system can be observed the problem can be seen as an unsuper-

vised problem. That is, the goal is to model the unconditional density of the observations.

If both inputs and outputs are observed, the problem becomes supervised, modeling the

conditional density of the output given the input.

Related Methods

In its unsupervised incarnation, this model is an extension of maximum likelihood factor

analysis (Everitt, 1984). The factor, xt, evolves over time according to linear dynamics. In

factor analysis, a further assumption is made that the output noise along each dimension
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is uncorrelated, i.e. that R is diagonal. The goal of factor analysis is therefore to compress

the correlational structure of the data into the values of the lower dimensional factors, while

allowing independent noise terms to model the uncorrelated noise. The assumption of a

diagonal R matrix can also be easily incorporated into the estimation procedure for the

parameters of a linear dynamical system.

The linear dynamical system can also be seen as a continuous-state analogue of the

hidden Markov model (HMM; see Rabiner and Juang, 1986, for a review). The forward part

of the forward-backward algorithm from HMMs is computed by the well-known Kalman

�lter in LDSs; similarly, the backward part is computed by using Rauch's recursion (Rauch,

1963). Together, these two recursions can be used to solve the problem of inferring the

probabilities probabilities of the states given the observation sequence (known in engineering

as the smoothing problem). These posterior probabilities form the basis of the E step of the

EM algorithm.

Finally, linear dynamical systems can also be represented as graphical probabilistic mod-

els (sometimes referred to as belief networks). The Kalman-Rauch recursions are special

cases of the probability propagation algorithms that have been developed for graphical mod-

els (Lauritzen and Spiegelhalter, 1988; Pearl, 1988).

The EM Algorithm

Shumway and Sto�er (1982) presented an EM algorithm for linear dynamical systems where

the observation matrix, C, is known. Since then, many authors have presented closely related

models and extensions, also �t with the EM algorithm (Shumway and Sto�er, 1991; Kim,

1994; Athaide, 1995). Here we present a basic form of the EM algorithm with C unknown,

an obvious modi�cation of Shumway and Sto�er's original work. This note is meant as a

succinct review of this literature for those wishing to implement learning in linear dynamical

systems.

The E step of EM requires computing the expected log likelihood,

Q = E[logP (fxg; fyg)jfyg]: (9)

This quantity depends on three expectations|E[xtjfyg], E[xtx
0

tjfyg], E[xtx
0

t�1jfyg]|which

we will denote by the symbols:

x̂t � E[xtjfyg] (10)

Pt � E[xtx
0

tjfyg] (11)

Pt;t�1 � E[xtx
0

t�1jfyg]: (12)

Note that the state estimate, x̂t, di�ers from the one computed in a Kalman �lter in that it

depends on past and future observations; the Kalman �lter estimates E[xtjfyg
t
1] (Anderson

and Moore, 1979). We �rst describe the M step of the parameter estimation algorithm before

showing how the above expectations are computed in the E step.
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1 The M step

The parameters of this system are A, C, R, Q, �1, V1. Each of these is re-estimated by

taking the corresponding partial derivative of the expected log likelihood, setting to zero,

and solving. This results in the following:

� Output matrix:

@Q

@C
= �

TX
t=1

R�1ytx̂
0

t +
TX
t=1

R�1CPt = 0 (13)

Cnew =

 
TX
t=1

ytx̂
0

t

! 
TX
t=1

Pt

!�1

(14)

� Output noise covariance:

@Q

@R�1
=
T

2
R�

TX
t=1

�
1

2
yty

0

t � Cx̂ty
0

t +
1

2
CPtC

0

�
= 0 (15)

Rnew =
1

T

TX
t=1

(yty
0

t � Cnewx̂ty
0

t) (16)

� State dynamics matrix:

@Q

@A
= �

TX
t=2

Q�1Pt;t�1 +
TX
t=2

Q�1APt�1 = 0 (17)

Anew =

 
TX
t=2

Pt;t�1

! 
TX
t=2

Pt�1

!�1

(18)

� State noise covariance:

@Q

@Q�1
=

T � 1

2
Q�

1

2

TX
t=2

(Pt �APt�1;t � Pt;t�1A
0 +APt�1A

0) = 0

=
T � 1

2
Q�

1

2

 
TX
t=2

Pt �Anew
TX
t=2

Pt�1;t

!
(19)

Qnew =
1

T � 1

 
TX
t=2

Pt �Anew
TX
t=2

Pt�1;t

!
(20)

� Initial state mean:
@Q

@�1

= (x̂1 � �1)V
�1
1 = 0 (21)

�
new
1 = x̂1 (22)
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� Initial state covariance:

@Q

@V �1
1

=
1

2
V1 �

1

2
(P1 � x̂1�

0

1 � �1x̂
0

1 + �1�
0

1) (23)

V new
1 = P1 � x̂1x̂

0

1 (24)

The above equations can be readily generalized to multiple observation sequences, with

one subtlety regarding the estimate of the initial state covariance. Assume N observation

sequences of length T , let x̂
(i)
t be the estimate of state at time t given the ith sequence, and

�̂xt =
1

N

NX
i=1

x̂
(i)
t :

Then the initial state covariance is

V new
1 = P1 � �̂x1 �̂x

0

1 +
1

N

NX
i=1

[x̂
(i)

1 � �̂x1] [x̂
(i)

1 � �̂x1]
0: (25)

2 The E step

Using x�
t to denote E(xtjfyg

�
1), and V �

t to denote Var(xtjfyg
�
1), we obtain the following

Kalman �lter forward recursions:

xt�1
t = Axt�1

t�1 (26)

V t�1
t = AV t�1

t�1 A
0 +Q (27)

Kt = V t�1
t C 0(CV t�1

t C 0 +R)�1 (28)

xt
t = xt�1

t +Kt(yt � Cxt�1
t ) (29)

V t
t = V t�1

t �KtCV
t�1
t ; (30)

where x01 = �1 and V 0
1 = V1. Following Shumway and Sto�er (1982), to compute x̂t � xT

t

and Pt � V T
t + xT

t x
T 0

t one performs a set of backward recursions using

Jt�1 = V t�1
t�1 A

0(V t�1
t )�1 (31)

xT
t�1 = xt�1

t�1 + Jt�1(x
T
t �Axt�1

t�1) (32)

V T
t�1 = V t�1

t�1 + Jt�1(V
T
t � V t�1

t )J 0

t�1: (33)

We also require Pt;t�1 � V T
t;t�1 + xT

t x
T 0

t�1, which can be obtained through the backward

recursions

V T
t�1;t�2 = V t�1

t�1 J
0

t�2 + Jt�1(V
T
t;t�1 �AV t�1

t�1 )J
0

t�2; (34)

which is initialized V T
T;T�1 = (I �KTC)A V T�1

T�1 :
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