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To achieve its impressive performance in tasks such as
speech perception or object recognition, the brain
extracts multiple levels of representation from the sen-
sory input. Backpropagation was the first computation-
ally efficient model of how neural networks could learn
multiple layers of representation, but it required labeled
training data and it did not work well in deep networks.
The limitations of backpropagation learning can now be
overcome by using multilayer neural networks that con-
tain top-down connections and training them to gener-
ate sensory data rather than to classify it. Learning
multilayer generative models might seem difficult, but
a recent discovery makes it easy to learn nonlinear
distributed representations one layer at a time.

Learning feature detectors
To enable the perceptual system to make the fine
distinctions that are required to control behavior, sensory
cortex needs an efficient way of adapting the synaptic
weights of multiple layers of feature-detecting neurons.
The backpropagation learning procedure [1] iteratively
adjusts all of the weights to optimize some measure of
the classification performance of the network, but this
requires labeled training data. To learn multiple layers
of feature detectors when labeled data are scarce or non-
existent, some objective other than classification is
required. In a neural network that contains both bot-
tom-up ‘recognition’ connections and top-down ‘generative’
connections it is possible to recognize data using a bottom-
up pass and to generate data using a top-down pass. If the
neurons are stochastic, repeated top-down passes will
generate a whole distribution of data-vectors. This
suggests a sensible objective for learning: adjust the
weights on the top-down connections to maximize the
probability that the network would generate the training
data. The neural network’s model of the training data then
resides in its top-down connections. The role of the bottom-
up connections is to enable the network to determine
activations for the features in each layer that constitute
a plausible explanation of how the network could
have generated an observed sensory data-vector. The hope
is that the active features in the higher layers will be a
much better guide to appropriate actions than the raw
sensory data or the lower-level features. As we shall see,
this is not just wishful thinking – if three layers of feature
detectors are trained on unlabeled images of handwritten
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digits, the complicated nonlinear features in the top layer
enable excellent recognition of poorly written digits like
those in Figure 1b [2].

There are several reasons for believing that our visual
systems contain multilayer generative models in which
top-down connections can be used to generate low-level
features of images from high-level representations, and
bottom-up connections can be used to infer the high-level
representations that would have generated an observed set
of low-level features. Single cell recordings [3] and the
reciprocal connectivity between cortical areas [4] both
suggest a hierarchy of progressivelymore complex features
in which each layer can influence the layer below. Vivid
visual imagery, dreaming, and the disambiguating effect of
context on the interpretation of local image regions [5] also
suggest that the visual system can perform top-down
generation.

The aim of this review is to complement the neural and
psychological evidence for generative models by reviewing
recent computational advances that make it easier to learn
generative models than their feed-forward counterparts.
The advances are illustrated in the domain of handwritten
digits where a learned generative model outperforms dis-
criminative learning methods at classification.

Inference in generative models
The crucial computational step in fitting a generative
model to data is determining how the model, with its
current generative parameters, might have used its hidden
variables to generate an observed data-vector. Stochastic
generative models generally have many different ways of
generating any particular data-vector, so the best we can
hope for is to infer a probability distribution over the
various possible settings of the hidden variables. Consider,
for example, a mixture of gaussians model in which each
data-vector is assumed to come from exactly one of the
multivariate gaussian distributions in the mixture. Infer-
ence then consists of computing the posterior probability
that a particular data-vector came from each of the gaus-
sians. This is easy because the posterior probability
assigned to each gaussian in the mixture is simply pro-
portional to the probability density of the data-vector
under that gaussian times the prior probability of using
that gaussian when generating data.

The generative models that are most familiar in
statistics and machine learning are the ones for which
the posterior distribution can be inferred efficiently and
exactly because the model has been strongly constrained.
These generative models include:
d. doi:10.1016/j.tics.2007.09.004

mailto:hinton@cs.toronto.edu
http://dx.doi.org/10.1016/j.tics.2007.09.004


Figure 1. (a) The generative model used to learn the joint distribution of digit images and digit labels. (b) Some test images that the network classifies correctly even though

it has never seen them before.
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actor analysis – in which there is a single layer of
gaussian hidden variables that have linear effects on the
visible variables (see Figure 2). In addition, independent
gaussian noise is added to each visible variable [6–8].
Given a visible vector, it is impossible to infer the exact
state of the factors that generated it, but it is easy to
infer the mean and covariance of the gaussian posterior
distribution over the factors, and this is sufficient to
enable the parameters of the model to be improved.
� I
ndependent components analysis – which generalizes
factor analysis by allowing non-gaussian hidden vari-
ables, but maintains tractable inference by eliminating
the observation noise in the visible variables and using
the same number of hidden and visible variables. These
restrictions ensure that the posterior distribution
collapses to a single point because there is only one
setting of the hidden variables that can generate each
visible vector exactly [9–11].
ure 2. The generative model used in factor analysis. Each real-valued hidden

tor is chosen independently from a gaussian distribution, N(0,1), with zero

an and unit variance. The factors are then linearly combined using weights (Wjk)

gaussian observation noise with mean (mi) and standard deviation (si) is added

ependently to each real-valued variable (i).
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ixture models – in which each data-vector is assumed
to be generated by one of the component distributions in
the mixture and it is easy to compute the density under
each of the component distributions.

If factor analysis is generalized to allow non-gaussian

hidden variables, it canmodel the development of low-level
visual receptive fields [12]. However, if the extra con-
straints used in independent components analysis are
not imposed, it is no longer easy to infer, or even to
represent, the posterior distribution over the hidden vari-
ables. This is because of a phenomenon known as explain-
ing away [13] (see Figure 3b).

Multilayer generative models
Generativemodels with only one hidden layer aremuch too
simple for modeling the high-dimensional and richly struc-
tured sensory data that arrive at the cortex, but they have
been pressed into service because, until recently, it was too
difficult to perform inference in the more complicated,
multilayer, nonlinear models that are clearly required.
There have been many attempts to develop multilayer,
nonlinear models [14–18]. In Bayes nets (also called belief
nets), which have been studied intensively in artificial
intelligence and statistics, the hidden variables typically
have discrete values. Exact inference is possible if every
variable only has a few parents. This can occur in Bayes
nets that are used to formalize expert knowledge in limited
domains [19], but for more densely connected Bayes nets,
exact inference is generally intractable.

It is important to realize that if someway can be found to
infer the posterior distribution over the hidden variables
for each data-vector, learning a multilayer generative
model is relatively straightforward. Learning is also
straightforward if we can get unbiased samples from the
posterior distribution. In this case, we simply adjust
the parameters so as to increase the probability that the
sampled states of the hidden variables in each layer would



Figure 3. (a) A multilayer belief net composed of logistic binary units. To generate fantasies from the model, we start by picking a random binary state of 1 or 0 for each top-

level unit. Then we perform a stochastic downwards pass in which the probability, ĥi , of turning on each unit, i, is determined by applying the logistic function s(x) = 1/

(1 + exp(�x)) to the total input Sjhjwji that i receives from the units, j, in the layer above, where hj is the binary state that has already been chosen for unit j. It is easy to give

each unit an additional bias, but to simplify this review biases will usually be ignored. rij is a recognition weight. (b) An illustration of ‘explaining away’ in a simple logistic

belief net containing two independent, rare, hidden causes that become highly anticorrelated when we observe the house jumping. The bias of �10 on the earthquake unit

means that, in the absence of any observation, this unit is e10 times more likely to be off than on. If the earthquake unit is on and the truck unit is off, the jump unit has a total

input of 0, which means that it has an even chance of being on. This is a much better explanation of the observation that the house jumped than the odds of e�20, which

apply if neither of the hidden causes is active. But it is wasteful to turn on both hidden causes to explain the observation because the probability of them both happening is

approximately e�20.
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generate the sampled states of the hidden or visible
variables in the layer below. In the case of the logistic
belief net shown in Figure 3a, which will be amajor focus of
this review, the learning rule for each training case is a
version of the delta rule [20]. The inferred state, hi, of the
‘postsynaptic’ unit, i, acts as a target value and the prob-
ability, ĥi, of activating i given the inferred states, hj, of all
the ‘presynaptic’ units, j, in the layer above acts as a
prediction:

Dwji/hjðhi � ĥiÞ (Equation 1)

where Dwji is the change in the weight on the connection
from j to i.

If i is a visible unit, hi is replaced by the actual state of i
in the training example. If training vectors are selected
with equal probability from the training set and the hidden
states are sampled from their posterior distribution given
the training vector, the learning rule in Equation 1 has a
positive expected effect on the probability that the gen-
erativemodel would produce exactly theN training vectors
if it was run N times.

Approximate inference for multilayer generative
models
The generative model in Figure 3a is defined by the
weights on its top-down, generative connections, but it
also has bottom-up, recognition connections that can be
used to perform approximate inference in a single, bottom-
up pass. The inferred probability that hj = 1 is s(Sihirij).
This inference procedure is fast and simple, but it is
incorrect because it ignores explaining away. Surprisingly,
learning is still possible with incorrect inference because
there is a more general objective function that the learning
rule in Equation 1 is guaranteed to improve [21,22].

Instead of just considering the log probability of gen-
erating each training case, we can also take the accuracy of
www.sciencedirect.com
the inference procedure into account. Other things being
equal, we would like our approximate inference method to
be as accurate as possible, and we might prefer a model
that is slightly less likely to generate the data if it enables
more accurate inference of the hidden representations. So
it makes sense to use the inaccuracy of inference on each
training case as a penalty term when maximizing the log
probability of the observed data. This leads to a new
objective function that is easy to maximize and is a ‘vari-
ational’ lower-bound on the log probability of generating
the training data [23]. Learning by optimizing a vari-
ational bound is now a standard way of dealing with the
intractability of inference in complex generative models
[24–27]. An approximate version of this type of learning
has been proposed as a model of learning in sensory cortex
(Box 1), but it is slow in deep networks if the weights are
initialized randomly.

A nonlinear module with fast exact inference
We now turn to a different type of model called a ‘restricted
Boltzmann machine’ (RBM) [28] (Figure 4a). Despite its
undirected, symmetric connections, the RBM is the key to
finding an efficient learning procedure for deep, directed,
generative models.

Images composed of binary pixels can be modeled by
using the hidden layer of an RBM to model the higher-
order correlations between pixels [29]. To learn a good set
of feature detectors from a set of training images, we start
with zero weights on the symmetric connections between
each pixel i and each feature detector j. Thenwe repeatedly
update each weight, wij, using the difference between two
measured, pairwise correlations

Dwi j ¼ eð< vih j> data � < vihi> reconÞ (Equation 2)

where e is a learning rate, <vihj>data is the frequency with
which pixel i and feature detector j are on together when



Box 1. The wake-sleep algorithm

For the logistic belief net shown in Figure 3a, it is easy to improve

the generative weights if the network already has a good set of

recognition weights. For each data-vector in the training set, the

recognition weights are used in a bottom-up pass that stochastically

picks a binary state for each hidden unit. Applying the learning rule

in Equation 1 will then follow the gradient of a variational bound on

how well the network generates the training data [22].

It is not so easy to compute the derivatives of the bound with

respect to the recognition weights, but there is a simple, approx-

imate learning rule that works well in practice. If we generate

fantasies from the model by using the generative weights in a top-

down pass, we know the true causes of the activities in each layer,

so we can compare the true causes with the predictions made by the

approximate infererence procedure and adjust the recognition

weights, rij, to maximize the probability that the predictions are

correct:

Dr i j /hi

�
h j � sð

X
i

hi r i jÞ
�

(Equation 5)

The combination of approximate inference for learning the gen-

erative weights, and fantasies for learning the recognition weights is

known as the ‘wake-sleep’ algorithm [22].
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the feature detectors are being driven by images from the
training set, and<vihj>recon is the corresponding frequency
when the feature detectors are being driven by recon-
structed images. A similar learning rule can be used for
the biases.

Given a training image, we set the binary state, hj, of
each feature detector to be 1 with probability

pðhj ¼ 1Þ ¼ sðb j þ
X
i

viwi jÞ (Equation 3)
Figure 4. (a) Two separate restricted Boltzmann machines (RBMs). The stochastic, bin

stochastic, binary variables in the visible layer. There are no connections within a layer.

data. (b) The composite generative model produced by composing the two RBMs. No

directed. The hidden states are still inferred by using bottom-up recognition connectio
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where s(�) is the logistic function, bj is the bias of j and vi is
the binary state of pixel i. Once binary states have been
chosen for the hidden units we produce a ‘reconstruction’ of
the training image by setting the state of each pixel to be 1
with probability

pðvi ¼ 1Þ ¼ sðbi þ
X
j

h jwi jÞ (Equation 4)

The learned weights and biases directly determine the
conditional distributions p(hjv) and p(vjh) using
Equations 3 and 4. Indirectly, the weights and biases
define the joint and marginal distributions p(v,h), p(v)
and p(h). Sampling from the joint distribution is difficult,
but it can be done by using ‘alternating Gibbs sampling’.
This starts with a random image and then alternates
between updating all of the features in parallel using
Equation 3 and updating all of the pixels in parallel using
Equation 4. After Gibbs sampling for sufficiently long, the
network reaches ‘thermal equilibrium’. The states of pixels
and feature detectors still change, but the probability of
finding the system in any particular binary configuration
does not. By observing the fantasies on the visible units at
thermal equilibrium, we can see the distribution over
visible vectors that the model believes in.

The RBM has two major advantages over directed
models with one hidden layer. First, inference is easy
because there is no explaining away: given a visible vector,
the posterior distribution over hidden vectors factorizes
into a product of independent distributions for each hidden
unit. So to get a sample from the posterior we simply turn
on each hidden unit with a probability given by Equation 3.
ary variables in the hidden layer of each RBM are symmetrically connected to the

The higher-level RBM is trained by using the hidden activities of the lower RBM as

te that the connections in the lower layer of the composite generative model are

ns, but these are no longer part of the generative model.
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Second, as we shall see, it is easy to learn deep directed
networks one layer at a time by stacking RBMs. Layer-by-
layer learning does not work nearly as well when the
individual modules are directed, because each directed
module bites off more than it can chew: it tries to learn
hidden causes that are marginally independent. This is
generally beyond its abilities so it settles for a generative
model in which independent causes generate a poor
approximation to the data distribution.

Learning many layers of features by composing RBMs
After an RBM has been learned, the activities of its hidden
units (when they are being driven by data) can be used as
the ‘data’ for learning a higher-level RBM. To understand
why this is a good idea, it is helpful to consider decompos-
ing the problem of modeling the data distribution, P0, into
two subproblems by picking a distribution, P1, that is
easier to model than P0. The first subproblem is to model
P1 and the second subproblem is to model the transform-
ation from P1 to P0. P1 is the distribution obtained by
applying p(hjv) to the data distribution to get the hidden
activities for every data-vector in the training set. P1 is
easier for an RBM to model than P0 because it is obtained
from P0 by allowing an RBM to settle towards a distri-
bution that it can model perfectly: its equilibrium distri-
bution. The RBM’smodel of P1 is p(h), the distribution over
hidden vectors when the RBM is sampling from its equi-
librium distribution. The RBM’s model of the transform-
ation from P1 to P0 is p(vjh).

After the first RBM has been learned, we keep p(vjh) as
part of the generative model and we keep p(hjv) as a quick
way of performing inference, but we throw away our model
of P1 and replace it by a better model that is obtained,
recursively, by treating P1 as the training data for the
second-level RBM. This leads to the composite generative
model shown in Figure 4b. To generate from this model we
need to get an equilibrium sample from the top-level RBM,
but then we simply perform a single downwards pass
through the bottom layer of weights. So the composite
model is a curious hybrid whose top two layers form an
undirected associative memory and whose lower layers
form a directed generative model. It is shown in reference
[30] that if the second RBM is initialized appropriately, the
gain from building a better model of P1 always outweighs
the loss that comes from the fact that p(hjv) is no longer the
correct way to perform inference in the composite genera-
tive model shown in Figure 4b. Adding another hidden
layer always improves a variational bound on the log
probability of the training data unless the top-level
RBM is already a perfect model of the data it is trained on.

Modeling images of handwritten digits
Figure 1a shows a network that was used tomodel the joint
distribution of digit images and their labels. It was learned
one layer at a time and the top-level RBM was trained
using ‘data’-vectors that were constructed by concatenat-
ing the states of ten winner-take-all label units with 500
binary features inferred from the image. After greedily
learning one layer of weights at a time, all theweights were
fine-tuned using a variant of the wake-sleep algorithm (see
reference [30] for details). The fine-tuning significantly
www.sciencedirect.com
improves the ability of the model to generate images that
resemble the data, but without the initial layer-by-layer
learning, the fine-tuning alone is hopelessly slow.

The model was trained to generate both a label and an
image, but it can be used to classify new images. First, the
recognition weights are used to infer binary states for the
500 feature units in the second hidden layer, then alter-
nating Gibbs sampling is applied to the top two layers with
these 500 features held fixed. The probability of each label
is then represented by the frequency with which it turns
on. Using an efficient version of this method, the network
significantly outperforms both backpropagation and sup-
port vector machines [31] when trained on the same data
[30]. A demonstration of the model generating and recog-
nizing digit images is at my homepage (www.cs.toronto.
edu/�hinton).

Instead of fine-tuning the model to be better at
generating the data, backpropagation can be used to
fine-tune it to be better at discrimination. This works
extremely well [2,20]. The initial layer-by-layer learning
finds features that enable good generation and then the
discriminative fine-tuning slightly modifies these features
to adjust the boundaries between classes. This has the
great advantage that the limited amount of information in
the labels is used only for perturbing features, not for
creating them. If the ultimate aim is discrimination it is
possible to use autoencoders with a single hidden layer
instead of restricted Boltzmann machines for the unsuper-
vised, layer-by-layer learning [32]. This produces the best
results ever achieved on the most commonly used bench-
mark for handwritten digit recognition [33].

Modeling sequential data
This review has focused on static images, but restricted
Boltzmann machines can also be applied to high-dimen-
sional sequential data such as video sequences [34] or the
joint angles of a walking person [35]. The visible and
hidden units are given additional, conditioning inputs that
come from previous visible frames. The conditioning inputs
have the effect of dynamically setting the biases of the
visible and hidden units. These conditional restricted
Boltzmann machines can be composed by using the
sequence of hidden activities of one as the training data
for the next. This creates multilayer distributed repres-
entations of sequences that are far more powerful than the
representations learned by standard methods such as
hidden Markov models or linear dynamical systems [34].

Concluding remarks
A combination of three ideas leads to a novel and effective
way of learning multiple layers of representation. The first
idea is to learn a model that generates sensory data rather
than classifying it. This eliminates the need for large
amounts of labeled data. The second idea is to learn one
layer of representation at a time using restricted Boltz-
mann machines. This decomposes the overall learning
task into multiple simpler tasks and eliminates the infer-
ence problems that arise in directed generative models.
The third idea is to use a separate fine-tuning stage to
improve the generative or discriminative abilities of the
composite model.
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Box 2. Questions for future research

� How might this type of algorithm be implemented in cortex? In

particular, is the initial perception of sensory input closely

followed by a reconstruction that uses top-down connections?

Computationally, the learning procedure for restricted Boltzmann

machines does not require a ‘pure’ reconstruction. All that is

required is that there are two phases that differ in the relative

balance of bottom-up and top-down influences, with synaptic

potentiation in one phase and synaptic depression in the other.

� Can this approach deal adequately with lateral connections and

inhibitory interneurons? Currently, there is no problem in

allowing lateral interactions between the visible units of a

‘semirestricted’ Boltzmann machine [30,43]. Lateral interactions

between the hidden units can be added when these become the

visible units of the higher-level, semirestricted Boltzmann ma-

chine. This makes it possible to learn a hierarchy of undirected

Markov random fields, each of which has directed connections to

the field below as suggested in ref. [44]. This is a more powerful

type of generative model because each level only needs to

provide a rough specification of the states at the level below: The

lateral interactions at the lower level can settle on the fine details

and ensure that they obey learned constraints.

� Can we understand the representations that are learned in the

deeper layers? In a generative model, it is easy to see what a

distributed pattern of activity over a whole layer means: simply

generate from it to get a sensory input vector (e.g. an image). It is

much harder to discover the meaning of activity in an individual

neuron in the deeper layers because the effects of that activity

depend on the states of all the other nonlinear neurons. The fact

the some neurons in the ventral stream can be construed as face

detectors is intriguing, but I can see no good reason to expect

such simple stories to be generally applicable.
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Versions of this approach are currently being applied
to tasks as diverse as denoising images [36,37], retrieving
documents [2,38], extracting optical flow [39], predicting
the next word in a sentence [40] and predicting what
movies people will like [41]. Bengio and Le Cun [42] give
further reasons for believing that this approach holds
great promise for artificial intelligence applications, such
as human-level speech and object recognition, that
have proved too difficult for shallow methods like
support vector machines [31] that cannot learn multiple
layers of representation. The initial successes of this
approach to learning deep networks raise many ques-
tions (see Box 2).

There is no concise definition of the types of data for
which this approach is likely to be successful, but it seems
most appropriate when hidden variables generate richly
structured sensory data that provide plentiful infor-
mation about the states of the hidden variables. If the
hidden variables also generate a label that contains little
information or is only occasionally observed, it is a bad
idea to try to learn the mapping from sensory data to
labels using discriminative learning methods. It is much
more sensible first to learn a generative model that infers
the hidden variables from the sensory data and then to
learn the simpler mapping from the hidden variables to
the labels.
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