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Abstract

We present Linear Relational Embedding (LRE), a new method of learn-
ing a distributed representation of concepts from data consisting of in-
stances of relations between given concepts. Its final goal is to be able
to generalize, i.e. infer new instances of these relations among the con-
cepts. On a task involving family relationships we show that LRE can
generalize better than any previously published method. We then show
how LRE can be used effectively to find compact distributed representa-
tions for variable-sized recursive data structures, such as trees and lists.

1 Linear Relational Embedding

Our aim is to take a large set of facts about a domain expressed as tuples of arbitrary sym-
bols in a simple and rigid syntactic format and to be able to infer other “common-sense”
facts without having any prior knowledge about the domain. Let us imagine a situation in
which we have a set of concepts and a set of relations among these concepts, and that our
data consists of few instances of these relations that hold among the concepts. We want
to be able to infer other instances of these relations. For example, if the concepts are the
people in a certain family, the relations are kinship relations, and we are given the facts
”Alberto has-father Pietro” and ”Pietro has-brother Giovanni”, we would like to be able to
infer ”Alberto has-uncle Giovanni”. Our approach is to learn appropriate distributed rep-
resentations of the entities in the data, and then exploit the generalization properties of the
distributed representations [2] to make the inferences. In this paper we present a method,
which we have called Linear Relational Embedding (LRE), which learns a distributed rep-
resentation for the concepts by embedding them in a space where the relations between
concepts are linear transformations of their distributed representations.

Let us consider the case in which all the relations are binary, i.e. involve two concepts.
In this case our data consists of triplets (concept1; relation; concept2), and the problem
we are trying to solve is to infer missing triplets when we are given only few of them.
Inferring a triplet is equivalent to being able to complete it, that is to come up with one of
its elements, given the other two. Here we shall always try to complete the third element
of the triplets 1. LRE will then represent each concept in the data as a learned vector in a

1Methods analogous to the ones presented here that can be used to complete any element of a
triplet can be found in [4].



Euclidean space and each relationship between the two concepts as a learned matrix that
maps the first concept into an approximation to the second concept. Let us assume that
our data consists of C such triplets containing N distinct concepts and M binary relations.
We shall call this set of triplets C; V = fv1; : : : ;vNg will denote the set of n-dimensional
vectors corresponding to the N concepts, and R = fR1; : : : ; RMg the set of (n � n)
matrices corresponding to the M relations. Often we shall need to indicate the vectors
and the matrix which correspond to the concepts and the relation in a certain triplet c. In
this case we shall denote the vector corresponding to the first concept with a, the vector
corresponding to the second concept with b and the matrix corresponding to the relation
with R. We shall therefore write the triplet c as (ac; Rc;bc) where ac;bc 2 V andRc 2 R.
The operation that relates a pair (ac; Rc) to a vector bc is the matrix-vector multiplication,
Rc �ac, which produces an approximation to bc. If for every triplet (ac; Rc;bc) we think of
Rc �ac as a noisy version of one of the concept vectors, then one way to learn an embedding
is to maximize the probability that it is a noisy version of the correct completion, b c. We
imagine that a concept has an average location in the space, but that each “observation” of
the concept is a noisy realization of this average location. Assuming spherical Gaussian
noise with a variance of 1=2 on each dimension, the discriminative goodness function that
corresponds to the log probability of getting the right completion, summed over all training
triplets is:
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where kc is the number of triplets in C having the first two terms equal to the ones of c, but
differing in the third term 2.

Learning based on maximizing D with respect to all the vector and matrix components has
given good results, and has proved successful in generalization as well [5]. However, when
we learn an embedding by maximizing D, we are not making use of exactly the information
that we have in the triplets. For each triplet c, we are making the vector representing the
correct completion b

c more probable than any other concept vector given R c � ac, while
the triplet states that Rc � ac must be equal to bc. The numerator of D does exactly this,
but we also have the denominator, which is necessary in order to stay away from the trivial
0 solution 3. We noticed however that the denominator is critical at the beginning of the
learning, but as the vectors and matrices differentiate we could gradually lift this burden,
allowing

PC

c=1 kR
c � ac � b

ck2 to become the real goal of the learning. To do this we
modify the discriminative function to include a parameter �, which is annealed from 1 to 0
during learning 4:
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2We would like our system to assign equal probability to each of the correct completions. The
discrete probability distribution that we want to approximate is therefore: Px = 1

d

P
d
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Æ(bi � x)

where Æ is the discrete delta function and x ranges over the vectors in V . Our system implements the
discrete probability distribution: Qx = 1

Z
exp(�kR � a� xk2) where Z is the normalization factor.

The 1=kc factor in eq.1 ensures that we are minimizing the Kullback-Leibler divergence between P
and Q.

3The obvious approach to find an embedding would be to minimize the sum of squared distances
between Rc � ac and bc over all the triplets, with respect to all the vector and matrix components.
Unfortunately this minimization (almost) always causes all of the vectors and matrices to collapse to
the trivial 0 solution.

4For one-to-many relations we must not decrease the value of � all the way to 0, because this
would cause some concept vectors to become coincident. This is because the only way to make
Rc � ac equal to kc different vectors, is by collapsing them onto a unique vector.



During learning this function G (for Goodness) is maximized with respect to all the vector
and matrix components. This gives a much better generalization performance than the one
obtained by just maximizing D. The results presented in the next sections were obtained by
maximizing G using gradient ascent. All the vector and matrix components were updated
simultaneously at each iteration. One effective method of performing the optimization
is conjugate gradient. Learning was fast, usually requiring only a few hundred updates.
It is worth pointing out that, in general, different initial configurations and optimization
algorithms caused the system to arrive at different solutions, but these solutions were almost
always very similar in terms of generalization performance.

2 LRE results

Here we present the results obtained applying LRE to the Family Tree Problem [1]. In this
problem, the data consists of people and relations among people belonging to two fami-
lies, one Italian and one English, shown in fig.1 (left) 5. All the information in these trees
can be represented in simple propositions of the form (person 1; relation; person2). Us-
ing the relations father, mother, husband, wife, son, daughter, uncle, aunt, brother, sister,
nephew, niece there are 112 such triplets in the two trees. Fig.1 (right) shows the embed-
ding obtained after training with LRE. Notice how the Italians are linearly separable from
the English people. From the Hinton diagram, we can see that each member of a family is
symmetric to the corresponding member in the other family. The sign of the third compo-
nent of the vectors is (almost) a feature for the nationality. When testing the generalization
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Figure 1: Left: Two isomorphic family trees. The symbol “=” means “married to”. Right
Top: layout of the vectors representing the people obtained for the Family Tree Problem in
3D. Vectors end-points are indicated by *, the ones in the same family tree are connected
to each other. All 112 triplets were used for training. Right Bottom: Hinton diagrams of
the 3D vectors shown above. The vector of each person is a column, ordered according to
the numbering on the tree diagram on the left.

performance, for each triplet in the test set (a; R; ?), we chose as completion the concepts
k according to their probability, given R c � ac. The system was generally able to complete
correctly all 112 triplets even when 28 of them, picked at random, had been left out during
training. These results on the Family Tree Problem are much better than the ones obtained
using any other method on the same problem: Quinlan’s FOIL [7] could generalize on 4
triplets, while Hinton (1986) and O’Reilly (1996) made one or more errors when only 4
test cases were held out during training.

5The names of the Italian family have been altered from those originally used in Hinton (1986) to
match those of one of the author’s family.



For most problems there exist triplets which cannot be completed. This is the case, for
example, of (Christopher, father, ?) in the Family Tree Problem. Therefore, here we
argue that it is not sufficient to test generalization by merely testing the completion of
those complete-able triplets which have not been used for training. The proper test for
generalization is to see how the system completes any triplet of the kind (a; R; ?) where a
ranges over the concepts and R over the relations. We cannot assume to have knowledge
of which triplets admit a completion, and which do not. To our knowledge this issue has
never been analyzed before (even though FOIL handles this problem correctly). To do this
the system needs a way to indicate when a triplet does not admit a completion. Therefore,
once the maximization of G is terminated, we build a new probabilistic model around
the solution which has been found. This new model is constituted, for each relation, of
a mixture of N identical spherical Gaussians, each centered on a concept vector, and a
Uniform distribution. The Uniform distribution will take care of the “don’t know” answers,
and will be competing with all the other Gaussians, each representing a concept vector. For
each relation the Gaussians have different variances and the Uniform a different height.
The parameters of this probabilistic model are, for each relation R, the variances of the
Gaussians �R and the relative density under the Uniform distribution, which we shall write
as exp(�r2R=2�

2

R). These parameters are learned using a validation set, which will be the
union of a set of complete-able (positive) triplets P and a set of pairs which cannot be
completed N (negative); that is P = fap; Rp;bpgPp=1 and N = faq ; Rq;?gQq=1 where ?
indicates the fact that the result of applying relation R q to aq does not belong to V . This is
done by maximizing the following discriminative goodness function F over the validation
set :
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with respect to the �R and rR parameters, while everything else is kept fixed. Having
learned these parameters, in order to complete any triplet (R; a; ?) we compute the proba-
bility distribution over each of the Gaussians and the Uniform distribution given R � a. The
system then chooses a vector vi or the “don’t know” answer according to those probabili-
ties, as the completion to the triplet.

We used this method on the Family Tree Problem using a train, test and validation sets
built in the following way. The test set contained 12 positive triplets chosen at random,
but such that there was a triplet per relation. The validation set contained a group of 12
positive and a group of 12 negative triplets, chosen at random and such that each group
had a triplet per relation. The train set contained the remaining 88 positive triplets. After
learning a distributed representation for the entities in the data by maximizing G over the
training set, we learned the parameters of the probabilistic model by maximizing F over
the validation set. The resulting system was able to correctly complete all the 288 possible
triplets (R; a; ?). Figure 2 shows the distribution of the probabilities when completing one
complete-able and one uncomplete-able triplet in the test set.

LRE seems to scale up well to problems of bigger size. We have used it on a much bigger
version of the Family Tree Problem, where the family tree is a branch of the real family
tree of one of the authors containing 49 people over 5 generations. Using the same set
of 12 relations used in the Family Tree Problem, there is a total of 644 positive triplets.
After learning using a training set of 524 positive triplets, and a validation set constituted
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Figure 2: Distribution of the probabilities assigned to each concept for one complete-able
(left) and one uncomplete-able (right) triplet written above each diagram. The complete-
able triplet has two correct completions but neither of the triplets had been used for training.
Black bars from 1 to 24 are the probabilities of the people ordered according to the num-
bering in fig.1. The last grey bar on the right, is the probability of the “don’t know” answer.

by 30 positive and 30 negative triplets, the system is able to complete correctly almost
all the possible triplets. When many completions are correct, a high probability is always
assigned to each one of them. Only in few cases is a non-negligible probability assigned to
some wrong completions. Almost all the generalization errors are of a specific form. The
system appears to believe that ”brother/sister of” means ”son/daughter of parents of”. It
fails to model the extra restriction that people cannot be their own brother/sister. On the
other hand, nothing in the data specifies this restriction.

3 Using LRE to represent recursive data structures

In this section, we shall show how LRE can be used effectively to find compact distributed
representations for variable-sized recursive data structures, such as trees and lists. Here we
discuss binary trees, but the same reasoning applies to trees of any valence. The approach
is inspired by Pollack’s RAAM architecture [6]. A RAAM is an auto-encoder which is
trained using backpropagation. Figure 3 shows the architecture of the network for binary
trees. The system can be thought as being composed of two networks. The first one, called
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Figure 3: Left: the architecture of a RAAM for binary trees. The 3 layers are fully con-
nected. Adapted from [6]. Center: how LRE can be used to learn a representation for
binary trees in a RAAM-like fashion. Right: the binary tree structure of the sentences used
in the experiment.

compressor encodes two fixed-width patterns into a single pattern of the same size. The
second one, called reconstructor, decodes a compressed pattern into facsimiles of its parts,
and determines when the parts should be further decoded. To encode a tree the network
must learn as many auto-associations as the total number of non-terminal nodes in the tree.
The codes for the terminal nodes are supplied, and the network learns suitable codes for
the other nodes. The decoding procedure must decide whether a decoded vector represents



a terminal node or an internal node which should be further decoded. This is done by
using binary codes for the terminal symbols, and then fixing a threshold which is used for
checking for “binary-ness” during decoding.

The RAAM approach can be cast as an LRE problem, in which concepts are trees, sub-
trees or leaves, or pairs of trees, sub-trees or leaves, and there exist 3 relationships: C
implementing the compressor, and R1 and R2 which jointly implement the reconstructor
(see fig.3). We can then learn a representation for all the trees, and the matrices by max-
imizing G in eq.2. This formulation, which we have called Hierarchical LRE (HLRE),
solves two problems encountered in RAAMs. First, one does not need to supply codes for
the leaves of the trees, since LRE will learn an appropriate distributed representation for
them. Secondly, one can also learn from the data when to stop the decoding process. In
fact, the problem of recognizing whether a node needs to be further decoded, is similar
to the problem of recognizing that a certain triplet does not admit a completion, that we
solved in the previous section. While before we built an outlier model for the “don’t know”
answers, now we shall build one for the non-terminal nodes. This can be done by learning
appropriate values of � and r for relations R1 and R2 maximizing F in eq.3. The set of
triplets (ac; Rc;bc) where bc is not a leaf of the tree, will play the role of the N set which
appears in eq.3.

We have applied this method to the problem of encoding binary trees which correspond
to sentences of 4 words from a small vocabulary. Sentences had a fixed structure: a noun
phrase, constituted of an adjective and a noun, followed by a verb phrase, made of a verb
and a noun (see fig.3). Thus each sentence had a fixed grammatical structure, to which we
added some extra semantic structure in the following way. Words of each grammatical cat-
egory were divided into two disjoint sets. Nouns were in N� = fgirl, woman, scientistg or
inN� = fdog, doctor, lawyerg; adjectives were inA� = fpretty, youngg or in A� = fugly,
oldg; verbs were in V� = fhelp, loveg or in V� = fhurt, annoyg. Our training set was con-
stituted by 10 sentences of the type: (adjective�; noun�; verb�; noun�[�) and 10 of the
type (adjective�; noun�; verb� ; noun�[�), where the suffix indicates the set to which
each word type belongs. In this way, sentences of the kind “pretty girl annoy scientist”
were not allowed in the training set, and there were 144 possible sentences that satisfied
the constraints which were implicit in the training set.
We used HLRE to learn a distributed representation for all the nodes in the trees, maximiz-
ing G using the 20 sentences in the training set. In 7D, after having built the outlier model
for the non-terminal symbols, given any root or internal node the system would reconstruct
its children, and if they were non-terminal symbols would further decode each of them.
The decoding process would always halt providing the correct reconstruction for all the
20 sentences in the training set. The top row of fig.4 shows the distributed representations
found for each word in the vocabulary. Notice how the � and � sets of adjectives and verbs
are almost symmetric with respect to the origin; the difference between the � and � sets
is less evident for the nouns, due to the fact that while there exists a restriction on which
nouns can be used in position b, there is no restriction on the nouns appearing in position d
in the training sentences (see fig.3, right). We tested how well this system could generalize
beyond the training set using the same procedure used by Pollack to enumerate the set of
trees that RAAMs are able to represent [6]: for every pair of patterns for trees, first we
encoded them into a pattern for a new higher level tree, and then we decoded this tree back
into the patterns of the two sub-trees. If the norm of the difference between the original
and the reconstructed sub-trees was within a tolerance, which we set to 0:1, then the tree
could be considered to be well formed. The system shows impressive generalization per-
formance: after training using the 20 sentences, the four-word sentences it generates are all
the 144 well formed sentences, and only those. It does not generate sentences which are ei-
ther grammatically wrong, like “dog old girl annoy”, nor sentences which violate semantic
constraints, like “pretty girl annoy scientist”. This is striking when compared to the poor
generalization performance obtained by the RAAM on similar problems. As recognized by
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Figure 4: For Hinton diagrams with multiple rows, each row relates to a word, in the fol-
lowing order - Adjectives:f1=pretty; 2=young; 3=ugly; 4=oldg; Nouns:f1=girl; 2=woman;
3=scientist; 4=dog; 5=doctor; 6=lawyerg; Verbs:f1=help; 2=love; 3=hurt; 4=annoyg; .
Black bars separate A�, N�, V� (higher), from A� , N�, V� (lower). Top row: The dis-
tributed representation of the words in the sentences found after learning. Center row:
The different contributions given to the root of the tree by the word “girl” when placed in
position a, b, c and d in the tree. Bottom row: The contribution of each leaf to the recon-
struction of a, when adjectives, nouns, verbs and nouns are applied in positions a, b, c and
d respectively.

Pollack [6], this was almost certainly due to the fact that for the RAAMs the representation
for the leaves was too similar, a problem that the HLRE formulation solves, since it learns
their distributed representations.

Let us try to explain why HLRE can generalize so well. The C matrix can be decomposed
into two sub-matrices, C1 andC2, such that for any two children of a given node, l and r, we
have: C � [l; r] = C1 � l + C2 � r, where “;” denotes the concatenation operator. Therefore
we have a pair of matrices, either (C1; R1) or (C2; R2), associated to each link in the
graph. Once the system has learned an embedding, finding a distributed representation for
a given tree amounts to multiplying the representation of its leaves by all the C i matrices
found on all the paths from the leaves to the root, and adding them up. Luckily matrix
multiplication is non-commutative, and therefore every sequence of words on its leaves
can generate a different representation at the root node. The second row of fig.4 makes
this point clear showing the different contributions given to the root of the tree by the word
“girl” , depending on its position in the sentence. A tree can be “unrolled” from the root to
its leaves by multiplying its distributed representation using the R i matrices. We can now
analyze how a particular leaf is reconstructed. Leaf a, for example, is reconstructed as:

~a = R2

1
� C2

1
� a+R2

1
� C1 � C2 � b+R2

1
� C2 � C1 � c+R2

1
� C2

2
� d

The third row of fig.4 shows the contribution of each leaf to the reconstruction of a, when
adjectives, nouns, verbs and nouns are placed on leaves a, b, c and d respectively. We can
see that the contributions from the adjectives, match very closely their actual distributed
representations, while the contributions from the nouns in position d are negligible. This
means that any adjective placed on a will tend to be reconstructed correctly, and that its
reconstruction is independent of the noun we have in position d. On the other hand, the



contributions from nouns and verbs in positions b and c are non-negligible, and notice how
those given by words belonging to the � subsets are almost symmetric to those given by
words in the � subsets. In this way the system is able to enforce the semantic agreement
between words in positions a, b and c. Finally, the reconstruction of a, when adjectives,
nouns, verbs and nouns are not placed on leaves a, b, c and d respectively, assigns a very
low probability to any word, and thus the system does not generate sentences which are not
well formed.

4 Conclusions

Linear Relational Embedding is a new method for learning distributed representations of
concepts and relations from data consisting of instances of relations between given con-
cepts. It finds a mapping from the concepts into a feature-space by imposing the constraint
that relations in this feature-space are modeled by linear operations. LRE shows excellent
generalization performance. The results on the Family Tree Problem are far better than
those obtained by any previously published method. Results on other problems are similar.
Moreover we have shown elsewhere [4] that, after learning a distributed representation for
a set of concepts and relations, LRE can easily modify these representations to incorporate
new concepts and relations and that it is possible extract logical rules from the solution
and to couple LRE with FOIL [7]. Learning is fast and LRE rarely converges to solutions
with poor generalization. We began introducing LRE for binary relations, and then we saw
how these ideas can be easily extended to higher arity relation by simply concatenating
concept vectors and using rectangular matrices for the relations. The compressor relation
for binary trees is a ternary relation; for trees of higher valence the compressor relation will
have higher arity. We have seen how HLRE can be used to find distributed representations
for hierarchical structures, and its generalization performance is much better than the one
obtained using RAAMs on similar problems.

It is easy to prove that, when all the relations are binary, given a sufficient number of
dimensions, there always exists an LRE-type of solution that satisfies any set of triplets
[4]. However, due to its linearity, LRE cannot represent some relations of arity greater
than 2. This limitation can be overcome by adding an extra layer of non-linear units for
representing the relations. This new method, called Non-Linear Relational Embedding
(NLRE) [4], can represent any relation and has given good generalization results.
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