Developing Population Codes By
Minimizing Description Length

Richard S. Zemel' Geoffrey E. Hinton
University of Toronto & Computer Science Department
The Salk Institute, CNL University of Toronto

10010 North Torrey Pines Rd. Toronto, ONT M5HS 1A4

La Jolla, CA 92037

Abstract

The Minimum Description Length principle (MDL) can be used to train the hidden
units of a neural network to extract a representation that is cheap to describe but nonethe-
less allows the input to be reconstructed accurately. We show how MDL can be used to
develop highly redundant population codes. FEach hidden unit has a location in a low-
dimensional implicit space. If the hidden unit activities form a bump of a standard shape
in this space, they can be cheaply encoded by the center of this bump. So the weights
from the input units to the hidden units in a self-supervised network are trained to make
the activities form a standard bump. The coordinates of the hidden units in the implicit
space are also learned, thus allowing flexibility, as the network develops a discontinuous
topography when presented with different input classes. Population-coding in a space
other than the input enables a network to extract nonlinear higher-order properties of the
inputs.

Most existing unsupervised learning algorithms can be understood using the Minimum
Description Length (MDL) principle (Rissanen, 1989). Given an ensemble of input vectors,
the aim of the learning algorithm is to find a method of coding each input vector that min-
imizes the total cost, in bits, of communicating the input vectors to a receiver. There are
three terms in the total description length:

¢ The code-cost is the number of bits required to communicate the code that the algo-
rithm assigns to each input vector.

e The model-cost is the number of bits required to specify how to reconstruct input
vectors from codes (e.g., the hidden-to-output weights in Figure 1).

! Corresponding author. Algorithms and Architectures: Learning Algorithms—Oral

e The reconstruction-error is the number of bits required to fix up any errors that
occur when the input vector is reconstructed from its code.

For example, in competitive learning (vector quantization), the code is the identity of the
winning hidden unit, so by limiting the system to N units we limit the average code-cost to at
most log, N bits. The reconstruction-error is proportional to the squared difference between
the input vector and the weight-vector of the winner, and this is what competitive learning
algorithms minimize. The model-cost is usually ignored.

The representations produced by vector quantization contain very little information about
the input (at most log, N bits). To get richer representations we must allow many hidden units
to be active at once and to have varying activity levels. Principal components analysis (PCA)
achieves this for linear mappings from inputs to codes. It can be viewed as a version of MDL
in which we limit the code-cost by only having a few hidden units, and ignoring the model-cost
and the accuracy with which the hidden activities must be coded. A self-supervised network
(see Figure 1) that tries to reconstruct the input vector on its output units will perform a
version of PCA if the output units are linear. Novel and interesting unsupervised learning
algorithms can be obtained by considering various alternative methods of communicating the
hidden activities. The algorithms can all be implemented by backpropagating the derivative
of the code-cost for the hidden units in addition to the derivative of the reconstruction-error
backpropagated from the output units.

Any method that communicates each hidden activity separately and independently will
tend to lead to factorial codes because any mutual information between hidden units will
cause redundancy in the communicated message, so the pressure to keep the message short
will squeeze out the redundancy. Although factorial codes are interesting, they are not robust
against hardware failure nor do they resemble the population codes found in some parts of
the brain. Our aim in this paper is to show how the MDL approach can be used to develop
population codes in which the activities of hidden units are highly correlated.

Population codes

Population codes involve three quite different spaces: the input-vector space; the hidden-vector
space; and another, low-dimensional space which we call the implicit space. Each hidden unit
has weights coming from the input units that determine its activity level. But in addition to
these weights, it has another set of parameters that represent its coordinates in the implicit
space. To determine what is represented by a vector of hidden activities, we average together
the implicit coordinates of the hidden units, weighting each coordinate vector by the activity
level of the unit.

Suppose, for example, that each hidden unit is connected to an 8x8 retina and has 2
implicit coordinates that represent the position of a particular kind of shape on the retina.

Algorithms and Architectures 2 Oral

NETWORK IMPLICIT SPACE (u = 1)

Output
(1..N) C%\ : Activity (b) "

| J

Wy ;

' o o best-fit
Hidden _ E E . Gaussian
(1..H) /\ | |
Input OO~ OO | | |
(L.N) e I: ! . ol L e

X3 X1 X6 X2 B X4 X8 X7 X5

Position (x)

Figure 1: Each of the H hidden units in the self-supervised network has an associated position
in implicit space. Here we show a 1D implicit space. The activity b; of each hidden unit 7 on
case t is shown by a solid line. The network fits the best Gaussian to this pattern of activity
in implicit space. The predicted activity, 3;, of unit 7 under this Gaussian is based on the

distance from x; to the mean pt; it serves as a target for b;.

Algorithms and Architectures 3 Oral

Given a population of such units all broadly-tuned to different positions we can represent any
particular instance of the shape by the relative activity levels in the population. If we plot the
hidden activity levels in the implicit space (not the input space), we would like to see a bump
of activity of a standard shape (e.g., a Gaussian) whose center represents the instantiation
parameters of the shape (Figure 1 depicts this for a 1D implicit space). If the activities form a
perfect Gaussian bump of fixed variance we can communicate them by simply communicating
the coordinates of the mean of the Gaussian; this is very economical if there are many less
implicit coordinates than hidden units.

It is important to realize that the activity of a hidden unit is actually caused by the input-
to-hidden weights, but by setting these weights appropriately we can make the activity match
the height under the Gaussian in implicit space. If the activity bump is not quite perfect, we
must also encode the bump-error—the misfit between the actual activity levels and the levels
predicted by the Gaussian bump. The cost of encoding this misfit is what forces the activity
bump in implicit space to approximate a Gaussian.

Currently, we ignore the model-cost, so the description length to be minimized is:

E' = B'4+ R
H) N
DO =052 2Ve + > (af — cf)?/2VR (1)

7=1 k=1

where a, b, ¢ are the activities of units in the input, hidden, and output layers, respectively, Vg
and Vg are the fixed variances used for coding the bump-errors and the reconstruction-errors,
and the other symbols are explained in the caption of Figure 1.

We compute the actual activity of a hidden unit, b;, as a normalized exponential of its
total input.! Its expected activity is its normalized value under the predicted Gaussian bump:

H
b = exp(=(xj— u*)?/20%)/ 3 exp(~(x; — pu*)?/207) 2)

On each case, a separate minimization determines ub; it is the position in implicit space
that minimizes B! given {x;, b;} We assume for now that o is fixed throughout training. The
network has full inter-layer connectivity, and linear output units. Both the network weights
and the implicit coordinates of the hidden units are adapted to minimize F.

Experimental Results

In the first experiment, each 8x8 real-valued input image contained an instance of a simple
shape in a random (z, y)-position. The network began with random weights, and each of 100

'bl = exp(net})/ Zlel exp(netf), where net} is the net input into unit j on case ¢.

Algorithms and Architectures 4 Oral

Unit 18 - Epoch 0 Unit 18 - Epoch 23

0.08

0.2
0.06
0.15

Activity0. 04 Activity g4

0.02 0.05

0E

Y position

Xposition 8 Y position X position
10 10

Figure 2: This figure shows the receptive field in implicit space for a hidden unit. The left
panel shows that before learning, the unit responds randomly to 100 different test patterns,
generated by positioning a shape in the image at each point in a 10x10 grid. Here the 2
dimensions in implicit space correspond to z and y positions. The right panel shows that
after learning, the hidden unit responds to objects in a particular position, and its activity
level falls off smoothly as the object position moves away from the center of the learned
receptive field.

hidden units in a random 2D position; we trained it using conjugate gradient on 400 examples.
The network converged after 25 epochs. Each hidden unit developed a receptive field so that
it responded to inputs in a limited neighborhood that corresponded to its learned position in
implicit space (see Figure 2). The set of hidden units covered the range of possible positions.

In a second experiment, we also varied the orientation of the shape and we gave each
hidden unit three implicit coordinates. The network converged after 60 epochs of training on
1000 images. The hidden unit activities formed a population code that allowed the input to
be accurately reconstructed.

A third experiment employed a training set where each image contained either a horizontal
or vertical bar, in some random position. The hidden units formed an interesting 2D implicit
space in this case: one set of hidden units moved to one corner of the space, and represented
instances of one shape, while the other group moved to an opposite corner and represented
the other (Figure 3). This type of representation would be difficult to learn in a Kohonen
network (Kohonen, 1982); the fact that the hidden units can learn their implicit coordinates
allows much more flexibility than any system in which these coordinates are fixed in advance.

Algorithms and Architectures 5 Oral

6.50
6.00
5.50
5.00
4.50
4.00
3.50
3.00
2.50
2.00
150
1.00
0.50
0.00

Implicit Space (Epoch 0) Implicit Space (Epoch 120)

I I I 6.50 I \

I
X % y X
- X oo - 600 % y
| % X B o5 XDD DD X | 550 Djf; o
a° = o m Ko o) e DD@ O=x 4o q
; p "o R - h8” BT
<o o o ju o 5.00 - B om g %
X X >2< X DE:‘D X DDDQ [m] X
L x x % X - 0f ° oo ox X
., " X g ° 450 «? Hgbo o XX
7‘3< &> DEEXX 5 X o ><0>§< — XD x QDDD DDX
X <D 4.00 XX Bo X
o
Cm X me x X “7 3501« x x X
Ky P X &) X X X
- g e x X X X X
= 0® 0 o U
g $ ° &g O 3.00]-
S Ooo X T;‘ x X «
[= x ° N2 7] X
O X o © OO o X o ® o< X 250+ y 5 X O%%o@{ « . X
L <>O<><> >§<Q><>§> D<>D<> @ o % X 2007 X>< @@ gﬁ?x >2< X
i x & % o x o 4 - &SR %
o X S
o©, o - LN . X X ><§ X & 1'507>< % gg%ooo@ X
- @0 SR o %0 m L XD o o EGe®G Sox
5 = OD = < o 1.00+ S &OO@
B = © XD X @X e o * 0.50 . x o ><>< X
B % o © % % o X K¢ » i . — X ><>§< «
| | | | | | | | | | |
000 100 200 300 400 500 6.00 0.00 100 200 300 400 5.00 6.00

Figure 3: This figure shows the positions of the hidden units and the means in the 2D
implicit space before and after training on the horizontal /vertical task. The means in the top
right of the second plot all correspond to images containing vertical bars, while the other set
correspond to horizontal bar images. Note that some hidden units are far from all the means;
these units do not play a role in the coding of the input, and are free to be recruited for other
types of input cases.

Algorithms and Architectures 6 Oral

posn

| "mean.v

°mean.H

Conclusions and Current Directions

We have shown how MDL can be used to develop non-factorial, redundant representations.
Instead of communicating each hidden unit activity independently we communicate the loca-
tion of a Gaussian bump in a low-dimensional implicit space. If hidden units are appropriately
tuned in this space their activities can then be inferred from the bump location. Our method
can easily be applied to networks with multiple hidden layers, where the implicit space is con-
structed at the last hidden layer before the output and derivatives are then backpropagated;
this allows the implicit space to correspond to arbitrarily high-order input properties.

We are currently working on a major extension, that will allow the learning algorithm to
determine for itself the appropriate number of dimensions in implicit space. We start with
many dimensions but we include the cost of specifying ub in the description length. This
obviously depends on how many implicit coordinates are used. If all of the hidden units have
the same value for one of the implicit coordinates, it costs nothing to communicate that value
for each bump. In general, the cost of an implicit coordinate depends on the ratio between its
variance (over all the different bumps) and the accuracy with which it must be communicated.
So the network can save bits by reducing the variance for unneeded coordinates. This creates
a smooth search space for determining how many implicit coordinates are really needed.

Kohonen, T. (1982). “Self-organized formation of topologically correct feature maps”, Bio-
logical Cybernetics, 43, 59-69.

Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry. World Scientific Publishing
Co., Singapore.

Algorithms and Architectures 7 Oral

