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Abstract

Hand-printed digits can be modeled as splines that are governed
by about 8 control points. For each known digit, the control points
have preferred "home" locations, and deformations of the digit are
generated by moving the control points away from their home lo-
cations. Images of digits can be produced by placing Gaussian ink
generators uniformly along the spline. Real images can be recog-
nized by �nding the digit model most likely to have generated the
data. For each digit model we use an elastic matching algorithm
to minimize an energy function that includes both the deformation
energy of the digit model and the log probability that the model
would generate the inked pixels in the image. The model with the
lowest total energy wins. If a uniform noise process is included
in the model of image generation, some of the inked pixels can be
rejected as noise as a digit model is �tting a poorly segmented im-
age. The digit models learn by modifying the home locations of
the control points.

1 Introduction

Given good bottom-up segmentation and normalization, feedforward neural net-
works are an e�cient way to recognize digits in zip codes. (?). However, in some
cases, it is not possible to correctly segment and normalize the digits without using
knowledge of their shapes, so to achieve close to human performance on images of
whole zip codes it will be necessary to use models of shapes to inuence the seg-
mentation and normalization of the digits. One way of doing this is to use a large
cooperative network that simultaneously segments, normalizes and recognizes all of
the digits in a zip code. A �rst step in this direction is to take a poorly segmented
image of a single digit and to explain the image properly in terms of an appro-
priately normalized, deformed digit model plus noise. The ability of the model
to reject some parts of the image as noise is the �rst step towards model-driven
segmentation.



2 Elastic models

One technique for recognizing a digit is to perform an elastic match with many
di�erent exemplars of each known digit-class and to pick the class of the nearest
neighbor. Unfortunately this requires a large number of elastic matches, each of
which is expensive. By using one elastic model to capture all the variations of a given
digit we greatly reduce the number of elastic matches required. Burr (1981a, 1981b)
has investigated several types of elastic model and elastic matching procedure. We
describe a di�erent kind of elastic model that is based on splines. Each elastic
model contains parameters that de�ne an ideal shape and also de�ne a deformation
energy for departures from this ideal. These parameters are initially set by hand
but can be improved by learning. They are an e�cient way to represent the many
possible instances of a given digit.

Each digit is modelled by a deformable spline whose shape is determined by the
positions of 8 control points. Every point on the spline is a weighted average of
four control points, with the weighting coe�cients changing smoothly as we move
along the spline. 1 To generate an ideal example of a digit we put the 8 control
points at their home locations for that model. To deform the digit we move the
control points away from their home locations. Currently we assume that, for each
model, the control points have independent, radial Gaussian distributions about
their home locations. So the negative log probability of a deformation (its energy)
is proportional to the sum of the squares of the departures of the control points
from their home locations.

The deformation energy function only penalizes shape deformations. Translation,
rotation, dilation, elongation, and shear do not change the shape of an object so we
want the deformation energy to be invariant under these a�ne transformations. We
achieve this by giving each model its own \object-based frame". Its deformation
energy is computed relative to this frame, not in image coordinates. When we �t
the model to data, we repeatedly recompute the best a�ne transformation between
the object-based frame and the image (see section 4). The repeated recomputation
of the a�ne transform during the model �t means that the shape of the digit is
inuencing the normalization.

Although we will use our digit models for recognizing images, it helps to start by
considering how we would use them for generating images. The generative model is
an elaboration of the probabilistic interpretation of the elastic net given by Durbin,
Szeliski & Yuille (1989). Given a particular spline, we space a number of \beads"
uniformly along the spline. Each bead de�nes the center of a Gaussian ink generator.
The number of beads on the spline and the variance of the ink generators can easily
be changed without changing the spline itself.

To generate a noisy image of a particular digit class, run the following procedure:

� Pick an a�ne transformation from the model's intrinsic reference frame to
the image frame (i.e. pick a size, position, orientation, slant and elongation
for the digit).

� Pick a deformation of the model (i.e. move the control points away
from their home locations). The probability of picking a deformation is
1
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� Repeat many times:
Either (with probability �noise) add a randomly positioned noise pixel

1In computing the weighting coe�cients we use a cubic B-spline and we treat the �rst
and last control points as if they were doubled.



Or pick a bead at random and generate a pixel from the Gaussian
distribution de�ned by the bead.

3 Recognizing isolated digits

We recognize an image by �nding which model is most likely to have generated it.
Each possible model is �tted to the image and the one that has the lowest cost �t is
the winner. The cost of a �t is the negative log probability of generating the image
given the model.

Eideal = � log
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P (I) P (image j I) dI (1)

We can approximate this by just considering the best �tting model instance 2 and
ignoring the fact that the model should not generate ink where there is no ink in
the image:3
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The probability of an inked pixel is the sum of the probabilities of all the possible
ways of generating it from the mixture of Gaussian beads or the uniform noise �eld.
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where N is the total number of pixels, B is the number of beads, � is a mixing
proportion, and Pb(i) is the probability density of pixel i under Gaussian bead b.

4 The search procedure for �tting a model to an image

Every Gaussian bead in a model has the same variance. When �tting data, we start
with a big variance and gradually reduce it as in the elastic net algorithm of Durbin
and Willshaw (1987) . Each iteration of the elastic matching algorithm involves
three steps:

� Given the current locations of the Gaussians, compute the responsibility
that each Gaussian has for each inked pixel. This is just the probability of
generating the pixel from that Gaussian, normalized by the total probability
of generating the pixel.

� Assuming that the responsibilities remain �xed, as in the EM algorithm
of Dempster, Laird and Rubin (1977), we invert a 16 � 16 matrix to �nd
the image locations for the 8 control points at which the forces pulling
the control points towards their home locations are balanced by the forces
exerted on the control points by the inked pixels. These forces come via
the forces that the inked pixels exert on the Gaussian beads.

2In e�ect, we are assuming that the integral in equation 1 can be approximated by the
height of the highest peak, and so we are ignoring variations between models in the width
of the peak or the number of peaks.

3If the inked pixels are rare, poor models sin mainly by not inking those pixels that
should be inked rather than by inking those pixels that should not be inked.



� Given the new image locations of the control points, we recompute the
a�ne transformation from the object-based frame to the image frame. We
choose the a�ne transformation that minimizes the sum of the squared
distances, in object-based coordinates, between the control points and their
home locations. The residual squared di�erences determine the deformation
energy.

Some stages in the �tting of a model to data are shown in Fig. 1. This search
technique avoids nearly all local minima when �tting models to isolated digits. But
if we get a high deformation energy in the best �tting model, we can try alternative
starting con�gurations for the models.

5 Learning the digit models

We can do discriminative learning by adjusting the home positions and variances
of the control points to minimize the objective function

C = �
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log p(correct digit); p(correct digit) =
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For a model parameter such as the x coordinate of the home location of one of the
control points we need @C=@x in order to do gradient descent learning. Equation
4 allows us to express @C=@x in terms of @E=@x but there is a subtle problem:
Changing a parameter of an elastic model causes a simple change in the energy
of the con�guration that the model previously settled to, but the model no longer
settles to that con�guration. So it appears that we need to consider how the energy
is a�ected by the change in the con�guration. Fortunately, derivatives are simple at
an energy minimum because small changes in the con�guration make no change in
the energy (to �rst order). Thus the inner loop settling leads to simple derivatives
for the outer loop learning, as in the Boltzmann machine (Hinton, 1989).

6 Results on the hand-�ltered dataset

We are trying out the scheme out on a relatively simple task - we have a model of
a two and a model of a three, and we want the two model to win on \two" images,
and the three model to win on \three" images.

We have tried many variations of the character models, the preprocessing, the initial
a�ne transformations of the models, the annealing schedule for the variances, the
mixing proportion of the noise, and the relative importance of deformation energy
versus data-�t energy.

Our current best performance is 10 errors (1.6%) on a test set of 304 two's and 304
three's. We reject cases if the best-�tting model is highly deformed, but on this
test set the deformation energy never reached the rejection criterion. The training
set has 418 cases, and we have a validation set of 200 cases to tell us when to stop
learning. Figure 2 shows the e�ect of learning on the models. The initial a�ne
transform is de�ned by the minimal vertical rectangle around the data.

The images are preprocessed to eliminate variations due to stroke-width and paper
and ink intensities. First, we use a standard local thresholding algorithm to make
a binary decision for each pixel. Then we pick out the �ve largest connected com-
ponents (hopefully digits). We put a box around each component, then thin all the
data in the box. If we ourselves cannot recognize the resulting image we eliminate



Figure 1: The sequence (a) to (d) shows some stages of �tting a model 3 to some
data. The grey circles represent the beads on the spline, and the radius of the circle
represents the standard deviation of the Gaussian. (a) shows the initial con�gura-
tion, with eight beads equally spaced along the spline. In (b) and (c) the variance
is progressively decreased and the number of beads is increased. The �nal �t using
60 beads is shown in (d). We use about three iterations at each of �ve variances
on our \annealing schedule". In this example, we used �noise = 0:3 which makes it
cheaper to explain the extraneous noise pixels and the ourishes on the ends of the
3 as noise rather than deforming the model to bring Gaussian beads close to these
pixels.



Figure 2: The two and three models before and after learning. The control points
are labelled 1 through 8. We used maximum likelihood learning in which each digit
model is trained only on instances of that digit. After each pass through all those
instances, the home location of each control point (in the object-based frame) is
rede�ned to be the average location of the control point in the �nal �ts of the model
of the digit to the instances of the digit. Most of the improvement in performance
occurred after the �st pass, and after �ve updates of the home locations of the
control points, performance on the validation set started to decrease. Similar results
were obtained with discriminative training. We could also update the variance of
each control point to be its variance in the �nal �ts, though we did not adapt the
variances in this simulation.



it from the data set. The training, validation and test data is all from the training
portion of the United States Postal Service Handwritten ZIP Code Database (1987)
which was made available by the USPS O�ce of Advanced Technology.

7 Discussion

Before we tried using splines to model digits, we used models that consisted of a
�xed number of Gaussian beads with elastic energy constraints operating between
neighboring beads. To constrain the curvature we used energy terms that involved
triples of beads. With this type of energy function, we had great di�culty using
a single model to capture topologically di�erent instances of a digit. For example,
when the central loop of a 3 changes to a cusp and then to an open bend, the sign
of the curvature reverses. With a spline model it is easy to model these topological
variants by small changes in the relative vertical locations of the central two control
points (see �gure 2). This advantage of spline models is pointed out by (Edelman,
Ullman and Flash, 1990) who use a di�erent kind of spline that they �t to character
data by directly locating candidate knot points in the image.

Spline models also make it easy to increase the number of Gaussian beads as their
variance is decreased. This coarse-to-�ne strategy is much more e�cient than using
a large number of beads at all variances, but it is much harder to implement if the
deformation energy explicitly depends on particular bead locations, since changing
the number of beads then requires a new function for the deformation energy.

In determining where on the spline to place the Gaussian beads, we initially used
a �xed set of blending coe�cients for each bead. These coe�cients are the weights
used to specify the bead location as a weighted center of gravity of the locations of
4 control points. Unfortunately this yields too few beads in portions of a digit such
as a long tail of a 2 which are governed by just a few control points. Performance
was much improved by spacing the beads uniformly along the curve.

By using spline models, we build in a lot of prior knowledge about what characters
look like, so we can describe the shape of a character using only a small number
of parameters (16 coordinates and 8 variances). This means that the learning is
exploring a much smaller space than a conventional feed-forward network. Also,
because the parameters are easy to interpret, we can start with fairly good initial
models of the characters. So learning only requires a few updates of the parameters.

Obvious extensions of the deformation energy function include using elliptical Gaus-
sians for the distributions of the control points, or using full covariance matrices for
neighboring pairs of control points. Another obvious modi�cation is to use ellipti-
cal rather than circular Gaussians for the beads. If strokes curve gently relative to
their thickness, the distribution of ink can be modelled much better using elliptical
Gaussians. However, an ellipse takes about twice as many operations to �t and is
not helpful in regions of sharp curvature. Our simulations suggest that, on average,
two circular beads are more exible than one elliptical bead.

Currently we do not impose any penalty on extremely sheared or elongated a�ne
transformations, though this would probably improve performance. Having an ex-
plicit representation of the a�ne transformation of each digit should prove very
helpful for recognizing multiple digits, since it will allow us to impose a penalty on
di�erences in the a�ne transformations of neighboring digits.

Presegmented images of single digits contain many di�erent kinds of noise that
cannot be eliminated by simple bottom-up operations. These include descenders,
underlines, and bits of other digits; corrections; dirt in recycled paper; smudges and
misplaced postal franks. To really understand the image we probably need to model



a wide variety of structured noise. We are currently experimenting with one simple
way of incorporating noise models. After each digit model has been used to segment
a noisy image into one digit instance plus noise, we try to �t more complicated noise
models to the residual noise. A good �t greatly decreases the cost of that noise and
hence improves this interpretation of the image. We intend to handle ourishes on
the ends of characters in this way rather than using more elaborate digit models
that include optional ourishes.

One of our main motivations in developing elastic models is the belief that a strong
prior model should make learning easier, should reduce con�dent errors, and should
allow top-down segmentation. Although we have shown that elastic spline mod-
els can be quite e�ective, we have not yet demonstrated that they are superior to
feedforward nets and there is a serious weakness of our approach: Elastic match-
ing is slow. Fitting the models to the data takes much more computation than a
feedforward net. So in the same number of cycles, a feedforward net can try many
alternative bottom-up segmentations and normalizations and select the overall seg-
mentation that leads to the most recognizable digit string.

Acknowledgements
This research was funded by Apple and by the Ontario Information Technology Research
Centre. We thank Allan Jepson and Richard Durbin for suggesting spline models.

References

Burr, D. J. (1981a). A dynamic model for image registration. Comput. Graphics Image
Process., 15:102{112.

Burr, D. J. (1981b). Elastic matching of line drawings. IEEE Trans. Pattern Analysis and
Machine Intelligence, 3(6):708{713.

Durbin, R., Szeliski, R., and Yuille, A. L. (1989). An analysis of the elastic net approach
to the travelling salesman problem. Neural Computation, 1:348{358.

Durbin, R. and Willshaw, D. (1987). An analogue approach to the travelling salesman
problem. Nature, 326:689{691.

Edelman, S., Ullman, S., and Flash, T. (1990). Reading cursive handwriting by alignment
of letter prototypes. International Journal of Computer Vision, 5(3):303{331.

Hinton, G. E. (1989). Deterministic Boltzmann learning performs steepest descent in
weight-space. Neural Computation, 1:143{150.


