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Glove-TalkIl—A Neural-Network Interface
which Maps Gestures to Parallel Formant
Speech Synthesizer Controls

S. Sidney Fels and Geoffrey E. Hinton

Abstract— Glove-TalkIl is a system which translates hand
gestures to speech through an adaptive interface. Hand gestures
are mapped continuously to ten control parameters of a parallel
formant speech synthesizer. The mapping allows the hand to act
as an artificial vocal tract that produces speech in real time. This
gives an unlimited vocabulary in addition to direct control of
fundamental frequency and volume. Currently, the best version of
Glove-TalkII uses several input devices (including a Cyberglove,
a ContactGlove, a three-space tracker, and a foot pedal), a
parallel formant speech synthesizer, and three neural networks.
The gesture-to-speech task is divided into vowel and consonant
production by using a gating network to weight the outputs of a
vowel and a consonant neural network. The gating network and
the consonant network are trained with examples from the user.
The vowel network implements a fixed user-defined relationship
between hand position and vowel sound and does not require any
training examples from the user. Volume, fundamental frequency,
and stop consonants are produced with a fixed mapping from
the input devices. One subject has trained to speak intelligibly
with Glove-TalkIl. He speaks slowly but with far more natural
sounding pitch variations than a text-to-speech synthesizer.

I. INTRODUCTION

DAPTIVE interfaces are a natural and important class

of applications for neural networks. When a person must
provide high bandwidth control of a complex physical device,
a compatible mapping between the person’s movements and
the behavior of the device becomes crucial. With many de-
vices, the mapping is fixed and if a poor mapping is used, the
device is difficult to control. Using adaptive neural networks, it
is possible to build device interfaces where the mapping adapts
automatically during a training phase. Such adaptive interfaces
would simplify the process of designing a compatible mapping
and would also allow the mapping to be tailored to each
individual user. The key features of neural networks in the
context of adaptive interfaces are the following.

« Neura] networks learn input-output functions from ex-
amples provided by the user who demonstrates the input
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that should lead to a specified output. This “extensional”
programming requires no computer expertise.

+ Adapting the interface to the peculiarities of a new user
is simple. The new user has only to create example data
to retrain the network.

e Once trained, the networks run very quickly, even on
a serial machine. Also, neural networks are inherently
suitable for parallel computation.

In this paper, neural networks are used to implement an
adaptive interface, called Glove-Talkll, which maps hand
gestures to control parameters of a parallel formant speech
synthesizer to allow a user to speak with his hands.

There are many different possible schemes for converting
hand gestures to speech. The choice of scheme \depends on
the granularity of the speech that you want to produce. Fig. 1
identifies a spectrum defined by possible divisions of speech
based on the duration of the sound for each granularity. What
is interesting is that in general, the coarser the division of
speech, the smaller the bandwidth necessary for the user. In
contrast, where the granularity of speech is on the order of
articulatory muscle movements [i.e., the artificial vocal tract
(AVT)] high-bandwidth control is necessary for good speech.
Devices which implement this model of speech production
are like musical instruments which produce speech sounds.
The user must control the timing of sounds to produce speech
much as a musician plays notes to produce music. The AVT
allows unlimited vocabulary, control of pitch, and nonverbal
sounds. Glove-TalklI] is an adaptive interface that implements
an AVT.

Translating gestures to speech using an AVT model has a
long history beginning in the late 1700’s. Systems developed
include a bellows-driven hand-varied resonator tube with
auxiliary controls (1790’s [13]), a rubber-molded skull with
actuators for manipulating tongue and jaw position (1880’s
[1]), and a keyboard-foot pedal interface controlling a set of
linearly spaced bandpass frequency generators called the Voder
(1940 [4]). The Voder was demonstrated at the World’s Fair in
1939 by operators who had trained continuously for one year
to learn to speak with the system. This suggests that the task
of speaking with a gestural interface is very difficult and the
training times could be significantly decreased with a better
interface. Glove-Talkll is implemented with neural networks
which allow the system to learn the user’s interpretation of an
articulatory model of speaking.

1045-9227/98$10.00 © 1998 IEEE
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Fig. 1. Spectrum of gesture-to-speech mappings based on the granularity of speech.
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Fig. 2. Block diagram of Glove-Talkil: input from the user is measured by the Cyberglove, polhemus, ContactGlove, and foot pedal, then mapped using

neural networks and fixed functions to formant parameters which drive the parallel formant synthesizer [12].

This paper begins with an overview of the whole Glove-
TalkII system. Then each neural network is described along
with its training and test results. Finally, a qualitative analysis
is provided of the speech produced by a single subject after
100 hours of speaking with Glove-TalkII.

II. OVERVIEW OF GLOVE-TALKII

The Glove-TalKII system converts hand gestures to speech,
based on a gesture-to-formant model. The gesture vocabulary
is based on a vocal-articulator model of the hand. By dividing
the mapping tasks into independent subtasks, a substantial
reduction in network size and training time is possible (see
(5] and [6]).

Fig. 2 illustrates the whole Glove-TalkIl system. Important
features include the input devices, the three neural networks
labeled vowel/consonant (V/C), vowel, and consonant, and the
speech output device. Input to the system is measured with a
Cyberglove, polhemus sensor, keyboard, and foot pedal. The
Cyberglove measures 18 angles of the user’s hand every 10 ms
including two flex angles for each finger (metacarpophalangeal
and proximal interphalangeal joints) and abduction angles. The
polhemus sensor measures six degrees of freedom of the hand
including the X, Y, Z, roll, pitch, and yaw of the user’s hand

relative to a fixed source. The ContactGlove measures nine
contact points between fingers and thumb on the left hand. The
foot pedal measures the depression angle of the pedal. These
inputs are mapped to speech using three neural networks and
other fixed mappings.

The V/C network is trained on data collected from the
user to decide whether he wants to produce a vowel or
consonant sound. Likewise, the consonant network is trained to
produce consonant sounds based on user-generated examples
of phoneme sounds defined in an initial gesture of vocabulary.
In contrast, the vowel network implements a fixed mapping
between hand positions and vowel phonemes defined by the
user. Nine contact points on the ContactGlove designate the
stop consonants (B, D, G, ], P, K, CH, T, and NG),! because
the dynamics of such sounds proved too fast to be controlled
by the user. The foot pedal provides a volume control by
adjusting the speech amplitude and this mapping is fixed. The
fundamental frequency, which is related to the pitch of the
speech, is determined by a fixed mapping from the user’s
hand height.

! Capital letters are used to indicate phonemes available from the text-to-
speech ‘synthesizer to differentiate them from phoneme representations like
the international phonetic alphabet (IPA).
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Fig. 3. Hand position to vowel sound mapping. The coordinates are specified
relative to the origin at the sound A. The X and Y coordinates form a
horizontal plane when the user is sitting. The text-to-speech synthesizer uses
11 cardinal phonemes which are used as targets for the vowel network.

The system sends ten control parameters to a Loughborough
Sound Images parallel formant speech synthesizer 100 times/s
[12]. The ten parameters are nasal formant amplitude (ALF),
first, second, and third formant frequency and amplitude (F1,
Al, F2, A2, F3, and A3), high-frequency amplitude (AHF),
degree of voicing (V), and the fundamental frequency (FO).
Each of the control parameters is quantized to 6 b.

Once trained, Glove-Talkll can be used as follows: to initiate
speech, the user forms the hand shape of the first sound he/she
intends to produce. The user depresses the foot pedal and the
sound comes out.of the synthesizer. Vowels and consonants of
various qualities are produced in a continuous fashion through
the appropriate coordination of hand and foot motions. Words
are formed by making the correct motions; for example, to say
“hello” the user forms the “h” sound, depresses the foot pedal
and quickly moves his/her hand to produce the “e” sound, then
the “I” sound, and finally the “o” sound. The user has complete
control-of the timing and quality of the individual sounds. The
articulatory mapping between gestures and speech is decided
@ priori. The mapping is based on a simplistic articulatory
phonetic description of speech [8]. The X,Y coordinates (mea-
sured by the polhemus) are mapped to something like tongue
position and height® producing vowels when the user’s hand
is in an open configuration (see Fig. 3 for the correspondence
and Table I for a. typical vowel configuration). Manner and
place of articulation for nonstop consonants are determined
by opposition of the thumb with the index and middle fingers
as described in Table 1. The ring finger controls voicing. Only
static articulatory configurations are used as training points for
the neural networks, and the interpolation between them is a
result of the learning but is not explicitly trained. Ideally, the

211 reality, the XY coordinates map more closely to changes in the first

two formants, F1 and F2 of vowels. From the user’s perspective, though the
link to tongue movement is useful.
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} TABLE 1
STATIC GESTURE-TO-CONSONANT MAPPING FOR ALL PHONEMES. NOTE,
EacH GesTURE CORRESPONDS TO A STATIC NONSTOP CONSONANT
PHONEME (GENERATED BY THE TEXT-TO-SPEECH SYNTHESIZER
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Fig. 4. The vowel/consonant décision network; the ten inputs are the fiex
angles of the thumb, index, middle, and ring finger, the abduction angle
between the thumb and index finger, and the angle of rotation of the thumb
(circumduction). The output is the probability that the user intends a vowel.

transitions should alsc be learned, but in the text-to-speech
formant data we use for training {9] these transitions are poor,
and it is very hard to extract accurate formant trajectories from
real speech to use for training. The next sections describe the
structure and training of each of the three different neural
networks.

A.  The Vowel/Consonant (V/C) Nerwork

The V/C network decides, on the basis of the current config-
uration of the user’s hand, whether to emit a.vowel or a ¢conso-
nant sound. For the quantitative results reported here, we used
a 10-5-1 feedforward network with sigmoid activations [11]
as shown in Fig, 4. The ten inputs are ten scaled hand param-
eters measured with a Cyberglove: Eight flex angles (metacar-
pophalangeal and metacarpocarpal/trapeziometacarpal - joints
of the thumb, index, middle,” and ring fingers), thumb ab-
duction angle and thumb rotation angle (circumduction). The
output is a single number trained to represent the probability
that the hand configuration indicated a vowel® The output
of the V/C network is used to determine the mixture of
vowel and consonant formant parameters. The training data

3The interpretation of the V/C network output representing a probability

comes from the fact that the training data targets are interpreted as a probability
of a vowel sound.
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Fig. 5. The vowel network; the input is the X and Y position of the user’s
hand. The hidden units are RBF units with centers determined from the
mapping in Fig. 3 and variances of v/0.05. The output units are sigmoid units.

available includes only user-produced vowel or consonant
sounds. The network interpolates between hand configurations
to create a smooth but fairly rapid transition between vowels
and consonants.

For quantitative analysis, typical training data consists of
2600 examples of consonant configurations (350 approxi-
mants, 1510 frictives [and aspirant], and 740 nasals) and 700
examples of vowel configurations. The consonant examples
were obtained from training data collected for the consonant
network by an expert user. The vowel examples were collected
from the user by requiring him to move his hand in vowel
configurations for a specified amount of time. This procedure
was performed in several sessions. The test set consists of 1614
examples (1380 consonants and 234 vowels). After training,“
the mean squared error on the training and test set was less
than 1074

During normal speaking the V/C network made no percep-
tual errors. The decision boundary feels quite sharp, and pro-
vides very predictable, quick transitions from vowels to con-
sonants and back. Also, vowel sounds are produced when the
user hyperextends his hand. Any unusual configurations that
would intuitively be expected to produce consonant sounds do
indeed produce consonant sounds.

B. The Vowel Network

The vowel network is a 2-11-8 feedforward network as
shown in Fig. 5. The 11 hidden units are normalized radial
basis functions (RBF’s) [3] which are centered to respond to
one of the 11 cardinal vowels. The outputs are sigmoid units
representing eight synthesizer control parameters (ALF, F1,
Al, F2, A2, F3, A3, AHF). The RBF used is

-E (wj;—0;)2
o

0j=¢€ i e
where o; is the (unnormalized) output of the RBF unit, w;; is
the weight from unit 7 to unit 7, o; is the output of input unit ¢,

4The V/C network, the vowel network, and the consonant network are
trained using a conjugate gradient descent optimization technique combined
with a line search.
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Fig. 6. The consonant network; the same ten hand angles are used for input
to the V/C network are used for the consonant network. The hidden units are
RBF units with centers determined from the within class average of the hand
parameters collected during training. The standard deviations of the RBF units
are fixed at +/0.05. The output units are sigmoid units.

and 0]2 is the variance of the RBF. The normalization used is

9j

ZWEQ Ow @

n; =

where n; is the normalized output of unit j and the summation
is over all the units in the group 2 of normalized RBF units.
The derivatives for the normalized units needed for gradient-
based learning are derived in the Appendix. The centers of the
RBF units are fixed according to the X and Y valued of each
of the 11 vowels in the predefined mapping (see Fig. 3). The
variances of the 11 RBF’s were determined empirically and
o? is set to 0.025.

The weights from the RBF units to the output units are
trained. For the training data, 100 identical examples of each
vowel are generated from their corresponding X and Y posi-
tions in the user-defined mapping, providing 1100 examples.
Noise is then added to the scaled X and Y coordinates for
each example. The added noise is uniformly distributed in the
range —0.025 to 0.025. In terms of unscaled ranges, these
correspond to an X range of approximately £0.5 cmandaY
range of £0.26 cm.

Three different test sets were created. Each test set had 50
examples of each vowel for a total of 550 examples. The first
test set used additive uniform noise in the interval £0.025.
The second and third test sets used additive uniform noise in
“the interval +0.05 and +0.1, respectively.

The MSE on the training set was 0.0016. The MSE on the
additive noise test sets (noise = £0.025, 0.05, and 0.01) was
0.0018, 0.0038, and 0.0120, which corresponds to expected
errors of 1.1%, 3.1%, and 5.5% in the formant parameters,
respectively. This network performs well perceptually. The
key feature is the normalization of the RBF units. Often, when
speaking, the user will overshoot cardinal vowel positions (es-
pecially when producing dipthongs) and all the RBF units will
be quite suppressed. However, the normalization magnifies
any slight difference between the activities of the units, so
the sound produced will be dominated by the cardinal vowel
corresponding to the one whose center is closest in hand space.
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C. The Consonant Network

The consonant network discussed here for qualitative analy-
sis is a 10~14-9 feedforward network shown in Fig. 6. The 14
hidden units are normalized RBF units. Each RBF is centered
at a hand configuration determined from training data collected
from the user corresponding to one of 14 static consonant
phonemes. The target consonants are created with a text-to-
speech synthesizer. Table I defines the initial mapping for each
of the 14 consonants. The nine sigmoid output units represent
nine control parameters of the formant synthesizer (ALF, F1,
Al, F2, A2, F3, A3, AHF, V). The voicing parameter is
required since consonant sounds have different degrees of
voicing. The inputs are the same as for the V/C decision
network: ten hand parameters from the Cyberglove.

Training and test data for the consonant network is obtained
from the user. Target data is created for each of the 14
consonant sounds using the text-to-speech synthesizer. The
scheme to collect data for a single consonant data is as follows.

1) The target consonant is played for 100 ms through the

speech synthesizer.

2) The user forms a hand configuration corresponding to-

the consonant.

3) The user depresses the foot pedal to begin recording;
the start of recording is indicated by the appearance of
a green square.

4) Ten-15 time steps of hand data are collected and stored
with the corresponding formant parameter targets and
phoneme identifier; the end of data collection is indi-
cated by the green square turning red.

5) The user chooses whether to save the data to a file and
whether to redo the current target or move to the next
one.

Using this procedure 350 approximants, 1510 fricatives, and
700 nasals were collected and scaled for the training data. The
hand data were averaged for each consonant sound to form
the RBF centers. For the test data, 255 approximants, 960
fricatives, and 165 nasals were collected and scaled. The RBF
standard deviations were determined empirically and set to
v/0.05.

The MSE on the training set was 0.005 and on the testing set
was 0.01, corresponding to expected errors of 3.3% and 4.7%
in the formant parameters, respectively. Of course, a low (or
high) MSE does not necessarily mean that the speech produced
will be of high quality or even intelligible. The MSE does
serve as a guide, though, to determine whether the network is
going to work reasonably, after which perceptual testing must
be performed. Listening to the output of the network reveals
that each sound is produced reasonably well when the user’s
hand is held in a fixed position. The only difficulty is that
the “R” and “L” sounds are very sensitive to motion of the
index finger.

III. QUALITATIVE PERFORMANCE OF GLOVE-TALKII

One subject, who is an accomplished pianist, has been
trained extensively to speak with Glove-Talkll. We expected
his preexisting skill in forming finger patterns and his musical
training would help him leamn to speak with Glove-TalkIL
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After 100 hours of training, his speech with Glove-TalkII is
intelligible and somewhat natural-sounding. He still finds it
difficult to speak quickly, pronounce polysyllabic words, and
speak spontaneously. While learning to speak with Glove-
Talkll, the user progressed through eight distinct stages:
1) familiarize user with system;
2) initial training of the V/C and consonant networks with
user-supplied training data;
3) individual phoneme formation within simple words and
CV/VC pairings;
4) word formation and interword pitch control;
5) short segment formation with suprasegmantal pitch con-
trol and singing;
6) passage reading;
7) fine tuning: movement control and phrasing;
8) spontaneous speech.

Of course, his progression through the stages is not as linear
as suggested by the above list. Some aspects of speaking
were more difficult than others, so a substantial amount of
mixing of the different levels occurred. Practice at higher
levels facilitated perfecting more difficult sounds that were
still being practiced at the lower levels. Also, the stages are
iterative, that is, at regular intervals the subject returns to lower
levels to further refine his speech.

During his training, Glove-Talkll also adapted to suit
changes required by the subject. Initially, good performance
of the V/C network is critical for the user to learn to speak.
If the V/C network performs poorly, the user hears a mixture
of vowel and consonant sounds, making it difficult to adjust
his hand configurations to say different utterances. For this
reason, it is important to have the user comfortable with
the initial mapping so that training data collected leads to
the V/C network performing well. In the 100 h of practice,
Glove-TalkII was retrained about 15 times.> Four significant
changes were made for the new user from the original system
analyzed in Sections II-A, II-B, and II-C. First, the “NG”
sound was added to the nonstop consonant list by adding an
additional hand shape. For the “NG” sound the user touches
his pinkie to his thumb on his right hand. To accommodate
this change, the consonant and V/C network had two inputs
added to represent the two flex angles of the pinkie. Also,
the consonant network has an extra hidden unit for the “ng”
sound. Second, the consonant network was trained to allow
the RBF centers to change. This was done by first training the
hidden-to-output weights until little improvement was seen.
Then, both the input-to-hidden weights (i.e., the RBF centers)
and the hidden-to-output weights were allowed to adapt. This
noticeably improved performance for the user. Third, the
vowel mapping was altered so that the “I” was moved closer
to the “EE” sound and the entire mapping was reduced to
75% of its size. Fourth, for this subject, the V/C network
needed was a 12-10-1 feedforward sigmoid unit network. It
is anticipated this network will be sufficient for most users.
Understanding the interaction between the user’s adaptation
and Glove-TalkII’s adaptation remains an interesting research
pursuit.

5Far fewer retrainings would be required for future users.
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IV. SUMMARY

The initial mapping for Glove-TalkIl is loosely based on
an articulatory model of speech. An open configuration of the
hand corresponds to an unobstructed vocal tract, which in turn
generates vowel sounds. Different vowel sounds are produced
by movements of the hand in a horizontal X-Y plane that
corresponds to movements of the first two formants which are
roughly related to tongue position. Consonants other than stops
are produced by closing the index, middle, or ring fingers or
flexing the thumb, representing constrictions in the vocal tract.
Stop consonants are produced by contact switches worn on

the left hand. FO is controiled by hand height and speaking

intensity by foot pedal depression.
Glove-TalkII learns the user’s interpretation of this initial

mapping. The V/C network and the consonant network léaii

the mapping from examples generated by the user during
phases of training. The vowel network is trained on ex-
amples computed from the user-defined mapping between
hand position and vowels. The FO and volume mappings are
nonadaptive. In many interface applications it is necessary to
map from a user’s gesture space to control a complex device.
The methods used to build Glove-Talkll can be applied to
these interfaces.

One subject was trained to use Glove-Talkll. After 100
hours of practice he is able to speak intelligibly. His speech
is fairly slow (1.5 to three times slower than normal speech).
It sounds similar to speech produced with a text-to-speech
synthesizer but has a far more natural intonation contour which
greatly improves the intelligibility and expressiveness of the
speech. Reading novel passages intelligibly usually requires
several attempts, especially with polysyllabic words. Intelligi-
ble spontaneous speech such as found in conversation is possi-
ble but difficult. It is anticipated that training on formant trajec-
tories estimated from real speech will significantly improve the
quality of the user’s speech. Currently, it is an open research is-
sue to extract accurate formant trajectories automatically {10].

Glove-TalklI could be used by speech-impaired people. To
make it useful for this community it must be made portable and
inexpensive. The current implementation requires a machine
capable of approximately 200000 floating point operations/s
that has three serial ports and a parallel port. Laptop computers
are already available to fit these requirements. The glove and
foot pedal devices are tethered to the machine, which limits
mobility of the user. To solve this limitation it is necessary for
the input devices to have a system of wireless transmission of
the data to the host computer or to mount the host computer
on the user. Finally, the foot pedal would be cumbersome
in a completely portable system, but it should be possible
to design an alternative method of controlling the single
volume parameter. Once these technical issues are resolved,
Glove-TalkII could provide a portable, inexpensive, adaptive,
artificial vocal tract device to assist speech-impaired people.

APPENDIX
DERIVATION OF GRADIENTS FOR NORMALIZED UNITS

Often when designing neural networks, one has occasion
to use normalized units (see, for example, [7]). Typically, the
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performed normalization divides all the outputs of a group

of units by their sum. Softmax units are the most common

example of normalized units (see [2] and [4]). Here, the units
have an exponential activation function and the outputs are
normalized with respect to all the units in the softmax group.

Softmax units are typically used as output units to model a

probability distribution such that all the activities sum to one.

Usually, a cross-entropy error function is used in a 1-of-N

classification task, where the correct class’ target is set to

one and the other classes’ targets set to zero. Three different
variations of the normalization paradigm are often desired:

- -»_ different activation functions. for each of the units before
normalization is performed; i.e., exponential activation in
softmax units or negative. exponential activation in the

- ---case of RBF’s;

+ different error functions if the units are output units;

+ different types of normalization, i.e., dividing the activa-
tion of each unit by the sum of the activations of the units
in the normalized group, dividing a unit’s activation by
the Ly norm of the group of units.

Further, the group may be either at the output layer or a
hidden layer. The following discussion describes the necessary
equations for implementing normalized units with arbitrary
activation functions, arbitrary error functions, and arbitrary
normalization functions.’ The well-known equations for soft-
max output units can be derived from this more general
formulation. The equations for softmax units in the hidden
layers will also be derived.

Consider the following notation (similar to [11]). First, the
activation function for unit 7 in the normalized group is

0; = f(z;) ©)

where o; is the unnormalized activation of the unit and z;
is the total input of the unit (typically formed from the dot
product of weights and outputs of units in the layer below).”
For illustration purposes, consider the normalized output of
the unit as

)

where N is the number of units in the group. Any differentiable
function of the group of units’ activations suffices.

The implementation of the forward propagation through
these normalized units is straightforward. Backpropagation
of the error signal through these units is less simple. It is
necessary to calculate the term %%where E, is the error
on a particular example p, to implement the backpropagation
procedure

Complications arise because error propagated back to one
unit in the group will affect the others.

6«Arbitrary” in the sense that the first derivative is well defined.
7In the case of RBF the term x; is calculated using a distance measure like
x; = ;12— S (wji — 0;)?. Of course, the outputs from the lower layer could
e
be normalized as well.

. E, . . .
8From %f;‘-?j- we can easily get g—w% in the manner described in [11].
7 i
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Consider the unit j in the group of normalized units on
some example p. If we consider the effect of the total input
of unit j on the error, the expression is

OE _ 00;0n; 0B | <~ 0o; Ony O

3z, ~ Bz, 9o, m, Bz, 80, omn” O

k=1k#j

This expression is much easier to understand if we consider
the error that is backpropagated to unit j (which is referred to
here as E7) first and see how that error is propagated to all the
other units in the group. In this case, we exclude the effects
errors distributed from the other units in the group have on
unit 7. For unit j the equation is

OF7 BoJ Bn] )2 ©)
Bz, 8.%1 do; on;
The first term from (3) is simply
an ’
- = . 7
The second term is obtained from (4)
377,]' _ 1 —0j
50_]' =5 + ~ 5 ¢))
Z Om ( Z Om)
m=1 m=1
N
Y. Om = 0;
m=1
=N N2 ©)
()
m=1
N
> Om
= nElmA (10)

(m§=10M> 2

The third term has two different forms depending on
whether the unit is an output unit or a hidden unit. The
first case shows an error function in terms of n; and the
derivative is calculated. In the latter case, the derivative is
calculated by backpropagating the error through the weights
from the layer above unit j. Refer to [11] for an example
using a Euclidean error function and sigmoid hidden units.
Softmax units are used below to illustrate how these equations
are calculated in a specific case.

Now consider unit & in the normalized group when k is
some other unit besides j. What is the effect on the error by
unit k? The equation is derived as follows:

B_Ej Bok BnJ OFE?
o1y Bzvk Bok 8n]

The important point to notice in this equation is that the
change in the error with respect to zy is a function of the
change in error with respect to n;. Remember, we are only
considering the error localized at unit j, that is, the error
signal propagated back to unit j, which we can see must be
distributed as above to all the other units too. Completing
(11), the first term is [from (3)]

doy,

= f'(a).

an

(12)
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The second term follows from (4)
3nj

m=

=% (13)

The third term is discussed above.

The above equations are general in the sense that they do not
differentiate between hidden units and output units. The only
change necessary for the different types of units, as described
above, is that the partial derivative of the error should be either
obtained from the error function or the backpropagated error
function (or both). Each unit in the group of normalized units is
considered as unit 7, one at a time, and its error gets distributed
to all the other units. In this way the total expression in (5) is
calculated. Using this method, the complexity of calculating
the required partial derivatives for the group of normalized
units is O(N?), where N is the number of units in the group,
since at each unit the error is distributed to the other N — 1
members in the group. Normally, the number of units in the
group is small, therefore, this is not much of a computational
penalty. On the positive side, with respect to implementation,
the above method requires a single procedure to compute the
derivatives for each unit. Further, the form is general enough
to work with any type of normalization function.

If we consider the normalization function used in the
example above (4) we can write (5) as

OE SN om—o;|0E
oz ; =f'(z;) N 2 | on;
] (Zm:l Om) 7
N
—0; oF
+ 0y —————’——} (14
k=1k#] (Zi\;l om)2 One

which reduces® after simple algebraic manipulation to

N

OF o 1 1 oF
bz, = f'(z;) |:Em L Om Bn] kz (Zm_l m)2 3nk
(15)

In this form the calculation can be done in two stages. First,
for the whole group calculate the term

o oE
e

k=1< N m)2ank

which can be done in O(V) calculations Second, for each unit
in the group, calculate the required partial derivative using
(15) and the term from (16) calculated for the whole group.
This reduces the complexity to O(N) to compute the required
partial derivatives (as compared to O(N)? for the general
case). Notice, this reduction depends on the normalization
function, which means it is not completely general, however
in many cases this type of normalization is used.!?

(16)

9This reduction was pointed out by S. Becker and T. Plate, personal
communication.
10 7,5 normalization reduces to a similar form.
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