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Abstract

To read a hand-written digit string, it is helpful to segment the im-
age into separate digits. Bottom-up segmentation heuristics often
fail when neighboring digits overlap substantially. We describe a
system that has a stochastic generative model of each digit class and
we show that this is the only knowledge required for segmentation.
The system uses Gibbs sampling to construct a perceptual inter-
pretation of a digit string and segmentation arises naturally from
the \explaining away" e�ects that occur during Bayesian inference.
By using conditional mixtures of factor analyzers, it is possible to
extract an explicit, compact representation of the instantiation pa-
rameters that describe the pose of each digit. These instantiation
parameters can then be used as the inputs to a higher level system
that models the relationships between digits. The same technique
could be used to model individual digits as redundancies between
the instantiation parameters of their parts.

1 Introduction

We use low-resolution overlapping digits to illustrate the advantages of generative
models for image segmentation and pose estimation. Some inadequacies of our
density models for individual digits are then addressed and a hierarchical model is
proposed.

An image of a handwritten digit is a point in a continuous intensity space that
has as many dimensions as there are pixels. For digits within the same class, the
points lie on or near a smooth, low-dimensional manifold. For smooth intensity
images, this manifold is locally linear because small changes in the position, size,
orientation or deformation of a digit lead to approximately linear changes in pixel



intensities (Simard, LeCun and Denker, 1993). It is therefore sensible to model the
manifold using a mixture of locally linear patches. A simple way to do this is to use
a mixture of principal component analyzers (PCA). The mixture is �tted to data
using the K-means algorithm in an outer loop that assigns each datapoint to the
closest PCA subspace, and singular value decomposition in an inner loop that re�ts
the subspace of each PCA analyzer to the datapoints assigned to it.

Unfortunately, PCA is not a proper density model because projecting the data onto
the subspace spanned by the principal components is equivalent to assuming that the
variances in all directions orthogonal to this subspace are in�nitesimal compared
with the variances within the subspace. Factor analysis resembles PCA but it
uses a proper generative model that includes appropriate variances, so a Factor
Analyzer (FA) assigns a correctly normalized density to every point in intensity
space. This makes it possible to smoothly blend together the individual distributions
of multiple FA's when modeling a smooth non-linear manifold. It also makes it
possible to compute the posterior probabilities that are required in the E step of
the EM algorithm, so the hard assignments used in K-means can be replaced by
soft assignments when �tting a mixture of FA's to a set of images.

Once the manifold for each digit class has been accurately modeled by a mixture
of FA's, it is possible to discriminate pre-segmented digits by seeing which mixture
assigns the highest density to the image (Hinton, Dayan and Revow, 1997). But it
is also possible to perform much more ambitious tasks without any further learning.
If the image contains several unsegmented digits, we can relax the constraint that
the data should be explained by exactly one of the mixtures and we can then ask
for the best explanation of the image in terms of multiple digit instances. Finding
this explanation requires correct Bayesian inference but it does not require any
segmentation heuristics.

2 The models of individual digits

We �rst use images containing only one digit to learn four separate mixture mod-
els for the digits 2,3,4,5. The images are generated from the elastic digit models
described in (Revow, Williams and Hinton, 1996) on 7 � 16 arrays with each im-
age occupying roughly a 5 � 5 box. For each class, the deformation is allowed to
vary randomly over a limited range and the only other variations are in orientation
(about 28 degrees variation about the vertical) and in horizontal position (11 pixels
of translation). For each class we use a mixture of 25 factor analyzers. Each FA
has 2 factors and all the FA's within one mixture use the same noise model for the
pixels. This noise model is learned and uses di�erent noise levels for each pixel.
Each mixture is trained on 200 digit images, plus 20 blank images to encourage it
to use at least one FA to represent the absence of a digit of that class.

During training up to 100 EM iterations are allowed, but training stops if the change
in the loge probability of the data between subsequent steps is less than 10�5. After
learning, the means of the FA's for one digit and the factor loadings of a few of the
FA's are shown in �gure 1.

3 Perceptual inference using multiple mixtures of factor

analyzers

We generate a 3 digit string that is hard to segment in the following way: First, we
decide on the digit-class of each of the three digits, making sure they are all from
di�erent classes. Then we use the appropriate elastic model to generate an image
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Figure 1: (a) Means of the 24 non-blank analyzers in the mixture for twos. (b)
Factor loading matrices for the 8 analyzers in the rightmost column of (a).

of the �rst digit in the string, making sure that its center lies in the left third of
the image. Next we generate an image of the second digit with its center in the
middle third of the image. Finally, we generate the third digit to lie in the right
third of the image. The images of the three digits are then superimposed. Images
produced in this way contain at most a single instance of each digit class and the
spatial relationship between neighbouring digits varies from large to mild degrees
of overlap providing a good test of the system's ability to segment.

To perform the segmentation using the four mixture models, we repeatedly present
each mixture model with the residual image that is obtained by subtracting the
current predictions of the three other mixture models. Each FA within the mix-
ture model then computes a probability density for the residual data. Using these
likelihoods and the learned mixing proportions of the FA's, one of the FA's is cho-
sen at random. The factor activations of this FA are also randomly chosen from
their Gaussian posterior distribution. The mean image predicted by these factor
activations is then the new prediction of that mixture model.

When a residual image is presented to one of the mixtures, we use a noise model
that is obtained by adding together the variances of the four separate noise models
for the four mixtures. This allows for the fact that the \data" in the residual image
is uncertain because each of the other three mixtures makes noisy predictions.

If one of the mixture models grabs the wrong part of the image early on, it is hard
for the system to recover. We therefore use a form of simulated annealing as an
outer loop to facilitate the escape from poor local minima. The temperature follows
a ipped sigmoid, suitably o�set so that it decays from a temperature of 75 to a
temperature of 1 in 15 iterations.

A test set of 100 digit strings was generated as described above. After examining the
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Figure 2: Illustration of the system performing segmentation. The top row shows
the 3 images which make up the composite image shown four times in the middle
row. The bottom row shows the reconstructed images from each of the 4 mixtures.
Each mixture has the option of choosing the FA within the mixture that represents
the blank image. (a) Example when human and system both correctly segmented
the image. (b) Example in which human incorrectly identi�ed the string as 543.

segmented training digits, M.R. viewed hard copies of the test images and recorded
his opinion of the digit sequence. He made 29 errors. When the system was run on
the 100 test images, it made 21 errors1. Examples of test images and the resulting
segmentations are shown in �gure 2. By allowing each mixture to be used several
times, we can segment strings containing several instances of the same digit-class.

Our demonstration of segmentation has two major weaknesses: First, the spatial
relationships between digits within a string are not modeled. Second, the number of
FA's required within each mixture scales as nk, where k is the number of dimensions
of variation that have non-linear e�ects on pixel intensities, and n is the number
of di�erent linear regimes along each dimension. Factor analysis can be modi�ed
to �x the �rst problem and the modi�cation allows a hierarchical solution to the
second problem.

In a mixture of FA's, the posterior probability distribution across FA's and the
factor activations within each analyzer convey information about the instantiation
parameters of the digit. Unfortunately, this information is scattered across the
analyzers which means that later stages of processing require a lot of connections
to see the information. These connections all have weights that need to be learned.
It would be much more convenient if the information was gathered together into
one place, regardless of which analyzer within the mixture had responsibility for
the current image. The whole mixture would then be able to communicate with
higher levels using just a few numbers. Once this has been done, the instantiation
parameters extracted by di�erent mixtures can be treated as data and the next level
of processing can use a mixture of FA's to capture the redundancies between the
instantiation parameters of digits within a string. The hidden factors at this next
level might represent the instantiation parameters of the whole string including,
for example, a factor representing the average spacing between neighboring digits.
This suggests a multilevel hierarchical system in which each level uses mixtures to
allow instantiation parameters at one level to be non-linearly related to instantiation
parameters at the next level, and the information in all the FA's within a mixture
is gathered together before being passed to the next level up. A hierarchy seems
essential to capture the fact that the relationships between digits are generally
looser than the relationships between the parts of one digit, and the parts are in

1To recover the order of the digits in the string, the system had to estimate the trans-
lation instantiation parameter of each digit as described in section 4.



turn, more loosely related than the edges that compose a piece of a stroke.

4 Extracting a Compact Representation of Instantiation

Parameters

We start by presenting a supervised learning procedure for extracting instantiation
parameters and then describe how the supervision can be eliminated. Factor anal-
ysis is a density model. But it can be modi�ed to produce a conditional density
model that models the probability distribution of pixel intensities, p(z) given the
instantiation parameters, x, of the digit.

p(z) =
X
i

�ijx

Z
p(yijx)p(zjyi)dyi (1)

where i is an index over FA's and the mixing proportion (�ijx) of each FA depends
on the distance between x and the FA's \center" in the space of instantiation
parameters:

�ijx =
exp(�jjx� �

i
jj2=�2)P

j
exp(�jjx� �j jj

2=�2)
(2)

The instantiation parameters also determine the expected distribution of the fac-
tor activations in the selected FA via a weight matrix W. Gaussian noise with
covariance � is added to give:

p(yijx) = (2�)�k=2
j � j

�1=2 exp
�
�[yi �Wi(x� �i)]

0��1[yi �Wi(x � �i)]
�
(3)

Since we generated the images using an elastic model, we know the true instantiation
parameters, x, for each digit image. Given x, the model can be �tted using the
following algorithm. The mixture of FA's is �tted unsupervised as described above.
Using current values forW � and �, one FA is picked from the posterior distribution
across the mixture of FA's and values of the factors of the chosen FA are also picked
from their posterior distribution. We are now in a position to do Gibbs sampling
at the level of the instantiation parameters x (see below). Using these samples of
x and y we perform an M-step to compute updated values of W, y and �.

After �tting a separate mixture of conditional factor analyzers to each digit class,
we can perform segmentation as before except that we must now perform Gibbs
sampling to pick x from its conditional distribution given the factor activations, yi of
the chosen analyzer within the mixture. Eq. 3 imposes a quadratic energy function
on x but Eq. 2 imposes a non-quadratic energy. Because of the normalization
term, it is the relative squared distance of x from �i that determines the energy.
In practice, we simply ignore the normalization term when performing the Gibbs
sampling.

Figure 3 shows that x can be recovered quite accurately from images of single digits
as can also be recovered quite well from images of overlapping digits, with occasional
large errors when the image is mis-segmented.

5 Using an autoencoder to extract compact representations

Ideally, we would like to recover x from images without requiring the training data
to be labeled with x. It is easy enough to �t an unconditional mixture of FA's, and
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Figure 3: Illustration of the recovery of pose. The true pose parameters are plotted
on the horizontal axes while the recovered values are plotted on the vertical axis.
Rotations are shown in the top row and translations in the bottom row. The left
panel is for isolated digits while the right panel shows recovery from strings of digits.
Points lying far from the line of unity correspond to segmentation errors.

given the factor activations, yi and posterior probabilities, ri, of these analyzers, x
can be estimated by a linear model of the form

x̂ =
X
i

ri(�i
+W�1

i
yi) (4)

If W and � could be learned for all the analyzers without supervision it would be
possible to �t a hierarchical model to data one level at a time starting at the bottom
and working upwards.

One approach to solving this problem is to use backpropagation in a network resem-
bling an autoencoder. The inputs to the network are the responsibilities of each FA
and the factor activations weighted by the responsibilities. The activations in the
hidden, bottleneck layer represent x̂, computed from the inputs using Eq. 4, where
�i and W�1

i
are learned input-to-hidden weights. The desired outputs are the

factor activations and the responsibilities. For the factor activations, the squared
errors are weighted by the responsibility of the relevant FA before backpropagating
so the network does not need to reconstruct the activations for unused FA's. For
the responsibilities, we use a cross-entropy error function E =

P
i
ri log r̂i and the

estimated responsibility is given by:

r̂i =
exp(�jjx� �

i
jj
2
=�

2)P
j
exp(�jjx� �j jj

2=�2)
(5)

Unfortunately, this autoencoder tends to get jammed in local optima. Each FA



grabs a di�erent region of the x space by using a di�erent �. Each FA also represents
a linear patch of the low-dimensional, non-linear manifold in pixel intensity space.
But the ordering of the regions in x space does not necessarily correspond to the
ordering of the patches on the manifold, and it is hard for regions to jump over one
another without increasing the reconstruction errors of the autoencoder.

Fortunately, the same error function can be used to learn a generative model that
does not get jammed because it allows FA's to partially commit themselves to
several widely separated regions of x space early in the learning and then to give
up on the regions that do not agree with their neighbors. In the generative model,
x is chosen randomly. It then causes a pattern of activation in a large set of units
that have �xed, Gaussian receptive �elds in x space. These RBF units then provide
inputs to groups of linear units that are used to reconstruct the factor activations
and a group of softmax units that are used to reconstruct the responsibilities of
the FA's. If there is noise in the RBF units, this generative model resembles the
one used in Zemel and Hinton (1995). If the RBF units are noise-free and the
posterior distribution over x when given a data vector is approximated by a set of
delta functions at �nely spaced grid points in x space, the model resembles GTM
(Bishop, Svensen and Williams, 1997), except that a gradient learning algorithm
must be used for the weights that reconstruct responsibilities.

We are currently applying the GTM-like version of this generative model to the
task of extracting a compact representation of the instantiation parameters of a
digit from the outputs of a mixture of FA's. We anticipate that it will work much
better than applying GTM directly to the pixel intensities. We also anticipate
that it will allow bottom-up learning of a hierarchical system in which the digits
themselves are composed of features whose instantiation parameters are extracted
from local image patches. These results will be reported in the �nal version of the
paper.
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