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ABSTRACT 

It is becoming increasingly apparent that some aspects of intelligent behavior require 

enormous computational power and that some sort of massively parallel computing 

architecture is the most plausible way to deliver sueh power. Parallelism, rather than raw 

speed of the computing elements. seems to be the way that the brain gets such jobs done. 

But even if the need for massive parallelism is admitted, there is still the question of what 

kind of parallel architecture best fits the needs of various A1 tasks. 

In this paper we will attempt to isolate a number of basic computational tasks that an 

intelligent system must perform. We will describe several families of massively parallel 

computing architectures, and we will see which of these computational tasks can be handled 

by each of these families. In particular, we will describe a new architecture, which we call the 

Boltzmann machine, whose abilities appear to include a number of tasks that are inefficient 

or impossible on the other architectures. 

FAMILIES OF PARALLEL ARCHITECTURES 

By "massively parallel" architectures, we mean machines with a very large number of 

processing elements (perhaps very simple ones) working on a single task. A massively 

parallel system may be complete and self-contained or it may be a special-purpose device, 

performing some particular taqk as part of a larger system that contains other modules of a 

different character. In this paper we will focus on the computation performed by a single 

parallel module, ignoring the issue of how to integrate a collection of modules into a 

complete system. 

One usehl way of classifying these massively parallel architectures is by the type of signal 

that is passed among the elements. Fahlman (1982) proposes a division of these systems into 

three classes: marker-passing, value-passing, and message-passing systems. 

Message-passing systems are the most powerful family, and by far the most complex. They 

pass around messages of arbitrary complexity, and perform complex operations on these 

messages. Such generality has its price: the individual computing elements are complex, the 

communication costs are high, and there may be severe contention and traffic congestion 

problems in the network. Message passing does not seem plausible as a detailed model of 
I 

processing in the brain. Such models are being actively studied elsewhere (Hillis, 1981; 

Hewitt, 1980) and we have nothing more to say about them here. 

,. Marker-passing systems, of which NFTL (Fahlma?, 1979) is an example. are the simplest 
I a - I I 

family and the most limited. In such systems, the communication among processing 
8 8 

elements is in the form of single-bit markers. Each "pode" element has the capacity to store 
I 



a few distinct marker bits (typically 16) and to perform simple Boolean operations on the 
i 

stored bits and on marker bits arriving from other elements. These nodes are connected by 

hardware "links" that pass markers from node to node, under orders from an external 

control computer. The links are, in effect, dedicated private lines, so a lot of marker traffic 

can proceed in parallel. 

A node may be connected to any number of links, and it is the pattern of node-link 

connections that forms the system's long-term memory. In NETL, the elements are wired up 

to form the nodes and links of a semantic network that represents some body of knowledge. 

Certain common but computation-intensive searches and deductions are accomplished by 

passing markers from node to node through the links of this network. A key point about 

marker-passing systems is that there is never any contention due to message traffic. If many 

copies of the same marker arrive at a node at once, they are simply OR'ed together. 

Value-passing systems pass around continuous quantities or numbers and perform simple 

arithmetic operations on these values. Traditional analog computers are simple value- 

passing systems. Like marker-passing systcms, value-passing systems never suffer from 

contention. If several values arrive at a node via different links, they are combined 

arithmetically and only one combined value is received. Many of the iterative relaxation 

algorithms that have been proposed for solving low-level vision problems are ideally suited 

to value-passing architectures, and so are spreading-activation models of semantic processing 

(Davis and Rosenfeld, 1981; Anderson, 1983). 

At CMU we have done some preliminary design work on a machine that we call Thistle. 

This system combines the marker-passing abilities of NETL with value-passing. Each 

element of the Thistle machine has storage for 16 single-bit markers and 4 eight-bit values. 

The values can be added, multiplied, scaled, 2nd compared to one another. Links in the 

Thistle system pass a value from one node to another, perhaps gated by various markers and 

multiplied by a "weight". associated with the link. In Thistle, the values converging on a 

node can be summed or combined by MIN or MAX. 

Both NETL and Thistle use a local representation for their knowledge: each concept or 

assertion resides in a particular processing element or connection. If a hardware element 

fails, the corresponding knowledge is lost. It has been suggested many times that a 

distribuled represenlation, in which a concept is represented by some pattern of activation in 

a large number of units, would be more reliable and more consistent with what is known 

about the workings of the brain. Such systems are harder to analyze, since the behavior of 

lithe system depends on the combined hction of a large number of elements, PO one of which 
I 

is critical. However, distributed systems offer'certain computational advantages in addition 
/I 
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I to their inherent ieliability. The'~o1t;mann akchitdture, describcd in the next section, isia 



variant of the value-passing architecture that , uses distributed iepresentations and 

probabilistic processing elements. The randomness is actually beneficial to the system, 

allowing it to escape from local minima during searches. 

THE BOLTZMANN MACHINE 
' The Boltzmann architecture is designed to allow efficient searches for combinations of 

"hypothcses" that maximally satisfy some input data and some stored constraints. Each 

hypothesis is represented by a binary unit whose two states represent the truth values of the 

hypothesis. Interactions between the units implement stored knowledge about the 

constraints between hypotheses, and external input to each unit represents the data for a 

specific case. A content-addressable memory can be implemented by using distributed 

patterns of activity (large combinations of hypotheses) to stand for the kinds of complex 

items for which we have words. New items are stored by modifying the interactions between . 

units so as to create new stable patterns of activity, and they are retrieved by settling into the 

pattern of activity under the influence of an external input vector which acts as a partial 

description of the required item. 

A good way to approach the best-fit problem is to define a measure of how badly the 

current pattern of activity in a module fits the external input and the internal constraints, and 

then to make the individual hardware units act so as to reduce this measure. Hopfield (1982) 

has shown that an "energy" measure can be associated with states of a binary network, and 

we generalize this measure to include sustained inputs from outside the network: 

where. qi is the external input to the i" unit., wg is the strength of connection (synaptic 

weight) from the jfh to the ifh unit, si is a boolean truth value (0 or 1). and Bi is a threshold. 

A simple way to find a local energy minimum in this kind of network is to repeatedly 

switch each unit into whichever of its two states yields the lower total energy given the 

current states of the other units. If hardware units make their decisions at random, 

asynchronous moments and if transmission times are negligible so that each unit always 

"sees" the current states of the other units, this procedure can only decrease thc energy, so . . 
the network must settle into an energy minimum. If all the conncction strengths are 

symmelrical, which,,is typically th,e case for copstraiet satisfaction problems, cach unit can 
I " compute its effect ;on the total &e& from infoqnation that is locally available. The ' I 

difference between the energy withthe $" unit false and ) , with it true is just: 



So the rule for minimizing the total eneriy is to adopt 

external and internal input to the unit exceeds its threshold. 

the true state if the combined 

This is just the familiar rule for . 

binary threshold units. 

It is possible to escape from $oar local minima and find better ones by modifying the 

simple rule to allow occasional jumps to states of higher energy. At first sight this seems like 

a messy hack which can never guarantee that the global minimum will be found. However, 

the whole module will behave in a useful way that can be analyzed using statistical 

mechanics provided that each unit adopts the state with a probability given by 

where T is a scaling parameter that acts like the temperature of a physical system. 

This rule, which resembles the input-output function for a cortical neuron (Hinton and 

Sejnowski, 1983a). ensures that when the system has reached "thermal equilibrium" the 

relative probability of finding it in two global states is a Boltzmann distribution and is 

therefore determined solely by their energy difference: 

If T is large, equilibrium is reached rapidly but the bias in favor of the lower energy states 

is small. If T is small, the bias is favorable but the time required to reach equilibrium is long. 

One way to beat this trade-off is to start with T large and then reduce it (Kirkpatrick, Gelatt. 

& Vecchi, 1983). 

An important consequence of achieving a Boltzmann distribution is that it allows several 
I 
I 

simple learning rules which modifi the of a global state by modifying the 
i individual connection strengths. At equilibrium, the probability of a state is a simple 

' function of its energy (Eq. 4). and th; energy is a li$ear function of the weights between p$in' 

of units that are btive in that skke Ikq. 1). This B~lows us to compute the derivative of b e  

: probability of a global state with ies$ect to each individual weight. Given this derivative, h e  

'; weights can be changed so as to makk the probabili'ties of global states approach any desiied - 



set of probabilitie 

desired probabilities of states of whole modhles, 'without ever mentioning the weights 

(Hinton & Sejnowski, 1983a). This kind of deliberate manipulation of probabilities requires 

a "programmer" who specifies what the probabilities should be. A more powerhl learning 

procedure that does not require a "programmer" is also possible in these networks. The 

procedure modifies the weights so as to generate good internal models of the structure of an 

environment. There is not space here to describe this procedure (see Hinton & Sejnowski 

1983b for details). 

COMPUTATIONAL PROBLEhlS 

One recurrent theme in the history of A1 is the discovery that certain aspects of intelligence 

could be modeled in some elegant way, if only we had enough computing power. Once a 

task is understood in these terms, the search begins for ways to provide that power or to 

come up with tricks that reduce h e  amount of computation required. Massive parallelism 

provides us with a new tool for attacking some of these computational problems. In this 

section we will identify some fundamental computational abilities that any truly intelligent 

system will have to possess, and we will see how well the parallel architectures described 

above can handle each of these tasks. 
- 

I 

In what follows, we will focus on tasks that have to do with recognition and search in a very 
- 

large space of stored descriptions, but a key point is that - these abilities are also important in 

planning and inference. For example, the various recognition processes described here may 

be used to select rules and actions in-some sort of production system. In such systems, 

sequential behavior would be driven by a series of massively parallel recognition steps. 

Set Intersection 

Recognition can be viewed as the process of finding, in a very large set of stored 

descriptions, the one that best fits a set of observed features. In its simplest form, this can be 

viewed as a set-intersection problem. Each observable feature is associated with a set of 

items that exhibit that feature. Given a number of observed features, we want to find the 

item or items in memory that exhibit all of these features; that is, we must intersect the sets 

associated with the observed features to find the common members. 

This set-intersection operation is discussed at lehgth in Fahlman (1979). It is a well- 

defined operation that comes up very frequently in A1 knowledge-base systems. On a serial 

machine, set-intersection takes time pr~portional to ,the size of the smallest of the sets being 
1 2  

intersected, but frequently all of the are quite lakge. In a parallel market-passing systed 
I 
such as N m .  such set intersections are done in d single operation, once the members df 



I for elements that have collected all of the markers. Value-passing systems can do as well by 

,marking the members of each set with one  nit of activation and then looking for units 
! 
I whose activation is over some threshold. 

The Boltzmann machine can also intersect sets in a single settling, at least in simple cases. 

Consider, for instance, a representational scheme in which each active hardware unit 

represents a very large set -- the set of all items whose patterns have that unit active. A more 

specific set is represented by a combination of active units, and the intersection of several 

specific sets is represented by the union of these combinations. The union of the active uhirs 

acts as an intensional represcntation of the intersection -- it can be formed even if no known 

item lies in all the sets. Given this intensional description, the problem of finding the item 

that fits it is just the problem of activating the additional units in the pattern for that item. 

This is the kind of pattern completion task which the Boltzmann machine can solve in a 

single settling (Hinton, 1981a). 

Transitive closure 

In knowledge-base systems it is frequently necessary to compute the closures of various 

transitive relations. For example, we might need to mark all of the animals in the data base, 

perhaps because we want to intersect this set with anorher. If the "is a" relation is transitive, 

a reptile is an animal, and a lizard is a reptile, then lizards are animals. We must therefore 

mark not only those items whose membership in the animal class is explicitly stated, but also 

those that inherit this membership through a chain of "is a" statements. The "is a" relation is 

the most important of the transitive relations in most data bases, but we might also want to 

compute closures over relations such as "part of', "bigger than", "later in time", etc. I 

In a serial machine, the computation of a transitive closure requires time proportional to 

the size of the answer set. In a marker-passing machine, it takes time proportional to the 

length of the longest chain of relations that has to be followed. If the relations form a single 

long chain these times are identical, but if they form a short bushy tree, the marker-passing 

system can be very much faster. Value-passing systems that use local representations can 

simulate marker-passing systems on this task, and so get the same sort of performance. 

The Boltzmann architecture does not handle this task so cleanly Closure over the "is a" 

relationship can be handled by making the pattern of active units for an item include the 

patterns for all items above it in the type hierarchy. By starting with a part of this pattern 

and completing it (that is, dropping into an energy minimum in which additional units are 

turned on) we ckn in effect cdmpuie the ciosu&i of *'is a*'. However, it is not yet knbwn 
I I I 

whether this technique will work for data bases with very large, tanglcd type hierarchies,,and 
!' , I  .I I f  I 
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it cannot be simply extended t 
1 , I  I i 
b fihdle additional transitive relations such as "part of'. 

1 Hinton (198lb) describes an encoding of "part o 

6 but in that model the "part of '  hierarchy must be 
I I 

f '  hierarchies in a Boltzmann-like system, 
1 8  

traversed sequentially. 

b Contexts  and  partitions ' I  

Some information in a knowledge base is universal. but much of it is valid only in certain 

contexts: times, placcs, imaginary worlds or hypothetical states. At any given time, the. 

system is working within some set of nested and overlapping contexts; it must have access to 

the bundle of information associated with each of those contexts and to the universal 

information, but not to information that is only valid in other contexts. Each context acts 

like a transparent overlay to the knowledge base, adding a bundle of new facts or 

occasionally covering something up. 

In the presence of multiple overlapping partitions, a serial machine must check each 

assertion for membership in one.of the active partitions before that assertion can be used. 

This can be a time-consuming task. Marker-passing systems handle this easily. The tree of 

active contexts is marked using the transitive closure machinery. This mark is then 

propagated to all of the assertions associated with these contexts, activating them; assertions 

without this mark are inactive in subsequent processing. In effect, we are using one set of 

markers to gate the passage of other markers: many simple Boolean operations are 

performed during each cycle. 'The value-passing and Boltzmann architectures have similar ' 

abilities: the state of some units can cause other units to behave normally or turn off. In 

these systems we can also fade contexts in and out gradually, if that is what the problem 

requires. (See Berliner, 1979) . 

Bes t -match  recognition 

The set-intersection computation described above is sufficient if the features are discrete, 

noise-free, and if every member of a class exhibits all of the associated features. Few 

real-world recognition tasks approach this ideal. More often, the task is to find the stored 

description that best matches a set of features, even if the match is imperfect. Some of the 

features may be observed with high confidence, while others are weak. Some observations 

my fall on the boundary between two features or may be smoothly continuous. 

Marker-passing systems are very poor at handling imperfect matches of this sort. Value- 

passing systems like Thistle are ideal for this: there can be a very large number of 

observations, each sending some amount of activation to a number of hypotheses; the size of 

I/ this activation depends on thel coqfJdence level f the observation and the strength of the 
I /  / l  19 

i connection be~ween the feature and the hypoth6sis. Hypotheses may also be given dome 
I I 

6 cxtra activation on the basis of top-down expcct&ions. After all of thcsc votes have been li 
I I 



I collected, the system simply asks for the element 4 I 
) -- this is our best match. The Bolmnann machine I 

m ,  
I I 

I 
I 
with the most activation to identify i 

does almost as well as Thistle in cases 

!this: in clear-cut cases it finds the global energy minimum corresponding to the descrip 

'that best fits the weighted combination of otiserved features and expectations. If there 

several good descriptions it is biased towards the best 
3 8 , 

i 
Gestalt  recognition 

;elf 

ike 

Ion 

are 

I 
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In the preceding paragraphs we looked only at bottom-up recognition, perhaps modified 

by a bit of top-down priming to help expected answers. Real-world recognition problems 

present a more complicated picture: the whole object can only be identified on the basis, of 

its features, but the features can only be identified in relation to one another and to t$e 

emerging picture of the whole: if taken out of context, each feature is ambiguous (pa%, 

1975). There is usually a single answer -- a set of identities for the whole and for each of the 

parts -- that is much better than any other, but this cannot be found by pure bottom-up'or 

pure top-down processing; instead, like the solution of a set of simultaneous equationi it 

must either emerge as a whole or be found by laborious iteration. There may be many levels 

of features and sub-features, with a complex network of inter-level constraints. 

Here the Boltzmann machine'is in its element. The observations and expectations provide 

the inputs to the network. The knowledge about the plausibility of each possible 

interpretation is stored in the weights within the network. The problem is to combine these 

sources of information rapidly and correctly. The inputs define one potential energy 

hnction over possible states of the network, and the weights define another. The statistically 

optimal solution can be found by adding the hnctions together and finding the global 

minimum (Hinton and Sejnowski, 1983b). This is exactly what the Boltzmann machine does.' 

On paper, then, the Boltzmann machine looks very promising for recognition tasks of this 

sort, but more analysis and some large-scale simulations are needed in order to determine 

whether this promise is realistic. A deterministic value-passing machine like Thistle might be 

able to get comparable results, but programming it to do so would be a very difficult task 

because there is no known learning procedure, and great care would have to be taken to 

avoid local minima that would uap a deterministic iterative search. Marker-passing systems 

exhibit the same limitations here that we saw in best-match recognition; they are 

inappropriate for this sort of task. 

Recognit ion under transformat ion  

Sometimes the problem is not just to recognize a whole object and its features at once, but 
II l i  ' I  I I I  
i to do this even &ough the object has undergone a complex transformatiim. In vision, !for 

I I i 
:example, we-must match the image against a set of stored. viewpoint-invariant shape 
(I 1 1  ' 1 I 1  I 
I ' I 
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descriptions and to do this we must apply tra&forrfiations like translition, rotation, scaling, 

and perhaps other, non-rigid transformations wa in ton, 1981~). Once again, we are trying to 

make many choices at once in order to find a combination of choices that gives us the best 

*atch. Some of the choices are made over smooth continuous domains (the 

kansformations) and some are discrete choices (the description chosen From memory). once 

again, the Boltzmann machine should excel at this task, but must be tested; the Thistle 

machine might be able to do the' job but would require tricky programming: the N&L 

machine is out of the game. ! 

I 

Many other computational tasks could be added to the list, but these are the ones h a t  

currently seem most important to us. None of the architectures we have explored can db a 

good job on all of these tasks. This analysis suggests two goals for the immediate future: 

first, to explore more thoroughly the computational properties of the ~oltzmann 

architecture, especially when applied to large real-world tasks; second, to try to find some . 

way to combine, in a single syste*, the "gestalt recognition" of the Boltzmann machine, h e  . 

precise set operations of NETL-style marker passing, and the flexible sequential behavior of 

the traditional von Neumann architecture. 
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