
A HIERARCHICAL COMMUNITY OF EXPERTS

GEOFFREY E. HINTON

BRIAN SALLANS

AND

ZOUBIN GHAHRAMANI

Department of Computer Science

University of Toronto

Toronto, Ontario, Canada M5S 3H5

fhinton,sallans,zoubing@cs.toronto.edu

Abstract. We describe a directed acyclic graphical model that contains

a hierarchy of linear units and a mechanism for dynamically selecting an

appropriate subset of these units to model each observation. The non-linear

selection mechanism is a hierarchy of binary units each of which gates the

output of one of the linear units. There are no connections from linear

units to binary units, so the generative model can be viewed as a logistic

belief net (Neal 1992) which selects a skeleton linear model from among the

available linear units. We show that Gibbs sampling can be used to learn

the parameters of the linear and binary units even when the sampling is so

brief that the Markov chain is far from equilibrium.

1. Multilayer networks of linear-Gaussian units

We consider hierarchical generative models that consist of multiple layers

of simple, stochastic processing units connected to form a directed acyclic

graph. Each unit receives incoming, weighted connections from units in

the layer above and it also has a bias (see �gure 1). The weights on the

connections and the biases are adjusted to maximize the likelihood that the

layers of \hidden" units would produce some observed data vectors in the

bottom layer of \visible" units.

The simplest kind of unit we consider is a linear-Gaussian unit. To

generate data from a model composed of these units we start at the top



2 GEOFFREY E. HINTON ET AL.

w

j

i

h

k

j

i

h

k

jiji

wkjkj

Figure 1. Units in a belief network.

layer and stochastically pick states for each top-level unit from a Gaussian

distribution with a learned mean and variance. Once the states, yk of units

in the top layer have been chosen, we can compute the top-down input, ŷj
to each unit, j, in the next layer down:

ŷj = bj +
X
k

wkjyk (1)

where bj is the bias of unit j, k is an index over all units in the layer above
and wkj is the weight on the top-down connection from k to j. The state

of unit j is then picked randomly from a Gaussian distribution with mean

ŷj and a variance �2j that is learned from data.

The generative model underlying factor analysis (Everitt, 1984) consists

of one hidden layer of linear-Gaussian units (the factors) that send weighted

connections (the factor loadings) to a visible layer of linear-Gaussian units.

Linear models with Gaussian noise have two important advantages:

They often provide good models of continuous data and they are easy to �t

even when many of the linear variables are unobserved. Given the states of

any subset of the linear units it is tractable to compute the posterior dis-

tribution across the unobserved units and once this distribution is known,

it is straightforward to use the EM algorithm to update all the parameters

of the model. Unfortunately, linear models ignore all the higher order sta-

tistical structure in the data so they are inappropriate for tasks like vision

in which higher-order structure is crucial.

One sensible way to extend linear models is to use a mixture of M of

them (Ghahramani and Hinton, 1996; Hinton et al., 1997). This retains

tractability because the full posterior distribution can be found by com-

puting the posterior across each of the M models and then normalizing.



A HIERARCHICAL COMMUNITY OF EXPERTS 3

However, a mixture of linear models is not exible enough to represent the

kind of data that is typically found in images. If an image can have several

di�erent objects in it, the pixel intensities cannot be accurately modelled

by a mixture unless there is a separate linear model for each possible com-

bination of objects. Clearly, the e�cient way to represent an image that

contains n objects is to use a \distributed" representation that contains n

separate parts, but this cannot be achieved using a mixture because the

non-linear selection process in a mixture consists of picking one of the lin-

ear models. What we need is a non-linear selection process that can pick

arbitrary subsets of the available linear-Gaussian units so that some units

can be used for modelling one part of an image, other units can be used for

modelling other parts, and higher level units can be used for modelling the

redundancies between the di�erent parts.

2. Multilayer networks of binary-logistic units

Multilayer networks of binary-logistic units in which the connections form

a directed acyclic graph were investigated by Neal (1992). We call them

logistic belief nets or LBN's. In the generative model, each unit computes its

top-down input, ŝj , in the same way as a linear-Gaussian unit, but instead

of using this top-down input as the mean of a Gaussian distribution it uses

it to determine the probability of adopting each if the two states 1 and 0:

ŝj = bj +
X
k

wkjsk (2)

p(sj = 1jfsk : k 2 pajg) = �(ŝj) =
1

1 + e�ŝj
(3)

where paj is the set of units that send generative connections to unit j (the

\parents" of j), and �(�) is the logistic function. A binary-logistic unit does

not need a separate variance parameter because the single statistic ŝj is

su�cient to de�ne a Bernouilli distribution.

Unfortunately, it is exponentially expensive to compute the exact poste-
rior distribution over the hidden units of an LBN when given a data point,

so Neal used Gibbs sampling: With a particular data point clamped on the

visible units, the hidden units are visited one at a time. Each time hidden

unit u is visited, its state is stochastically selected to be 1 or 0 in propor-

tion to two probabilities. The �rst, P�nsu=1 = p(su = 1; fs�k : k 6= ug) is
the joint probability of generating the states of all the units in the network

(including u ) if u has state 1 and all the others have the state de�ned by

the current con�guration of states, �. The second, P�nsu=0, is the same

quantity if u has state 0. When calculating these probabilities, the states



4 GEOFFREY E. HINTON ET AL.

of all the other units are held constant. It can be shown that repeated ap-

plication of this stochastic decision rule eventually leads to hidden state

con�gurations being selected according to their posterior probabilities.

Because the LBN is acyclic it is easy to compute the joint probability

P
� of a con�guration, �, of states of all the units.

P
� =

Y
i

p(s�i jfs
�
k : k 2 paig (4)

where s�i is the binary state of unit i in con�guration �.

It is convenient to work in the domain of negative log probabilities which

are called energies by analogy with statistical physics. We de�ne E� to be

� lnP�.

E
� = �

X
u

(s�u ln ŝ
�
u + (1� s

�
u) ln(1� ŝ

�
u)) (5)

where s�u is the binary state of unit u in con�guration �, ŝ�u is the top-down

expectation generated by the layer above, and u is an index over all the
units in the net.

The rule for stochastically picking a new state for u requires the ratio

of two probabilities and hence the di�erence of two energies

�E
�
u = E

�nsu=0 � E
�nsu=1 (6)

p(su = 1jfs�k : k 6= ug) = �(�E
�
u ) (7)

All the contributions to the energy of con�guration � that do not depend

on sj can be ignored when computing �E
�
j . This leaves a contribution that

depends on the top-down expectation ŝj generated by the units in the layer

above (see Eq. 3) and a contribution that depends on both the states, si,

and the top-down expectations, ŝi, of units in the layer below (see �gure 1)

�E
�
j = ln ŝ�j � ln(1� ŝ

�
j ) +

X
i

h
s
�
i ln ŝ

�nsj=1

i + (1� s
�
i ) ln

�
1� ŝ

�nsj=1

i

�

� s
�
i ln ŝ

�nsj=0

i � (1� s
�
i ) ln

�
1� ŝ

�nsj=0

i

�i
(8)

Given samples from the posterior distribution, the generative weights

of a LBN can be learned by using the online delta rule which performs

gradient ascent in the log likelihood of the data:

�wji = �sj(si � ŝi) (9)

3. Using binary units to gate linear units

It is very wasteful to use highly non-linear binary units to model data

that is generated from continuous physical processes that behave linearly



A
H
IE
R
A
R
C
H
IC
A
L
C
O
M
M
U
N
IT
Y
O
F
E
X
P
E
R
T
S

5

...

...

...

...

...

...

...

...

...

...

F
ig
u
re

2
.

U
n
it
s
in

a
co
m
m
u
n
it
y
o
f
ex
p
er
ts
,
a
n
et
w
o
rk

o
f
p
a
ir
ed

b
in
a
ry

a
n
d
li
n
ea
r
u
n
it
s.

B
in
a
ry

u
n
it
s
(s
o
li
d
sq
u
a
re
s)
g
a
te

th
e
o
u
tp
u
ts

o
f
co
rr
es
p
o
n
d
in
g
li
n
ea
r
u
n
it
s
(d
a
sh
ed

ci
rc
le
s)

a
n
d
a
ls
o
se
n
d
g
en
er
a
ti
v
e
co
n
n
ec
ti
o
n
s
to

th
e
b
in
a
ry

u
n
it
s
in

th
e
la
y
er

b
el
ow

.
L
in
ea
r
u
n
it
s

se
n
d
g
en
er
a
ti
v
e
co
n
n
ec
ti
o
n
s
to

li
n
ea
r
u
n
it
s
in

th
e
la
y
er

b
el
ow

(d
a
sh
ed

a
rr
ow

s)
.

o
v
er

sm
a
ll
ra
n
g
es
.
S
o
ra
th
er

th
a
n
u
si
n
g
a
m
u
lt
il
a
y
er

b
in
a
ry

n
et
w
o
rk

to

g
en
er
a
te

d
a
ta

d
ir
ec
tl
y,
w
e
u
se

it
to

sy
n
th
es
iz
e
a
n
a
p
p
ro
p
ri
a
te

li
n
ea
r
m
o
d
el

b
y
se
le
ct
in
g
fr
o
m

a
la
rg
e
se
t
o
f
a
va
il
a
b
le
li
n
ea
r
u
n
it
s.
W
e
p
a
ir
a
b
in
a
ry

u
n
it

w
it
h
ea
ch

h
id
d
en

li
n
ea
r
u
n
it
(�
g
u
re

2
)
a
n
d
w
e
u
se

th
e
sa
m
e
su
b
sc
ri
p
t
fo
r

b
o
th

u
n
it
s
w
it
h
in

a
p
a
ir
.
W
e
u
se

y
fo
r
th
e
re
a
l-
va
lu
ed

st
a
te

o
f
th
e
li
n
ea
r

u
n
it
a
n
d
s
fo
r
th
e
st
a
te
o
f
th
e
b
in
a
ry

u
n
it
.
T
h
e
b
in
a
ry

u
n
it
g
a
te
s
th
e
o
u
tp
u
t

o
f
th
e
li
n
ea
r
u
n
it
so

E
q
.
1
b
ec
o
m
es
:

ŷ
j
=
b
j
+
X k

w
k
j
y
k
s
k

(1
0
)

It
is
st
ra
ig
h
tf
o
rw
a
rd

to
in
cl
u
d
e
w
ei
g
h
te
d
co
n
n
ec
ti
o
n
s
fr
o
m

b
in
a
ry

u
n
it
s

to
li
n
ea
r
u
n
it
s
in

th
e
la
y
er

b
el
o
w
,
b
u
t
th
is

w
a
s
n
o
t
im
p
le
m
en
te
d
in

th
e

ex
a
m
p
le
s
w
e
d
es
cr
ib
e
la
te
r.
T
o
m
a
k
e
G
ib
b
s
sa
m
p
li
n
g
fe
a
si
b
le
(s
ee

b
el
o
w
)
w
e

p
ro
h
ib
it
co
n
n
ec
ti
o
n
s
fr
o
m

li
n
ea
r
u
n
it
s
to

b
in
a
ry

u
n
it
s,
so

in
th
e
g
en
er
a
ti
v
e

m
o
d
el
th
e
st
a
te
s
o
f
th
e
b
in
a
ry

u
n
it
s
a
re

u
n
a
�
ec
te
d
b
y
th
e
li
n
ea
r
u
n
it
s
a
n
d

a
re

ch
o
se
n
u
si
n
g
E
q
.
2
a
n
d
E
q
.
3
.
O
f
co
u
rs
e,
d
u
ri
n
g
th
e
in
fe
re
n
ce

p
ro
ce
ss

th
e
st
a
te
s
o
f
th
e
li
n
ea
r
u
n
it
s
d
o
a
�
ec
t
th
e
st
a
te
s
o
f
th
e
b
in
a
ry

u
n
it
s.

G
iv
en

a
d
a
ta

v
ec
to
r
o
n
th
e
v
is
ib
le

u
n
it
s,

it
is
in
tr
a
ct
a
b
le

to
co
m
p
u
te

th
e
p
o
st
er
io
r
d
is
tr
ib
u
ti
o
n
o
v
er

th
e
h
id
d
en

li
n
ea
r
a
n
d
b
in
a
ry

u
n
it
s,
so

a
n

a
p
p
ro
x
im
a
te

in
fe
re
n
ce

m
et
h
o
d
m
u
st

b
e
u
se
d
.
T
h
is

ra
is
es

th
e
q
u
es
ti
o
n
o
f

w
h
et
h
er

th
e
le
a
rn
in
g
w
il
l
b
e
a
d
v
er
se
ly
a
�
ec
te
d
b
y
th
e
a
p
p
ro
x
im
a
ti
o
n
er
ro
rs

th
a
t
o
cc
u
r
d
u
ri
n
g
in
fe
re
n
ce
.
F
o
r
ex
a
m
p
le
,
if
w
e
u
se

G
ib
b
s
sa
m
p
li
n
g
fo
r



6 GEOFFREY E. HINTON ET AL.

inference and the sampling is too brief for the samples to come from the

equilibrium distribution, will the learning fail to converge? We show in

section 6 that it is not necessary for the brief Gibbs sampling to approach

equilibrium. The only property we really require of the sampling is that it

get us closer to equilibrium. Given this property we can expect the learning

to improve a bound on the log probability of the data.

3.1. PERFORMING GIBBS SAMPLING

The obvious way to perform Gibbs sampling is to visit units one at a

time and to stochastically pick a new state for each unit from its posterior

distribution given the current states of all the other units. For a binary unit

we need to compute the energy of the network with the unit on or o�. For

a linear unit we need to compute the quadratic function that determines

how the energy of the net depends on the state of the unit.

This obvious method has a signi�cant disadvantage. If a linear unit, j, is

gated out by its binary unit (i.e., sj = 0) it cannot inuence the units below

it in the net, but it still a�ects the Gibbs sampling of linear units like k that

send inputs to it because these units attempt to minimize (yj � ŷj)
2
=2�2j .

So long as sj = 0 there should be no net e�ect of yj on the units in the layer

above. These units completely determine the distribution of yj , so sampling

from yj would provide no information about their distributions. The e�ect

of yj on the units in the layer above during inference is unfortunate because

we hope that most of the linear units will be gated out most of the time and

we do not want the teeming masses of unemployed linear units to disturb

the delicate deliberations in the layer above. We can avoid this noise by
integrating out the states of linear units that are gated out. Fortunately, the

correct way to integrate out yj is to simply ignore the energy contribution

(yj � ŷj)
2
=2�2j .

A second disadvantage of the obvious sampling method is that the de-

cision about whether or not to turn on a binary unit depends on the par-

ticular value of its linear unit. Sampling converges to equilibrium faster if

we integrate over all possible values of yj when deciding how to set sj . This

integration is feasible because, given all other units, yj has one Gaussian

posterior distribution when sj = 1 and another Gaussian distribution when

sj = 0. During Gibbs sampling, we therefore visit the binary unit in a pair

�rst and integrate out the linear unit in deciding the state of the binary

unit. If the binary unit gets turned on, we then pick a state for the linear

unit from the relevant Gaussian posterior. If the binary unit is turned o�

it is unnecessary to pick a value for the linear unit.

For any given con�guration of the binary units, it is tractable to com-

pute the full posterior distribution over all the selected linear units. So one



A HIERARCHICAL COMMUNITY OF EXPERTS 7

interesting possibility is to use Gibbs sampling to stochastically pick states

for the binary units, but to integrate out all of the linear units when making

these discrete decisions. To integrate out the states of the selected linear

units we need to compute the exact log probability of the observed data

using the selected linear units. The change in this log probability when one

of the linear units is included or excluded is then used in computing the

energy gap for deciding whether or not to select that linear unit. We have

not implemented this method because it is not clear that it is worth the

computational e�ort of integrating out all of the selected linear units at

the beginning of the inference process when the states of some of the bi-

nary units are obviously inappropriate and can be improved easily by only

integrating out one of the linear units.

Given samples from the posterior distribution, the incoming connection

weights of both the binary and the linear units can be learned by using the

online delta rule which performs gradient ascent in the log likelihood of the

data. For the binary units the learning rule is Eq. 9. For linear units the

rule is:

�wji = � yjsj(yi � ŷi)si=�
2
i (11)

The learning rule for the biases is obtained by treating a bias as a weight

coming from a unit with a state of 1.1

The variance of the local noise in each linear unit, �2j , can be learned

by the online rule:

��
2
j = � sj

h
(yj � ŷj)

2 � �
2
j

i
(12)

Alternatively, �2j can be �xed at 1 for all hidden units and the e�ective local

noise level can be controlled by scaling the incoming and outgoing weights.

4. Results on the bars task

The noisy bars task is a toy problem that demonstrates the need for sparse

distributed representations (Hinton et al., 1995; Hinton and Ghahramani,

1997). There are four stages in generating each K�K image. First a global

orientation is chosen, either horizontal or vertical, with both cases being

equally probable. Given this choice, each of the K bars of the appropriate

orientation is turned on independently with probability 0.4. Next, each

active bar is given an intensity, chosen from a uniform distribution. Finally,

independent Gaussian noise is added to each pixel. A sample of images

generated in this way is shown in �gure 3(a).

1We have used wji to denote both the weights from binary units to binary units
and from linear units to linear units; the intended meaning should be inferred from the
context.



8 GEOFFREY E. HINTON ET AL.

a b

Figure 3. a) Training data for the noisy bars problem. b) Images generated by the
trained network. The area of each square represents the value of the corresponding pixel
in the 6�6 images. White represents positive values and black represents negative values.

We trained a 3-layer network on the 6� 6 noisy bars problem. The net-

work consisted of one pair of units in the top hidden layer, where each pair

consists of a linear-Gaussian unit gated by its corresponding binary logis-

tic unit; 24 pairs of units in the �rst hidden layer; and 36 linear-Gaussian

units in the visible layer. The network was trained for 12 passes through a

data set of of 1000 images, with a learning rate of 0.04 and a weight decay

parameter of 0.04. The images were presented in a di�erent, random order

for each pass.

For each image presented, 16 Gibbs sampling iterations were performed.

Gibbs sampling was performed by visiting each pair of units in a layer in

random order, where for each pair the binary unit was visited �rst, followed

by the linear unit. Of the 16 network states visited, the �rst four were
discarded, and the next 12 were used for learning. The weights from the

linear units in the �rst hidden layer to the units in the visible layer were

constrained to be positive. Without this constraint, the trained model still

generates images from the correct distribution, but the solution is not so

easily interpreted. The result of training is shown in �gure 4.

The trained network is using 12 of the linear-Gaussian units in the �rst

hidden layer to represent each of the 12 possible horizontal and vertical

bars. The top level binary unit is selecting the linear units in the �rst

hidden layer that represent horizontal bars by exciting the corresponding



A HIERARCHICAL COMMUNITY OF EXPERTS 9

a

b

c

d

e

Figure 4. Generative weights and biases of a three-layered network after being trained
on the noisy bars problem. a) Weights from the top layer linear-Gaussian unit to the 24
middle layer linear-Gaussian units. b) Biases of the middle layer linear units. c) Weights
from the 24 middle layer linear units to the 36 visible units. d) Weights from the top
layer binary logistic unit to the 24 middle layer binary logistic units. e) Biases of the
middle layer binary logistic units.

binary units; these binary units are biased to be o� otherwise. Similarly,

the binary units that correspond to vertical bars, which are often active

due to positive biases, are being inhibited by the top binary unit. The top

linear unit is simply acting as an additional bias on the linear units in the

�rst hidden layer. Examples of data generated by the trained network are

shown in �gure 3(b).

The network was shown novel images, and 10 iterations of Gibbs sam-

pling were performed. After the �nal iteration, the top level binary unit

was found to be o� for 90% of vertical images, and on for 84% of horizontal

images.

5. Results on handwritten digits

We trained a similar three-layer network on handwritten twos and threes

from the CEDAR CDROM 1 database (Hull, 1994). The digits were scaled



10 GEOFFREY E. HINTON ET AL.

to an 8 � 8 grid, and the 256-gray-scale pixel values were rescaled to lie

within [0; 1]. The 2000 digits were divided into a training set of 1400 digits,

and a test set of 600 digits, with twos and threes being equally represented

in both sets. A small subset of the training data is shown in �gure 5(a).

a b

Figure 5. a) A subset of the training data. b) Images generated by the trained network.
For clarity, black represents positive values in this �gure.

The network consisted of a single pair of units in the top hidden layer,

24 pairs of units in the �rst hidden layer, and 64 linear-Gaussian units in

the visible layer. During training, the network made 43 passes through the

data set, with a learning rate of 0.01 and a weight decay parameter of 0.02.

Gibbs sampling was performed as in the bars problem, with 4 discarded

Gibbs sampling iterations, followed by 12 iterations used for learning. For

this task, there were no constraints placed on the sign of the weights from

the linear-Gaussian units in the �rst hidden layer to the units in the visible

layer. The result of training is shown in �gure 6.

In this case, the network uses all 24 linear units in the �rst hidden layer

to represent digit features. Some of the features are global, while others are

highly localized. The top binary unit is selecting the linear units in the �rst

hidden layer that correspond to features found predominantly in threes, by

exciting the corresponding binary units. Features that are exclusively used

in twos are being gated out by the top binary unit, while features that can



A HIERARCHICAL COMMUNITY OF EXPERTS 11

a

b

c

d

e

Figure 6. Generative weights and biases of a three-layered network after being trained
on handwritten twos and threes. a) Weights from the top layer linear-Gaussian unit to
the 24 middle layer linear-Gaussian units. b) Biases of the middle layer linear-Gaussian
units. c) Weights from the 24 middle layer linear-Gaussian units to the 36 visible units.
d) Weights from the top layer binary logistic unit to the 24 middle layer binary logistic
units. e) Biases of the middle layer binary logistic units.



12 GEOFFREY E. HINTON ET AL.

be shared between digits are being only slightly excited or inhibited. When

the top binary unit is o�, the features found in threes are are inhibited by

strong negative biases, while features used in twos are gated in by positive

biases on the corresponding binary units. Examples of data generated by

the trained network are shown in �gure 5(b).

The trained network was shown 600 test images, and 10 Gibbs sampling

iterations were performed for each image. The top level binary unit was

found to be o� for 94% of twos, and on for 84% of threes. We then tried to

improve classi�cation by using prolonged Gibbs sampling. In this case, the

�rst 300 Gibbs sampling iterations were discarded, and the activity of the

top binary unit was averaged over the next 300 iterations. If the average

activity of the top binary unit was above a threshold of 0.32, the digit was
classi�ed as a three; otherwise, it was classi�ed as a two. The threshold

was found by calculating the optimal threshold needed to classify 10 of the

training samples under the same prolonged Gibbs sampling scheme. With

prolonged Gibbs sampling, the average activity of the top binary unit was

found to be below threshold for 96.7% of twos, and above threshold for

95.3% of threes, yielding an overall successful classi�cation rate of 96%

(with no rejections allowed). Histograms of the average activity of the top

level binary unit are shown in �gure 7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

a

b

Figure 7. Histograms of the average activity of the top level binary unit, after prolonged
Gibbs sampling, when shown novel handwritten twos and threes. a) Average activity for
twos in the test set. b) Average activity for threes in the test set.



A HIERARCHICAL COMMUNITY OF EXPERTS 13

6. Why brief Gibbs sampling works

There are two major di�culties in using Gibbs sampling for maximum

likelihood learning in a neural network:

1. The learning algorithm is usually derived by assuming that Gibbs sam-

pling produces samples from the equilibrium distribution. But when
the weights are large, there can be high energy barriers that make

convergence to the equilibrium distribution very slow. Moreover, it is

generally very hard to measure whether convergence has been achieved.

2. Even if the samples do come from the equilibrium distribution, non-

uniform sampling noise can have unfortunate e�ects. The weights can

be strongly repelled from regions where the sampling noise is high,

even if the estimated gradient of the log likelihood with respect to

the weights is unbiased. A familiar example of this phenomenon is

that gravel accumulates at the sides of a road, even if the road is at,

because there is higher variance in the movement of the gravel where

the tra�c is. In networks with binary logistic units this e�ect causes

the weights to be repelled from values that cause hidden units to be

on about half the time, since they then have much higher variance

than when they are �rmly on or �rmly o�. This prevents uncommitted

hidden units from sitting around in their middle range and following

small gradients of the log likelihood. The variance repulsion causes

them to wander into useless regions where they are always on or always

o�.

The sampling noise can easily be estimated by repeating exactly the

same sampling procedure several times. It should then be possible for simple

gradient methods to cancel out the e�ects of non-uniform variance by using

a smaller learning rate when the variance in the estimated gradient is high.

The failure to approach equilibrium seems like a far less tractable prob-

lem than the sampling noise and makes Gibbs sampling seem an unpromis-

ing candidate as a model of real neural computation. Fortunately, the EM

algorithm can be generalized so that each iteration improves a lower bound

on the log likelihood (Neal and Hinton, 1993). In this form, the only prop-

erty required of Gibbs sampling is that it get closer to equilibrium on each

iteration. There is a sensible objective function for the learning that can be

improved even if the sampling is far from equilibrium.

Suppose that Gibbs sampling produces a distribution Q over the hidden

state con�gurations. We de�ne the free energy of the network as the the

expected energy under Q minus the entropy of Q:

F =
X
�

Q�E� �

 
�
X
�

Q� lnQ�

!
(13)



14 GEOFFREY E. HINTON ET AL.

If Q is the posterior distribution over hidden con�gurations given E,

then F is equal to the negative log probability of the con�guration of the

visible units under the model de�ned by E. Otherwise, F exceeds the neg-

ative log probability of visible con�guration by the Kullback-Leibler diver-

gence between Q and P :

F = � ln p(visible) +
X
�

Q� ln
Q�

P�

(14)

The EM algorithm consists of coordinate descent in F (Neal and Hinton,

1993): a full M step minimizes F with respect to the parameters that de-

termine E, and a full E step minimizes F with respect to Q, which is

achieved by setting Q equal to the posterior distribution over the hidden

con�gurations given E.

A major advantage of viewing EM as coordinate descent in F is that it

justi�es partial E-steps which improve F without fully minimizing it with

respect to the distribution Q. We de�ne Qt to be the distribution reached

at the end of partial E-step t and E
t to be the energy function used during

partial E-step t. Partial M-step t occurs after partial E-step t and updates

the energy function to Et+1.

To eliminate sampling noise, imagine that we have an in�nite ensemble
of identical networks so that we can compute the exact Q distribution

produced by a few sweeps of Gibbs sampling. Provided we start the Gibbs

sampling in each network from the hidden con�guration at the end of the

previous partial E-step we are guaranteed that F
t+1 � F

t because the

gradient M-step ensures that:X
�

Q
t
�E

t+1
� �

X
�

Q
t
�E

t
� (15)

while Gibbs sampling, however brief, ensures that:X
�

Q
t+1
� E

t+1
� +Q

t+1
� lnQt+1

� �
X
�

Q
t
�E

t+1
� + Q

t
� lnQ

t
�: (16)

In practice, we try to approximate an in�nite ensemble by using a very
small learning rate in a single network so that many successive partial E-

steps are performed using very similar energy functions. But it is still nice

to know that with a su�ciently large ensemble it is possible for a simple

learning algorithm to improve a bound on the log probability of the visible

con�gurations even when the Gibbs sampling is far from equilibrium.

Changing the parameters can move the equilibrium distribution further

from the current distribution of the Gibbs sampler. The E step ensures that

the Gibbs sampler will chase this shifting equilibrium distribution. One wor-

risome consequence of this is that the equilibrium distribution may end up



A HIERARCHICAL COMMUNITY OF EXPERTS 15

very far from the initial distribution of the Gibbs sampler. Therefore, when

presented a new data point for which we don't have a previous remembered

Gibbs sample, inference can take a very long time since the Gibbs sampler

will have to reach equilibrium from its initial distribution.

There are at least three ways in which this problem can be �nessed:

1. Explicitly learn a bottom-up initialization model. At each iteration t,

the initialization model is used for a fast bottom-up recognition pass.
The Gibbs sampler is initialized with the activities produced by this

pass and proceeds from there. The bottom-up model is trained using

the di�erence between the next sample produced by the Gibbs sampler

and the activities it produced bottom-up.

2. Force inference to recapitulate learning. Assume that we store the se-

quence of weights during learning, from which we can obtain the se-

quence of corresponding energy functions. During inference, the Gibbs

sampler is run using this sequence of energy functions. Since energy

functions tend to get peakier during learning, this procedure should

have an e�ect similar to annealing the temperature during sampling.

Storing the entire sequence of weights may be impractical, but this pro-

cedure suggests a potentially interesting relationship between inference

and learning.

3. Always start from the same distribution and sample briey. The Gibbs

sampler is initialized with the same distribution of hidden activities at

each time step of learning and run for only a few iterations. This has

the e�ect of penalizing models with an equilibrium distribution that is

far from the distributions that the Gibbs sampler can reach in a few

samples starting from its initial distribution.2 We used this procedure

in our simulations.

7. Conclusion

We have described a probabilistic generative model consisting of a hierar-

chical network of binary units that select a corresponding network of linear

units. Like the mixture of experts (Jacobs et al., 1991; Jordan and Jacobs,

1994), the binary units gate the linear units, thereby choosing an appropri-

ate set of linear units to model nonlinear data. However, unlike the mixture

of experts, each linear unit is its own expert, and any subset of experts can

2The free energy, F , can be interpreted as a penalized negative log likelihood, where
the penalty term is the Kullback-Leibler divergence between the approximating distribu-
tion Q� and the equilibrium distribution (Eq. 14). During learning, the free energy can
be decreased either by increasing the log likehood of the model, or by decreasing this KL
divergence. The latter regularizes the model towards the approximation.



16 GEOFFREY E. HINTON ET AL.

be selected at once, so we call this network a hierarchical community of

experts.

Acknowledgements

We thank Peter Dayan, Michael Jordan, Radford Neal and Michael Revow

for many helpful discussions. This research was funded by NSERC and

the Ontario Information Technology Research Centre. GEH is the Nesbitt-

Burns Fellow of the Canadian Institute for Advanced Research.

References

Everitt, B. S. (1984). An Introduction to Latent Variable Models. Chapman

and Hall, London.

Ghahramani, Z. and Hinton, G. E. (1996). The EM algorithm

for mixtures of factor analyzers. Technical Report CRG-TR-96-1

[ftp://ftp.cs.toronto.edu/pub/zoubin/tr-96-1.ps.gz], Depart-

ment of Computer Science, University of Toronto.

Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The wake-

sleep algorithm for unsupervised neural networks. Science, 268:1158{

1161.

Hinton, G. E., Dayan, P., and Revow, M. (1997). Modeling the manifolds of

Images of handwritten digits. IEEE Trans. Neural Networks, 8(1):65{74.

Hinton, G. E. and Ghahramani, Z. (1997). Generative models for discov-

ering sparse distributed representations. Phil. Trans. Roy. Soc. London

B: Biol. Sci.

Hull, J. J. (1994). A database for handwritten text recognition re-

search. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 16(5):550{554.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991).

Adaptive mixture of local experts. Neural Computation, 3:79{87.

Jordan, M. I. and Jacobs, R. (1994). Hierarchical mixtures of experts and

the EM algorithm. Neural Computation, 6:181{214.

Neal, R. M. (1992). Connectionist learning of belief networks. Arti�cial

Intelligence, 56:71{113.
Neal, R. M. and Hinton, G. E. (1993). A new view of the EM algorithm

that justi�es incremental and other variants. Unpublished manuscript

[ftp://ftp.cs.utoronto.ca/pub/radford/em.ps.z], Department of

Computer Science, University of Toronto.


