
In Network: Computation in Neural Systems 9(1) 1998.

Cascaded Redundancy Reduction

Virginia R. de Sa�and Geo�rey E. Hinton

Department of Computer Science

University of Toronto

Toronto, Ontario, M5S 1A4, Canada

August 2, 1998

�Current Address and Address for Communication: Virginia R. de Sa, Sloan Center for

Theoretical Neurobiology, Dept. Physiology{Box 0444, 513 Parnassus Ave., San Francisco,

CA 94143-0444

1



de Sa & Hinton 2

Abstract

We describe a method of incrementally constructing a hierarchical

generative model of an ensemble of binary data vectors. The model is

composed of stochastic, binary, logistic units. Hidden units are added

to the model one at a time with the goal of minimizing the informa-

tion required to describe the data vectors using the model. In addition

to the top-down generative weights that de�ne the model, there are

bottom-up recognition weights that determine the binary states of the

hidden units given a data vector. Even though the stochastic genera-

tive model can produce each data vector in many ways, the recognition

model is forced to pick just one of these ways. The recognition model

therefore underestimates the ability of the generative model to pre-

dict the data, but this underestimation greatly simpli�es the process

of searching for the generative and recognition weights of a new hidden

unit.



de Sa & Hinton 3

1 Introduction

Unsupervised learning algorithms attempt to extract statistical structure
from an ensemble of input vectors without the help of an additional teaching
signal. One way of de�ning what it means to extract statistical structure is
to appeal to a stochastic generative model that produces data vectors from
hidden stochastic variables. If a relatively simple generative model is likely
to have produced the observed data vectors, then we can view the under-
lying states that the model uses to generate a particular data vector as an
economical representation of that vector.

In this paper we consider the problem of �tting a generative model that
is composed of multiple layers of stochastic binary units. The bottom layer
consists of \visible" units which correspond to the individual components of
a binary data vector. The model generates data by starting at the top layer
and working downwards. At the top level, each unit turns on randomly and
independently with a probability that depends only on its generative bias.
At each subsequent level, a unit, i, receives top-down input that depends
on the already decided binary states, sj of units in the layer above and the
generative weights, gj;i. This top-down input is combined with the unit's
generative bias1, g0;i to produce the unit's \total generative input", xi.

xi = g0;i +
X
j>i

sjgj;i (1)

The total generative input is then put through a logistic function to de-
termine the probability, pi, of turning on the unit:

pi = �(xi) =
1

1 + e�xi
(2)

Because the units are stochastic, each top-down generative pass through
the model will typically produce a di�erent data vector and each data vector
can typically be produced in many di�erent ways.

1The bias is equivalent to a generative weight from a \bias" unit that is always on. For

notational convenience we de�ne this node as unit 0.



de Sa & Hinton 4

If we start with a multilayer model with a �xed architecture and we want
to learn the generative weights and biases, the obvious objective function is
the log likelihood of the observed data under the generative model:

X
d

log p(dj�) =
X
d

log

 X
�

p(�j�)p(dj�; �)

!
(3)

where d is an index over data vectors, � is an index over all possible assign-
ments of binary states to the hidden units and � is the generative weights
and biases.

If units receive top-down generative connections from many units in the
layer above, it is intractable to maximize this objective function using ei-
ther the EM algorithm or gradient ascent. Both of these algorithms need
to compute the posterior distribution over exponentially many hidden state
vectors, �, given a data vector, d, and the generative parameters, �. Instead
of computing the posterior distribution exactly, it can be approximated using
Gibbs sampling (Neal 1992) or mean �eld methods (Jaakkola, Saul and Jor-
dan 1996), though neither of these approaches seems to have much biological
plausibility.

A Helmholtz machine (Dayan, Hinton, Neal and Zemel 1995) uses a sep-
arate set of recognition connections to compute an approximation to the
posterior distribution. It can be shown that the use of an approximation still
allows EM to maximize a lower bound on the log probability of the data, with
the tightness of the bound depending on the quality of the approximation
(Neal and Hinton 1998). For one version of the Helmholtz machine (Hinton,
Dayan, Frey and Neal 1995), there is a very simple \wake-sleep" learning
algorithm that uses only locally available information.

An extreme version of the idea behind Helmholtz machines is for the
recognition connections to approximate the posterior distribution using a
single vector of hidden states. Although this provides a much worse bound
than the other approximations it greatly simpli�es the search for the recog-
nition and generative weights because there is no need to integrate across
the many alternative ways of producing the data. The hope is that the com-
putational convenience will compensate for the looser bound. A secondary
aim is to see how much is gained by allowing the recognition connections of



de Sa & Hinton 5

a Helmholtz machine to produce a whole distribution rather than a single
hidden state vector2. In this form, the algorithm is similar to that of Redlich
(1993). The biggest di�erence is in the search strategy and the construction
in this case of a stochastic generative model.

Given a data vector, d, the recognition connections produce a binary state
vector, sd, over the hidden units. Using sd we get an upper bound on the
negative log probability of the data:

� log p(dj�) = � log
X
�

p(�j�)p(dj�; �)

� � log p(sdj�)p(djsd; �) (4)

This bound and its derivatives can be computed in a time that is linear in
the number of connections, so it is much more e�cient to perform gradient
descent in the upper bound than in the true negative log probability of the
data.

2 A Minimum Description Length (MDL) in-

terpretation of the objective function

There is an alternative interpretation of the upper bound which is math-
ematically equivalent but conceptually di�erent. We think in terms of a
communication game in which a sender must communicate each data vector
to a receiver. Rather than sending the individual components of each data
vector separately, the sender �rst uses the recognition connections to pro-
duce a hierarchical representation of the data vector. Then she sends this
representation starting at the top level and working downwards. The idea
is that if the sender has found a good model for representing the data, it
should take fewer bits to send the data using the representations prescribed
by the model than to send the raw data. In the full MDL framework, we

2This is essentially the same debate as Viterbi versus Baum-Welch in the �tting of

Hidden Markov Models, except that Baum-Welch computes the true posterior rather than

just an approximation to it.



de Sa & Hinton 6

must also include the one-time cost of communicating the model itself. In
this paper we ignore the model cost, but it could be used as a criterion for
deciding when to stop enlarging the model (only add the new unit when the
improvement in coding cost is more than the cost of communicating the new
unit; this is dependent on the coding strategy for the weights).

According to Shannon's coding theorem, if a sender and a receiver have
agreed upon a probability distribution under which a discrete event has prob-
ability p, the event can be communicated using � log

2
p bits. This is an

asymptotic result that involves using block coding techniques but the details
are irrelevant here. On average, it is best for the sender and receiver to agree
on the correct probability distribution, but this is not required. They can use
any distribution they like. For communicating the binary state, sdi , of unit i
that is produced by the recognition connections, the sender and receiver use
the Bernoulli distribution pdi , 1� pdi that is obtained by applying the gener-
ative model to the states in the layer above (see Eq. 2). This distribution is
available to the receiver because the states of the units in the layer above have
already been communicated. So it requires �sdi log2 p

d
i � (1� sdi ) log2(1� pdi )

bits to communicate sdi . The cost of communicating a data vector is sim-
ply the sum of this quantity over all units, including the visible units that
represent the data. So the description length is:

C(d) =
X
i

�sdi log2 p
d
i � (1� sdi ) log2(1� pdi )

= � log p(sdj�)p(djsd; �) (5)

3 Why a hidden unit helps

Consider the cost of describing the data using no hidden units. The only
adjustable parameters in the model are the generative biases of the visible
units. The cost in Eq. 5 is minimized by setting these biases so that pi =
�(g0;i) is equal to the fraction of the data vectors in which unit i is on. We
call this the \base rate" model. The base rate model makes good use of the
individual frequencies with which visible units come on, but it ignores all
correlations. Now, suppose we have a single hidden unit, k. If a subset of the



de Sa & Hinton 7

visible units tend to come on together, this redundancy can be captured by
setting the recognition weights, ri;k, of the hidden unit so that it comes on in
these circumstances and setting its generative weights, gk;i, so as to increase
pi for all the units in the subset. By modifying the generative biases of the
visible units it is also possible to reduce pi when the hidden unit is o�. In
e�ect, the hidden unit allows the base rates to be dependent on which data
vector is being described. With just one hidden unit we obtain a mixture of
two base rate models.

After adding one hidden unit, we could split the data into two disjoint
subsets and apply the same algorithm again to each subset separately. This
would create a tree structure and would be a natural extension of decision
tree algorithms like CART (Breiman, Friedman, Olshen and Stone, 1984)
to the task of probability density estimation. Unfortunately, splitting the
data in this way is usually a bad strategy when there are multiple di�erent
regularities in the data. Suppose, for example, that components of the data
vector can be split into two subsets. Within each subset there are weak
correlations, but between subsets components are independent. The �rst split
in a tree can use all of the data to detect the redundancy within one of the
subsets, but at the next level down the other redundancy must be discovered
separately in each half of the tree using only half the data. To avoid this
problem, we consider all of the data when adding each new hidden unit,
but we take into account the work that is already being done by the previous
hidden units in creating appropriate top-down probabilities for describing the
states of lower units. We also allow new hidden units to receive recognition
connections from existing hidden units and to send generative connections to
them. In adding a new hidden unit, k, we greedily attempt to minimize the
cost of describing the data using the new unit and all the previous ones. This
cost includes the cost of describing the state of k and the cost of describing
the state of every pre-existing unit, i, using the new generative probabilities
created by combining the new bias for i with the generative weight from k

and the pre-existing generative weights from units above i.

C =
X
d

�
�sdk log �(g0;k)� (1� sdk) log[1� �(g0;k)]

�

+
X
d

X
i

�
�sdi log[�(xi)]



de Sa & Hinton 8

� (1� sdi ) log[1� �(xi)]
�

(6)

where xi is the generative input to unit i.

xi = g0;i + sdkgk;i +
X

k>j>i

sdjgj;i

The term
P

k>j>i s
d
jgj;i is una�ected by adding unit k so it can be stored

for each data vector in the training set, thus eliminating much computation.
To emphasize this and to simplify subsequent equations we de�ne

Gd
k>j>i �

X
k>j>i

sdjgj;i (7)

In searching for the best generative and recognition weights for k, we
allow the generative biases of all earlier units to be modi�ed but not the
other generative weights or the recognition weights or biases of other units.

4 Creating a smooth search space

Once a new hidden unit has been added to the network, it behaves determin-
istically. Its recognition weights cause it to be either on or o� for each data
vector. However, the search for a suitable set of recognition weights is easier
if the weights have a smooth, di�erentiable e�ect on the unit's behaviour.
This can be achieved by using a stochastic unit whose probability of being on
is a smooth monotone function of its recognition weights. Each data vector
determines a single state for all previous hidden units but for the new unit
we consider both possible states and compute the expected value of the cost
function in Eq. 6 given this stochastic behaviour. To make the cost function
represent the negative log probability of the data vector allowing for both
states of the new hidden unit, it is necessary to subtract the entropy of the
state of the new hidden unit, as explained in Hinton and Zemel (1994). If this
entropy term is omitted, the expected cost is always minimized by scaling
up all of the units recognition weights so that it behaves deterministically.

While searching for the best recognition weights we want the hidden unit
to behave stochastically in order to smooth the search space, but at the



de Sa & Hinton 9

conclusion of the search we want the hidden unit to behave deterministically.
This can be achieved by using a \temperature" parameter which scales both
the entropy term and the softness of the logistic function used in recognition
(but not the one used in generation). During the search the temperature is
reduced from 1 to 0 in small steps.

At a given temperature, the cost function to be minimized is:

C =
X
d

X
i<k

�
qdk[�s

d
i log(�(G

d
k>j>i + g0;i + gk;i))

� (1� sdi ) log(1� �(Gd
k>j>i + g0;i + gk;i))]

+ (1� qdk)[�s
d
i log�(G

d
k>j>i + g0;i)

� (1� sdi ) log(1� �(Gd
k>j>i + g0;i))]

�
+

X
d

[�qdk log�(g0;k)� (1� qdk) log(1� �(g0;k))]

+
X
d

T [(qdk log q
d
k) + (1� qdk) log(1� qdk)] (8)

where qdk is the recognition probability of unit k for data vector d. The last
line of Eq. 8 is the entropy of unit k (weighted by �T ) and the penultimate
line is the expected cost of coding the state of unit k given its generative bias.
The �rst two lines of the equation are the cost of coding all the other units
given that unit k is on, weighted by the probability that k is on. The next
two lines are the cost if k is o�, weighted by the corresponding probability.

5 The standard CRR learning procedure

We have explored several variants of the Cascaded Redundancy Reduction
(CRR) learning procedure. To simplify the discussion we �rst describe the
\standard" procedure.

The outermost loop of the procedure consists of adding hidden units one
at a time in a cascaded fashion (shown in Figure 1) as in Fahlman and
Lebiere (1990). Once a unit has been added, its recognition weights and bias
are never changed.



de Sa & Hinton 10

In searching for the best generative and recognition weights for the new
unit, CRR decreases the temperature from 1 to 0 in steps, and at each tem-
perature it performs an alternating optimization that closely resembles the
EM algorithm. Holding the recognition weights �xed, an iterative search is
performed for the optimal generative weights and biases (an M-step). Then,
holding the generative weights and biases �xed, the recognition weights and
bias are iteratively improved (a partial E-step). The overall algorithm has
the form:

Set the initial generative biases for visible units

Repeat adding hidden units until stopping criterion is met

Create a new unit, k, with random recognition weights and recognition bias

Set T = 1

Repeat until T = 0

Repeat N times

Do Newton searches for new generative biases of all previous units, j

Do Newton searches for generative weights from new unit, k

Do a conjugate gradient search for recognition weights and bias of k

Decrease T using a temperature schedule

Add the new hidden unit to the network

Set the generative bias of the new hidden unit

Use conjugate gradient to backfit ALL generative weights and biases

5.1 Updating the recognition weights

The update rule for the recognition weights can be obtained by taking the
partial derivative of the cost with respect to each modi�able recognition
weight. This gives:

@C

@rj;k
=

1

T

X
d

@C

@qdk
qdk(1� qdk)s

d
j (9)



de Sa & Hinton 11

where

@C

@qdk
=

X
i<k

 
�sdi log

�(Gd
k>j>i + g0;i + gk;i)

�(Gd
k>j>i + g0;i)

� (1� sdi ) log
1� �(Gd

k>j>i + g0;i + gk;i)

1� �(Gd
k>j>i + g0;i)

!

� log
�(g0;k)

(1� �(g0;k))

+ T log
qdk

(1� qdk)
(10)

A conjugate gradient search technique is used to determine successive
steps in the search.

5.2 Updating the generative weights

The generative weights could also be updated using a gradient method. How-
ever, we can do better by taking advantage of the independence between the
individual weights and the monotonicity of the derivative. First note that
the partial derivative with respect to one of the generative weights depends
only on that generative weight and the bias weight to the same unit.

@C

@gk;i
=
X
d

�qdk(s
d
i � �(Gd

k>j>i + g0;i + gk;i)) (11)

Similarly for the partial derivative with respect to one of the bias weights.

@C

@g0;i
=
X
d

�qdk(s
d
i��(G

d
k>j>i+g0;i+gk;i))�(1�q

d
k)(s

d
i��(G

d
k>j>i+g0;i)) (12)

This gives two equations (with two unknowns). However we will show
below that �nding the local extrema involves solving equations of only one
variable.

Setting the derivative equal to zero in Equations 11 and 12 gives

0 =
X
d

qdk(s
d
i � �(Gd

k>j>i + g0;i + gk;i))



de Sa & Hinton 12

0 =
X
d

�
qdk(s

d
i � �(Gd

k>j>i + g0;i + gk;i))

+ (1� qdk)(s
d
i � �(Gd

k>j>i + g0;i))
�

and combining gives

0 =
X
d

(1� qdk)(s
d
i � �(Gd

k>j>i + g0;i))

which we can solve for g0;i. Unfortunately this equation can not be solved
directly but as it is a monotonic function it could be solved using a binary
search technique. We chose however, to use Newton's method.

Letting
A =

X
d

(1� qdk)(s
d
i � �(Gd

k>j>i + g0;i))

we solve for g0;i using

g0;i(t+ 1) = g0;i(t) + sign(A)�min

0
@2;

������
A(g0;i(t))
dA
dg0;i

� �

������
1
A (13)

where � is a positive safety factor used to avoid instability where the
second derivative (�rst derivative of A) vanishes. This together with the
constraint that the maximum step size have magnitude 2 gives a robust
implementation of Newton's algorithm. Note that due to the monotonicity
of A, dA

dg0;i
is always non-positive.

Once we have solved for g0;i in Equation 13 we can use it to �nd gk;i
similarly.

B =
X
d

�qdk(s
d
i � �(Gd

k>j>i + g0;i + gk;i))

gk;i(t+ 1) = gk;i(t) + sign(B)�min

0
@2;

������
B(g0;i; gk;i(t)))

dB
dgk;i

� �

������
1
A (14)



de Sa & Hinton 13

5.3 Back�tting the generative weights

Greedy algorithms have the disadvantage that a step taken early may lead
to subsequent poor performance. Ideally we would like to go back and mod-
ify earlier connections with added hindsight. Unfortunately to do this for
all connections would defeat the e�ciency advantages of a greedy algorithm.
Changing the recognition weights to a lower unit could invalidate the recog-
nition weights to higher units as they depend on activity propagated from
lower units. This would also invalidate the generative weights as they depend
on the activated recognition pattern sd.

The generative weights and biases, however, can be updated for little
cost and without invalidating the recognition connections. The update rule
is determined from the appropriate gradient.

@C

@gj;i
= sj(si � �(

X
k>i

skgk;i)) (15)

@C

@g0;i
= si � �(

X
k>i

skgk;i) (16)

The conjugate gradient algorithm is also used to update these weights. A
few conjugate gradient steps of back�tting are performed after the addition
of each new unit.

6 Algorithm Modi�cations

6.1 Adding a Unit more Carefully

One way to avoid some of the worst local minima while adding units is to
consider a pool of units for each new input unit as in Cascade-Correlation
(Fahlman and Lebiere, 1990). These units can be initialized with di�erent
random weights and trained independently in parallel. After training, the
performance of each candidate unit can be assessed and the best unit added.



de Sa & Hinton 14

We found that for a �xed number of units added, this did improve the
performance, but as discussed below, for better performance with a �xed
amount of time, serial consideration of candidate units was better. Only
one candidate unit was trained at any time but if it did not lead to a lower
coding cost it was not included. To avoid over�tting, the coding costs were
evaluated on a separate validation set, rather than on the data used to train
the weights. This evaluation was performed before the back-�tting stage.

6.2 Mini-batches

All the iterative updates are done using batch algorithms. For the dataset
we used, and most suitable datasets, the size of the set is very large and the
patterns within it are quite redundant. This suggests that an on-line algo-
rithm would be more e�cient. To maintain the parameter-free advantages of
the conjugate gradient batch algorithm while increasing the learning speed
we investigated the e�ect of using mini-batches. For each considered unit
20% of the patterns, balanced for class content, were used for the recognition
weight searches and the generative Newton searches.

Using this strategy, we achieved rapid initial decrease in coding cost. At
this stage it became more e�cient to increase the size of the mini-batches
instead of increasing the number of minimizing steps pursued for each unit.
The batch size trades o� speed for appropriate descent direction. Early in the
search, the exact estimate of the gradient is not important to allow signi�cant
improvement. When the search has evolved to a reasonable solution, further
progress depends on progressively more accurate estimates of the gradient
of the desired function. This suggests that an adaptively growing batch size
that monitors the percentage of rejected units and increases the batch size
when it gets too large would be a good strategy.

7 Results

We tested the algorithm using a dataset previously used to test similar al-
gorithms (Hinton, Dayan, Frey and Neal, 1995; Frey, Hinton, and Dayan,
1996). This dataset consists of 13,000 normalized digits quantized into 8� 8



de Sa & Hinton 15

binary images from the US Postal Service O�ce of Advanced Technology.
As in Frey, Hinton, and Dayan, (1996) the data were divided into 6000 train-
ing examples, 2000 validation examples and 5000 examples for testing. The
validation data were used to evaluate whether a unit should be added and
also, as they are already loaded, for back�tting the generative weights after
addition of a unit.

Training curves are shown in Figures 2 and 3 for training with the full
(training) dataset, the 20% mini batches as well as a run with a gradually
increasing batch size. The batches were 10% for the �rst 20 iterations, 20%
for the next 20 iterations, 50% for the next 10 iterations, and 100% for
the last 30 iterations. The curves plot the CRR calculated coding cost (an
upper bound on the true coding cost) on the validation set. As mentioned,
Figure 2 shows that the mini batches allow faster learning (particularly at the
beginning) but are limited in their asymptotic accuracy. Increasing the batch
size throughout learning, allows fast initial learning and good late learning.
Figure 3 shows that when using the validation set, to decide about adding
a new unit, the resulting e�ciency of the networks are similar for all the
training methods.

While the objective function of our network was speci�cally designed,
for simplicity, to optimize the coding cost using a single hidden state per
data pattern, the resulting generative model is a stochastic model capable
of coding each pattern with a distribution over hidden states just like those
constructed using Gibbs sampling, mean �eld methods, and Helmholtz ma-
chines. We can therefore estimate the actual cost of coding the data using
the true posterior distribution of our trained networks. Testing the network
trained with the increasing batch size, we found that the CRR estimated cod-
ing cost (using sd as the sole posterior state) was signi�cantly overestimating
the true coding cost of the network, particularly as the size of the network
grew. The Figure 4 shows the estimated coding cost using the CRR (single
hidden state) cost on the validation set (as shown in Figure 2) reproduced
beside the coding cost on the test set calculated using Gibbs sampling of
the full posterior distribution of hidden states. Note that the Gibbs sampled
estimate of the test error gives a smaller coding cost and that the di�erence
increases with the size of the network. The Gibbs sampled coding cost, on
the test data, for the network with 30 hidden units was 38.6 bits, compared
to the CRR validation coding cost of 40.8 bits.



de Sa & Hinton 16

For comparison a Helmholtz machine trained using the wake-sleep algo-
rithm with 72 hidden units (in a 16 ) 24 ) 32 ) 64 layered network
architecture) achieved a test-set coding cost of 39.1 bits in 3120 seconds
(Frey, Hinton and Dayan 1996). This coding cost was achieved using the
recognition distribution learned by the algorithm. For networks of this size,
it was not possible to compute the true log-likelihood of the data under the
generative network learned by the wake-sleep algorithm. However, Brendan
Frey (personal communication, 1997) has found that in a variety of cases in
which the networks are small enough to compute the log-likelihood of the
data exactly, the coding cost given by the recognition distribution was very
close to the true log-likelihood under the generative model. Frey, Hinton
and Dayan reported the total training time as 7200 seconds which included
training several architectures from which they picked the best.

8 Discussion

The central idea of this training algorithm is to avoid the computational cost
of computing the posterior distribution over the hidden states by using a
single state approximation. This gives computational simplicity at the ex-
pense of increased coding cost. We found that even though the network was
trained to optimize coding cost using a single hidden state, it had a reduced
cost when the full posterior distribution over hidden states was considered.
Considered in this way, the algorithm produced networks with similar cod-
ing cost to those created using the wake-sleep algorithm. The advantage of
the CRR method is that the size of the network does not have to be pre-
determined. Also, it is hoped that as the networks are biased to performing
well with single-state posteriors, they might lead to simpler more understand-
able representations. On the particular problem we tried, our networks of 30
units achieved a lower coding cost than the 72 hidden unit network trained
with the wake-sleep algorithm.

Acknowledgements

We thank Brendan Frey for providing us with the code for the Gibbs sam-
pling calculations and the performance results for the stochastic Helmholtz



de Sa & Hinton 17

machine. This research was funded by the Institute for Robotics and Intel-
ligent Systems, the Information Technology Research Center, and NSERC.
Hinton is the Nesbitt-Burns fellow of the Canadian Institute for Advanced
Research.



de Sa & Hinton 18

References

Breiman L, Friedman J H and Olshen R A and Stone C J 1984 Classi�-

cation and regression trees (Belmont, CA:Wadsworth)

Dayan P, Hinton G E, Neal R M and Zemel R S 1995 The helmholtz
machine Neural Computation 7 889-904

Fahlman S E and Lebiere C 1990 The Cascade-Correlation Learning Ar-
chitecture Advances in Neural Information Processing Systems 2, ed D S
Touretzky (Morgan Kaufmann) pp 524-532

Frey B J 1997 personal communication

Frey B J, Hinton G E and Dayan P 1996 Does the wake-sleep algorithm
produce good density estimators? Advances in Neural Information Process-

ing Systems 8, ed D S Touretzky, M C Mozer and M E Hasselmo (Cambridge,
MA: MIT Press) pp 661-667

Hinton G E, Dayan P, Frey B J and Neal R M 1995 The wake-sleep
algorithm for unsupervised neural networks Science 268 1158-1161

Hinton G E and Zemel R S 1994 Autoencoders, Minimum Description
Length and Helmholtz Free Energy Advances in Neural Information Pro-

cessing Systems 6 ed J D Cowan, G Tesauro and J Alspector (San Mateo,
CA: Morgan Kaufmann) pp 3-10

Jaakkola T, Saul L K and Jordan M I 1996 Fast learning by bounding
likelihoods in Sigmoid Type Belief Networks Advances in Neural Information

Processing Systems 8, ed D S Touretzky, M C Mozer and M E Hasselmo
(Cambridge, MA: MIT Press) pp 528-534

Neal R M 1992 Connectionist learning of belief networks Arti�cial Intel-
ligence 56 71-113

Neal R M and Hinton G E 1998 A new view of the EM algorithm that jus-
ti�es incremental, sparse and other variants to appear in Learning in Graphi-

cal Models ed M I Jordan (Kluwer Academic Press) (currently available from
ftp://ftp.cs.utoronto.ca/pub/radford/emk.ps.Z)

Redlich A N 1993 Redundancy Reduction as a Strategy for Unsupervised
Learning Neural Computation 5 289-304



de Sa & Hinton 19

Figure Captions

Figure 1. The CRR network. The binary activity of unit i, resulting from
application of pattern d to the network, is given by sdi . The unit currently
being considered (k) has analogue activity given by qdk. The recognition
weight from unit i to unit k is given by ri;k and the generative weights from
k to i by gk;i The bias unit is de�ned to be unit 0. For a given input pattern
d We represent the sum generative input from all added units j to input unit
i by Gd

k>j>i.

Figure 2. Coding cost vs time. The x axis gives the number of seconds when
run on a 200MHz R4400 chip with a 4MB secondary cache. Each plotted
point represents the addition of one unit. The plot for the mini-batches was
run for 13500 seconds but added no units after 5500 seconds. The y axis
gives the average coding cost over the dataset (in bits) for the network at
that stage.

Figure 3. Coding cost vs number of added units. This graph plots the same
information as in Figure 2, but with respect to the number of units in the
current network. This is not just a simple rescaled version of Figure 3, as
the consideration of each unit did not always result in a unit being added to
the network.

Figure 4. Coding cost vs time. This graph shows the e�ect of considering the
whole posterior distribution over hidden states when calculating the coding
cost. The whole posterior is approximated using prolonged Gibbs sampling.



de Sa & Hinton 20

Figure 1

d

generative connections

recognition connections

j

k,i

0,i

i,k

0,kg

0,k

0,j

k>j>i
d

d

d

q

g
r

g

g
 s

s

G

r

i

r0,j

k



de Sa & Hinton 21

Figure 2

40

42

44

46

48

50

52

54

56

0 5000 10000 15000 20000 25000

C
od

in
g 

C
os

t (
bi

ts
)

Time (seconds)

full batches
1/5 batches

adaptive batches



de Sa & Hinton 22

Figure 3

40

42

44

46

48

50

52

54

56

0 5 10 15 20 25 30 35

C
od

in
g 

C
os

t (
bi

ts
)

Number of Hidden Units

full batches
1/5 batches

adaptive batches



de Sa & Hinton 23

Figure 4

38

40

42

44

46

48

50

52

54

56

0 5000 10000 15000 20000

C
od

in
g 

C
os

t (
bi

ts
)

Time (seconds)

CRR validation error (upper bound)
Gibbs sampled test error (close approximation)


