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Abstract

It is possible to learn multiple layers of non-linear features by backpropa-
gating error derivatives through a feedforward neural network. This is a very
effective learning procedure when there is a huge amount of labeled training
data, but for many learning tasks, very few labeled examples are available.
In an effort to overcome the need for labeled data, several differentgener-
ative models were developed that learned interesting features by modeling
the higher-order statistical structure of a set of input vectors. One of these
generative models, the restricted Boltzmann machine (RBM), has no con-
nections between its hidden units and this makes perceptual inference and
learning much simpler. More significantly, after a layer of hidden features
has been learned, the activities of these features can be used as trainingdata
for another RBM. By applying this idea recursively it is possible to learn a
deep hierarchy of progressively more complicated features without requiring
any labeled data. This deep hierarchy can then be treated as a feedforward
neural network which can be discriminatively fine-tuned using backpropa-
gation. Using a stack of RBMs to initialize the weights of a feedforward
neural network allows backpropagation to work effectively in much deeper
networks and it leads to much better generalization. A stack of RBMs can
also be used to initialize a deep Boltzmann machine that has many hidden
layers. Combining this initialization method with a new method for fine-
tuning the weights finally leads to the first efficient way of training Boltz-
mann machines with many hidden layers and millions of weights.
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1 Introduction

The shape of an object, the layout of a scene, the sense of a word, and the mean-
ing of a sentence must all be represented as spatio-temporalpatterns of neural
activity. The simplest way to represent things with neuronsis to activate a single
neuron in a large pool that contains one neuron for each possible thing that might
need to be represented. This is obviously hopeless for the meaning of a sentence
or the layout of a scene and it is fairly implausible for the shape of an object or
the sense of a word. The alternative is to use a distributed representation in which
each entity is represented by activity in many neurons and each neuron is involved
in the representation of many different entities. If we model a neuron as a binary
device that emits 1 or 0 spikes during a short time window, andif we assume that
the precise time of a spike within the window is irrelevant, adistributed repre-
sentation is just a set of binary features1. If we model a neuron as a device that
can output an approximate real number2 a distributed representation can be a set
of noisy, real-valued features. Either way, a central question for both Psychology
and Neuroscience is “where do these features come from?”.

First we must dispose of the idea that features are innately specified. There
are several reasons why this idea fails:

1. We have about1014 synapses. Even if we treat these as binary and even if
we only make use of1% of their storage capacity to define all of the features
we use, we still need to specify1012 bits. There is no hope of packing this
much information into our genes.

2. The world changes much too fast for innately specified features to keep up.
If I tell you that she scromed him with the frying pan, you immediately
have quite a large number of features for the word “scromed”.Innately
specified detectors for long wriggly things or for a red dot between two
almost parallel lines may be a good way to avoid venomous snakes or to get
a mother gull to regurgitate food, but for almost all of the perceptual and
cognitive tasks for which features are useful, wired-in features cannot adapt
nearly fast enough.

3. Evolution is much too slow to discover the millions of features we need.
1We shall return to the issue of spike timing at the end of the paper.
2This could be implemented by using a gang of similarly tuned real neurons to implement each

model “neuron” or by using a rate code over a much longer time period.
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In very high-dimensional spaces, searches that have efficient access to gra-
dient information are millions of times faster than searches that do not3.
Evolution can optimize hundreds or even thousands of parameters, but it
is hopelessly inefficient for optimizing millions of parameters because it
cannot compute the gradient of the fitness of the phenotype with respect to
heritable parameters. What evolution can do is explore the space of biolog-
ical devices thatcanmake effective use of gradient information. It can also
explore the space of objective functions that these devicesshould optimize
and the space of architectures in which this optimization works well.

There are several different ways to approach the question ofwhat objective
functions are being optimized by the brain and how it computes the gradients of
these objective functions with respect to properties of synapses. We can investi-
gate people’s learning abilities without worrying about the hardware [50], we can
investigate how real synapses change [31], or we can explorethe space of synaptic
learning rules that work well in large networks of neuron-like processors. Given
enough computational power, we might even use an evolutionary outer loop to ex-
plore this space [56]. These approaches are complementary and clearly need to be
pursued in parallel. It is impossible to know in advance whether the biologically
unrealistic assumptions of a particular type of model neuron will prevent us from
learning anything biologically relevant by studying how toget networks of those
neurons to learn complex tasks. Similarly, it is impossibleto know in advance
whether neuroscience experiments to test computationallyinfeasible theories of
learning will tell us anything interesting about how learning really occurs in the
brain.

My approach is to try to find learning procedures that work really well for
learning things that people are obviously very good at. Provided these procedures
can run in neuron-like hardware, they should provide biologists with a much more
sensible space of hypotheses. Most intuitively plausible learning procedures do
not actually work very well in practice, particularly in large networks, and they
can be filtered out without invading any real brains.

3It is always possible to use a local random search to estimatethe gradient but in spaces with
millions of dimensions, this is millions of times slower than methods like backpropagation that
compute the gradient efficiently.
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2 Learning distributed representations in 1986

In the mid 1980s, there were two exciting new algorithms for learning non-linear
distributed representations in multiple layers of hidden units. Back-propagation
[45, 55, 27] was a straightforward application of the chain rule for computing
gradients in a deterministic feed-forward network (see figure 1). It looked pretty
implausible as a model of learning in cortex because it required a lot of labeled
training data. Some people thought it was also implausible because the “neu-
rons” needed to send two quite different signals, one duringthe forward pass to
communicate activities and one during the backward pass to communicate error-
derivatives. Evolution, however, can produce teeth and eyeballs from the same
stem cells, so it is hard to believe that it could fail to find a way to implement
back-propagation in a few hundred million years if that was the best thing to do.
Getting all of that labeled training data, however, seemed problematic.

[Figure 1 about here.]

The most promising suggestion for getting “labels” was to make the desired
ouput of the neural network be a reconstruction of all or partof the input. For
static data this amounted to learning a deep auto-encoder [14]. Unfortunately, in
the last century, nobody could get deep autoencoders to worksignificantly better
than Principal Components Analysis [7, 12]. For dynamic data, the most natural
way to reconstruct the input data was to predict the next frame of data [9], but
attempts to apply backpropagation-through-time to learning sequential data failed
because the gradients grew or shrank multiplicatively at each time step [3]. We
now have good ways of dealing with this problem [32, 23], but back in the 1980’s
the best we could do was to castrate backpropagation-through-time by throwing
away the most interesting part of the gradient.

Given a large enough supply of class labels, back-propagation did learn to
solve a number of difficult problems, especially when weight-sharing over time or
space was used to implement prior knowledge about invariances [53, 28]. Without
weight-sharing, however, it was hard to get backpropagation to make good use of
multiple hidden layers and it failed to live up to the extremely high expectations
we had for it in 1986. In particular, the hope that backpropagation-through-time
could learn to solve complex problems by creating a myriad ofsmall sequential
“programs” and dynamically routing their outputs to the right places was never
realised.
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In 1995, Radford Neal [35] showed that for modest-sized training sets, feed-
forward neural nets with one hidden layer generalised much better if the gradient
produced by backpropagation was used to wander through the space of possible
weights like a heavy particle on a bumpy error surface. The particle tends to head
in a downhill direction gathering momentum, but this momentum is occasionally
discarded and replaced by a random kick. Every so often, the set of weights cor-
responding to the current position of the particle is saved and predictions on test
data are made by averaging the outputs produced by all of the different networks
that use all of these different saved, weight vectors. Neal also showed that as
the number of hidden units goes to infinity and the amount of weight-decay4 on
their outgoing connections also increases appropriately,his stochastic method of
sampling from the space of good models becomes equivalent toa method known
as “Gaussian Processes”. The predictions of a Gaussian Process model can be
computed in a more direct way [41], so from an engineering perspective, there
is not much point using backpropagation with one hidden layer for modest-sized
problems [30]. In the machine learning community, backpropagation went out of
fashion. Retrospectively, it is fairly clear that this happened because the amount
of labeled data and the computational resources available at the time were insuffi-
cient to make good use of the enormous modeling potential of multiple layers of
non-linear features.

The other exciting new learning algorithm in the mid 1980s [21] was quite
different in nature. It didn’t work in practice, but theoretically it was much more
interesting. From the outset, it was designed to learn binary distributed represen-
tations that captured the statistical structure implicit in a set of binary vectors, so it
did not need labeled data. A more insightful way to say this isthat it treated each
training case as a vector of desiredoutputsof a stochastic generative model, so
the training data consisted entirely of high-dimensional labels and what was miss-
ing was the inputs. The network, called a Boltzmann machine, contained a set of
binary stochastic visible units which could be clamped to a training vector and a
set of binary stochastic hidden units which learned to represent higher-order fea-
tures of the data, typically ones that occurred more often than would be expected
by chance. Any unit could be connected to any other unit and all of the connec-
tions were symmetric. In the vision and statistics literatures this is now known
as a partially observed, inhomogeneous, Markov Random Fieldor an undirected
graphical model. Boltzmann machines can also be used to learnthe distribution

4Weight-decay keeps the weights small by adding an extra penalty that is proportional to the
squared value of the weight. The gradient of the penalty pulls the weight towards zero.
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of the outputsgivenan input vector. This conditional form of the Boltzmann ma-
chine allows it to perform the same tasks as a feedforward neural network trained
with backpropagation, but with the added advantage that it can model correlations
between the outputs. Given a particular input vector, for example, a conditional
Boltzmann machine can assign high probabilities to the output vectors (1,1) and
(0,0) and low probabilities to (1,0) and (0,1). A feedforward neural network can-
not do this. In the machine learning literature this is knownas a conditional ran-
dom field, though most CRFs used in machine learning do not have hidden units
so they cannot learn their own features.

After the weights on the connections have been learned, a Boltzmann machine
can be made to perform perceptual inference by clamping a datavector on the
visible units and then repeatedly updating the hidden units, one at a time, by
turning on each binary hidden unit with a probability that isa logistic function
of the total input it receives from all the other visible and hidden units (plus its
own bias). After a sufficient length of time, the hidden vectors will be samples
from the “stationary distribution” so any particular hidden vector will occur with
a fixed probability that depends on how compatible it is with the datavector but
does not depend on the initial pattern of hidden activities.Hidden vectors that
occur with high probability in the stationary distributionare good representations
of that datavector, at least according to the current model.

Another computation that a trained Boltzmann machine can perform is to gen-
erate visible vectors with a probability that equals the probability that the model
assigns to those vectors. This is done by using exactly the same process as is
used for perceptual inference, but with the visible units also being updated. It
may, however, take a very long time before the network reaches its stationary
distribution because this distribution usually needs to behighly multimodal to
represent interesting data distributions well. Many interesting distributions have
the property that there are exponentially many modes, each of which has about
the same probability, separated by regions of much lower probability. The modes
correspond to things that might plausibly occur and the regions between nodes
correspond to extremely unlikely things.

The third and most interesting computation that a Boltzmann machine can per-
form is to update the weights on the connections in such a way that it is probably
slightly more likely to generate all of the datavectors in the training set. Although
this is a slow process, it is mathematically very simple and only uses information
that is locally available. First, the inference process is run on a representative
mini-batch of the training data and, for each pair of connected units, the expected
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product of their binary activities is sampled. Then, the same computation is per-
formed when the Boltzmann machine is generating visible vectors from its sta-
tionary distribution. The weight update is then proportional to the difference of
the expected products during inference and generation. This difference is an unbi-
ased estimate of the gradient of the sum of the log probabilities of generating the
training data. It is surprising that the learning rule is this simple because the local
gradient depends on all the other weights in the network. Themost attractive as-
pect of Boltzmann machines is that everything a connection needs to know about
the weights on other connections is contained in the difference of its expected ac-
tivity products during inference and generation. Instead of requiring a backward
pass which explicitly propagates information about gradients, the Boltzmann ma-
chine only requires the same computation to be performed twice, once with the
visible units clamped to data and once without clamping. It does not require the
neurons to communicate two quite different types of information.

Generating data from its model in order to collect the statistics required for
learning would interrupt the processing of incoming information, so it is tempting
to consider the possibility that this occurs at night duringREM sleep[5]. At first
sight this seems computationally awkward since it would only allow one weight
update per day, but there is a more plausible version of this idea. During the
night, generation from the model is used to estimate a baseline for the expected
product of two activities. Then during the day, weights are raised when the product
exceeds this baseline and lowered when it falls below the baseline. This allows
many weight updates per day. though as the day progresses thelearning would
get less and less accurate.

From a Cognitive Science perspective, Boltzmann machines, ifthey could be
made to work, would be interesting because they would exhibit multi-stability
(as in the Necker cube illusion) and top-down effects duringperceptual inference
[33]. They would also have a tendency towards hallucinations if the input was
disrupted, as in Claude Bonnet syndrome[42]. Unfortunately,with a lot of hid-
den units and unconstrained connectivity, Boltzmann machines trained with the
algorithm decribed above learn extremely slowly. They needa very small learn-
ing rate to average away all of the noise caused by the stochastic sampling of the
pairwise statistics, and they need to be run for an extremelylong time in the gen-
erative phase to get unbiased samples. In the 1980’s, therefore, they could only
be used for toy tasks. Terry Sejnowski (personal communication, 1985) believed
that the best hope for learning large Boltzmann machines was to find some way of
learning smaller modules independently, but we had no idea how to do this. The
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solution to this problem eventually presented itself aftertwo decades of meander-
ing through the space of unsupervised learning algorithms that learn distributed
representations in networks of neuron-like processing units.

3 Directed versus undirected graphical models

“Graphical Models” is the name of a branch of Statistics and Artificial Intelli-
gence that deals with probabilistic models whose parameters typically have a local
structure that can be depicted by using a graph that is not fully connected. Missing
interactions are depicted by missing edges in the graph which is a very efficient
representation when nearly all of the possible interactions are missing. Graphical
models come in two main flavors, directed and undirected.

In an undirected graphical model, like a Boltzmann machine, the parameters
(i. e. the weights and biases) determine the “energy” of a joint configuration (a
set of binary values for all of the observed and unobserved variables). Boltzmann
machines use the Hopfield energy which is defined as the negative of the “har-
mony”. The harmony is the sum over all active units of their biases, plus the sum
over all pairs of active units of the weight between them. Theprobability of a joint
configuration is then determined by its energy relative to other joint configurations
using the Boltzmann distribution:

p(v,h) =
e−E(v,h)

∑
v′,h′ e−E(v′,h′)

(1)

The inference phase of the Boltzmann machine learning rule computes the
data-dependent statistics needed to lower the energies of joint configurations that
contain datavectors on the visible units. The generative phase computes the data-
independent statistics needed to raise the energies of all joint configurations in
proportion to how often they occur according to the current model. This makes
the data more probable by decreasing the divisor in equation1.

Directed graphical models work in a quite different way. In adirected graph-
ical model, the variables have an ancestral partial ordering. When the model is
generating data, the probabilty distribution for each variable only depends on its
“parents” – directly connected variables that come earlierin the ordering. So to
generate an unbiased sample from the model, we start by sampling the values of
the highest ancestors from their prior distributions and then sample each lower
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variable in turn using a probability distribution that depends on the sampled val-
ues of its parents. This dependency can be in the form of a conditional probability
table whose size is exponential in the number of parents, or it can be a parameter-
ized function that outputs a probability distribution for adescendant when given
the vector of states of its parents. In a Gaussian mixture model, for example, the
discrete choice of Gaussian is the highest level variable and this choice specifies
the mean and covariance of the Gaussian distribution from which the lower-level,
multi-dimensional variable is to be sampled when generating from the model.

The simplest examples of directed graphical models with hidden variables are
Gaussian mixture models which have a single discrete hiddenvariable (the choice
of which Gaussian to use) and factor analysis which has a vector of real-valued
hidden variables (the factor values) that are linearly related to the observed data.
When generalized to dynamic data these become Hidden Markov Models and
Linear Dynamical Systems. All four of these models have a long history in statis-
tics because they allow tractable inference: Given an observed datavector, there
is an efficient way to compute the exact posterior distribution over all possible
hidden vectors. Efficient inference makes it easy to use models after they have
been learned, and it also makes it easy to learn them using variations of the EM
algorithm [8].

In the 1980’s, researchers in Artificial Intelligence who wanted to handle un-
certainty in a principled way developed inference procedures for more compli-
cated directed graphical models which they called “Bayes Nets” or “Belief Nets”.
Initially, they were not particularly interested in learning because they intended to
use domain experts to specify the way in which the probability distribution of each
discrete variable depended on the values of its parents. Judea Pearl [39] showed
how correct inference could be performed by sending simple messages along the
edges of a directed graph, provided there was only one path between any two
nodes. His “belief propagation” algorithm can be viewed as ageneralisation of the
well-known “forward-backward” inference algorithm for Hidden Markov Models
[2]. Heckerman [13] showed that expert systems worked better if they used a
proper inference procedure instead of ad hoc heuristics andthis had a big effect
on the more open-minded members of the Artificial Intelligence community. At
around the same time, the statistics community developed the “junction tree” al-
gorithm for performing correct inference in sparsely connected, directed graphical
models that contained multiple paths between nodes but no directed cycles [26].

The work on directed graphical models initially had little impact on those
in the connectionist community who wanted to understand howthe brain could
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learn non-linear distributed representations. The graphical models community
was mainly interested in relatively small models in which the structure of the
graph and the way in which each variable depended on its parents were specified
by a domain expert. As a result, the individual nodes in the graph could all be
interpreted and the directed edges represented meaningfulcausal effects in the
generative model. By contrast, the connectionist communitywas more interested
in getting a large number of units with fairly high connectivity to learn to model
the structure implicit in a large set of training examples and they were willing to
entertain the possibility that there were many different and equally good solutions
and that many of the units would have no simple interpretation.

The two communities became closer when Radford Neal [37] realised that
the stochastic binary units used in a Boltzmann machine couldbe used instead
to make a directed graphical model, called a “sigmoid beliefnet”, in which the
logistic sigmoid functionσ(x) = 1/(1 + exp(−x)) is used to parameterize the
way in which the probability distribution of a unit depends on the values of its
parents. This differs from a Boltzmann machine because, whenthe model is gen-
erating data, the children have no effect on the parents so itis possible to generate
unbiased samples in a single top-down pass.

Neal implemented a sigmoid belief net with multiple hidden layers and he
compared its learning abilities with those of a Boltzmann machine. The inference
procedure for a sigmoid belief net uses a similar iterative Monte Carlo process
to the Boltzmann machine, but it is significantly more complicated because each
hidden unit needs to see two different types of information.The first is the cur-
rent binary states of all its parents and children and the second is the predicted
probability of being on for each child given the current states of all that child’s
parents. The hidden unit then tends to pick whichever of its two states is the best
compromise between fitting in with what its parents predict for it and ensuring
that the predicted state of each of its children fits the current sampled state of that
child.

Once a binary representation of a datavector has been sampled from the pos-
terior distribution, the learning procedure for a sigmoid belief net is simpler than
for a Boltzmann machine because a sigmoid belief net does not have to deal with
the normalizing term in equation 1. The learning procedure is simply the delta
rule: The sampled binary value of the “post-synaptic” childis compared with that
child’s probability of being on given the sampled states of its “pre-synaptic” par-
ents. The top-down weights are then updated in proportion tothe value of the
parent times the difference between the sampled value of thechild and the proba-
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bility predicted by the parents. This is a generative version of the “delta” rule.

Neal showed that a sigmoid belief net learns faster than a Boltzmann machine,
though not by a big factor. Given the extra complexity of the inference procedure,
this did not seem like a good reason to abandon Boltzmann machines as a neu-
ral model, but it did raise the question of whether the inference procedure for a
sigmoid belief net could be simplified.

4 Learning with incorrect inference

Here is an idea that sounds crazy: When given an input vector, instead of sam-
pling the binary states of the hidden units from the true posterior distribution,
which contains complicated correlations, sample them froma much simpler dis-
tribution that does not contain these complicated correlations and is therefore easy
to compute. Then use these sampled states for learning as if they were samples
from the correct distribution. On the face of it, this is a hopelessly heuristic ap-
proach that has no guarantee that the learning will improve the model. When the
hidden states are sampled from the true posterior distribution, we are guaranteed
that the learning will increase the probability that the model would generate the
training data, provided we make a sufficiently large number of sufficiently small
updates to the weights. But if we use incorrect samples of hidden state vectors, it
is obvious that this guarantee no longer holds. Indeed, we could make the weight
changes go in precisely the wrong direction by choosing the incorrect samples
maliciously.

Using arguments from coding theory and from statistical physics, Radford
Neal, Richard Zemel and I [36, 22] were able to show that learning using incor-
rect hidden samples is much more sensible than it appears. Itdoes not necessarily
increase the model’s log probability of generating the training data5, but it is guar-
anteed to improve a different quantity that is a lower bound on this log probability.
For each individual training case,c, this bound is the log probability of generat-
ing that training case minus the divergence,KL(Qc||Pc), between the simplified
distributionQc from which the hidden state vectors are actually sampled, and the
true posterior distributionPc from which they ought to have been sampled. When
the weights are adjusted to maximize this bound, one of two things must happen:
Either the log probability of the training data improves or the true posterior dis-

5Maximizing the product of the probabilities of generating all of the training cases is equivalent
to maximizing the sum of the log probabilities.
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tribution,Pc, becomes more similar to the simplified distributionQc that is being
used to approximate it. So even though the log probability can fall, it can only do
this by making the posterior distribution much easier to approximate and this it-
self is a good thing because it means we have a model in which a computationally
simple way of doing approximate inference works pretty well.

Neal and I wrote a paper about this type of “variational” learning in 1993 and
circulated it in the machine learning community but, initially, it had little impact
and the Statistics journal we sent it to rejected it. Our 1993paper eventually
appeared as a chapter in an edited book on Graphical Models [36], and by the late
1990’s the idea of variational learning had become very popular. It is now very
widely used for learning complicated graphical models in which the true posterior
is too difficult to compute exactly [25].

[Figure 2 about here.]

The natural way to apply variational learning to a sigmoid belief net leads to
fairly complicated inference and learning procedures [47]because an inner loop
of iterative optimization is required to find the best approximating distribution
within the class of simplified distributions that are easy tocompute. However,
Peter Dayan noticed that if we are willing to make an additional approximation,
both inference and learning become surprisingly simple [17]. Given a datavector,
the best factorial distribution over the hidden units,Q, is the one that minimizes
KL(Q||P ), whereP is the true posterior distribution. If, instead, we train a sepa-
rate feedforward neural net to minimize the highly correlated quantityKL(P ||Q),
we get a very simple learning procedure called the “wake-sleep” algorithm. Like
the Boltzmann machine, this algorithm has two phases, one in which it is driven
by data and one in which it generates from its model, but here the resemblance
ends. During the wake phase, feedforward “recognition” connections are used to
infer an incorrect probability distribution for each hidden unit given the binary
states of the units in the layer below (see figure 2). All of theunits within a layer
are then given binary states that are sampled independentlyfrom their inferred
distributions. This is done one layer at a time, so only binary states need to be
communicated. Given the sampled states of all the units, thetop-down “genera-
tive” connections that form the sigmoid belief net can then be learned using the
delta rule as described earlier. During the “sleep” phase, the network simply gen-
erates samples from its model. Since it generated these samples, it knows the
correct states of the hidden units and it can use these statesas targets for train-
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ing the bottom-up recognition connections, again using thedelta rule but with the
roles of the pre-synaptic and post-synaptic units reversed.

The idea that the cortex learns by minimizing variational free energy has re-
cently been espoused by Karl Friston and his collaborators [11] and is currently
one of the many possibilities. As a contribution to machine learning, the wake-
sleep algorithm is an interesting form of unsupervised learning but it is rather
slow for deep networks that have many hidden layers and it is not used for practi-
cal applications. Aesthetically, the use of the wrongKL divergence for learning
to approximate variational inference is unsatisfying. It would be much nicer if
the recognition connections could perform correct inference for all of the hidden
layers in a single bottom-up pass but this seemed hopelesslyoptimistic.

5 Restricted Boltzmann Machines

One model that does allow simple, correct inference of distributed non-linear
representations is a “Restricted Boltzmann Machine” (RBM) in which there are
no connections between hidden units and no connections between visible units.
When this special case was suggested by Paul Smolensky [48], Terry Sejnowski
and I thought it was of no particular interest because we had found the learning al-
gorithm for the general case, and removing the connections between hidden units
clearly made the model much less powerful. However, an RBM turned out to
be exactly what was needed to divide the task of learning a deep network into a
sequence of much simpler tasks.

In an RBM, the hidden units are conditionally independent given a visible vec-
tor, so unbiased samples of the expected activity products of a visible and a hidden
unit during inference,〈vihj〉data, can be obtained in one parallel step. To sample
the expected products during generation,〈vihj〉model, still requires multiple itera-
tions that alternate between updating all the hidden units in parallel and updating
all of the visible units in parallel. However, learning still works well if 〈vihj〉model

is replaced by〈vihj〉reconstruction which is obtained as follows: Starting with a data
vector,v, on the visible units, update all of the hidden units in parallel:

p(hj = 1|v) = σ(bj +
∑

i∈vis

viwij) (2)

wherebj is a bias,wij is the weight between unitsi andj andσ is the logistic
sigmoid funtion. Then update all of the visible units in parallel to get a “recon-
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struction”:
p(vi = 1|v) = σ(bi +

∑

j∈hid

hjwij) (3)

Then update all of the hidden units again. After averaging the pairwise statistics
over one or more training cases, update the weights in parallel:

∆wij ∝ 〈vihj〉data − 〈vihj〉reconstruction (4)

This efficient learning procedure approximates gradient descent in a quantity called
”contrastive divergence” and usually works well in practice [15].

6 Stacking RBMs to make a deep belief net

Once an RBM has been trained, its weights and biases define a joint distribution
p(v,h) over visible and hidden binary state vectors. They also definep(v), p(h),
p(v|h) andp(h|v). One slightly odd way to expressp(v) is in terms of the prior
p(h) that the RBM defines over its hidden states:

p(v) =
∑

h

p(h)p(v|h) (5)

Now suppose we keep thep(v|h) defined by the first RBM, but we replacep(h)
in equation 5 by the probability distribution that a second RBMdefines over its
visible units as shown in figure 3. It can be shown that this will improve our model
of the original training data if and only if the second RBM models the first RBMs
aggregated posterior distribution overh better than the first RBMs prior,p(h),
models this aggregated posterior6.

[Figure 3 about here.]

It is easy to ensure that the second RBM starts off with a model ofthe aggre-
gated posterior that is just as good as thep(h) defined by the first RBM: Simply
initialise the second RBM to be the same as the first one, but turned upside down
so that its visible units are the same as the first RBMs hidden units and vice versa.

6The aggregated posterior is the equally weighted mixture ofall of the posterior distributions
for the individual training cases. Even though each individual posterior is factorial, the aggregated
posterior is not.
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After training the second RBM, we can apply the same trick againto improve
its model of the aggregated posterior of the first RBM. After training a stack of
RBMs in this way, we end up with a peculiar kind of composite model called a
deep belief net (DBN). The top two layers are the final RBM which acts as an
undirected, high-level, associative memory. The remaining layers form a directed
belief net because the only thing we kept from the earlier RBMs was the top-
down weights that determinep(v|h). If we perform bottom-up inference in this
DBN by using the weights of the RBMs in the bottom-up direction, we do not get
samples from the true posterior distribution. Nevertheless, it can be shown [19]
that each time we add another RBM to the stack we get a new DBN that has a
better variational lower bound on the log probability of thetraining data than the
previous DBN, provided we add the new RBM in the right way.

7 Fine-tuning a deep belief net

When a DBN has been created by stacking some RBMs, the whole systemcan
be fine-tuned so that the weights in earlier layers have a chance to adapt to the
weights that were subsequently learned in later layers. Either a generative or a
discriminative objective function can be used for fine-tuning a DBN. Generative
fine-tuning maximizes the probability that the DBN assigns tothe training data
and can be done using a contrastive version of the wake-sleepalgorithm. Each
connection that is not part of the top-level RBM is split into a bottom-up recog-
nition connection and a top-down generative connection andthe weights on these
two connections are untied so that their values can become different.

In the “wake” phase of the learning, the units in all the hidden layers are driven
bottom-up by the recognition connections. After a bottom-up pass that selects
binary states for all the hidden units, the generative connections are trained to be
better at reconstructing the binary activities in one layerfrom the binary activities
in the layer above. This is done using the delta rule, as described in section 3.
The bottom-up pass is then followed by a top-down pass that uses the generative
connections, but instead of sampling from the top-level hidden states from the
model, it just uses the top-level hidden states produced by the bottom-up pass.
This is the contrastive version of the “sleep” phase. After the top-down pass, the
recognition connections are trained to be better at recovering the true causes in the
layer above, again using the delta rule but with the pre-synaptic and post-synaptic
roles reversed.
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During contrastive wake-sleep learning, the connections in the top-level RBM
are kept symmetric and are trained using the usual contrastive divergence learning
rule. After fine-tuning, samples generated from the model look more like the
real data. A demonstration of a model with three hidden layers that has learned
to generate images of handwritten digits can be found athttp://www.cs.
toronto.edu/ ˜ hinton/digits.html .

A very different way to fine-tune a DBN is to add a final layer of labels and to
use a discriminative objective function that maximizes thelog probability that the
model assigns to the correct class label. The unsupervised training of the stack
of RBMs is regarded as a “pre-training” phase whose role is to discover good
features that model the structure in the input domain. Many of these features will
be irrelevant to any particular discriminative task, but the ones that are relevant are
likely to be much more useful than the raw inputs because theyrepresent strong
higher-order correlations in the data that are probably related to the real causes of
the data. These relevant features can be given strong weights to the label units and
they can also be slightly adjusted to make them more useful for discrimination.
This is done by simply treating the DBN, with its extra final layer of labels, as
a feedforward neural network and using standard backpropagation. This makes
backpropagation work a whole lot better in deep feedforwardnetworks that have
many hidden layers [20]. For example, DBNs fine-tuned with backpropagation
are now the best speaker-independent method for recognizing phonemes on the
benchmark TIMIT test set [6].

In an extensive set of simulations, [10] show that there are two reasons why
pretraining a stack of RBMs makes backpropagation work so muchbetter. The
first is that when the hidden units are initialised to sensible features by the pre-
training, backpropagation can find better local minima on the training data. The
optimization is much easier because the weights are startedin a good region of
the space so backpropagation does not need to design good features from scratch.
It merely needs to slightly adjust the features so that the decision boundaries are
in exactly the right place.

The second reason for the improvement is that the minima found after unsu-
pervised pre-training give significantly better generalization to the test data. They
suffer much less from overfitting, presumably because most of the information in
the learned weights comes from modeling the input patterns rather than modeling
the function that maps from input to label. The input patterns contain much more
information than the labels, so modeling the input can support many more well-
determined parameters than modeling the labels given the input. This is especially
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important for learning tasks in which there is a large amountof unlabeled data for
pre-training and a relatively small amount of labelled datafor fine-tuning7.

It is a curious twist of fate that the search for an efficient, modular way of
training large Boltzmann machines ended up with a method for making back-
propagation work much better in deep feed-forward neural networks. Some time
later [46], Ruslan Salakhutdinov and I discovered a much lessobvious way of
stacking RBMs to produce a composite model which really is a deep Boltzmann
machine (DBM).

8 Stacking RBM’s to make a deep Boltzmann ma-
chine

Instead of entirely replacing the prior distribution that an RBM defines over its
hidden units by a distribution defined by the next RBM in the stack, we could
take the geometric mean of these two distributions by using half of the bottom-
up weights and half of the top-down weights. For layers in themiddle of a deep
stack of RBMs this is easy to do: We simply learn an RBM and then divide all
its weights and biases by 2 when we compose the individual RBMs in the stack
to make a deep Boltzmann machine. For the first RBM in the stack, weneed to
halve its bottom-up weights, but not its top-down weights and we need to end up
with symmetric weights. So we train this RBM with a constraint that bottom-up
the weights are twice the top-down weights. This is no longera proper RBM,
but contrastive divergence training still works well. Conversely, for the last RBM
in the stack, we can constrain the top-down weights to be twice the bottom-up
weights during the pre-training or we can use two sets of hidden units with tied
weight matrices and discard one of these sets when we add it tothe final deep
Boltzmann machine.

9 Fine-tuning a deep Boltzmann machine

After a deep Boltzmann machine has been composed out of RBMs, it is possible
to train all of the weights together to improve the generative model. The correct
maximum likelihood way to update the weight on the symmetricconnection be-

7This is clearly the situation for a child learning to name familiar objects.
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tween two units is to use the difference between the expectedactivity products
during inference and generation. However, with many hiddenlayers, it is very
difficult to sample the activity products from the true posterior distribution, so
instead of performing correct inference, we resort to a variational approximation
which uses a much simpler distribution in which the hidden activities are assumed
to be independent given the datavector. The fine-tuning is, therefore, only opti-
mizing a variational lower bound on the log probability of generating the training
data.

For estimating the expectations of the activity products when generating from
the model, it is not permissable to use a variational approximation because these
products contribute a negative term to the gradient. As a consequence, if a varia-
tional approximation is used for the generative expectations, instead of adjusting
the weights to make the variational bound tighter, the learning tries to make the
bound as loose as possible, which is very bad news. Ruslan Salakhutdinov re-
alised that this problem can be solved by estimating the generative expectations
using a set of persistent Markov chains whose states are updated after each weight
update[37]. This means that we need to remember the binary states of all of the
units for each persistent chain8.

If the generative model has many different modes that are widely separated,
which is what is required for many applications, one would expect that a very
large number of persistent chains would be needed to correctly average the ac-
tivity products over all the different modes. In practice however, a small number
of persistent chains works very well. This is because the activity products con-
tributed by these chains are used for unlearning the model’sown beliefs. So the
energy landscape is modified to raise the energy of whatever state a persisitent
chain is currently in [51, 52]. This causes the chain to rapidly move to another
part of the energy landscape. If any chain is stuck in a deep energy minimum that
does not contain any training data, the learning will quickly rasie the energy of this
minimum until the chain escapes. The learning, therefore, causes the states of the
chains to move around much faster than they would with the learning turned off –
a very fortuitous phenomenon that makes it possible to fine-tune deep Boltzmann
machines with many hidden layers and millions of weights [46].

It is tempting to also use persistent chains for estimating the data-dependent
statistics, and this works well for small datasets [37]. Forlarge datasets, however,
it is much more efficient to update the weights after a small minibatch of training

8Actually, it is sufficient to remember the states of alternate layers.
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cases and this means that the weights have typically changedby a lot before we
revisit the same training case. Consequently, the persistent chain for that train-
ing case is no longer anywhere near its stationary distribution given the current
weights.

10 Summary of the main story

In about 1986, backpropagation replaced the Boltzmann machine learning algo-
rithm as the method of choice for learning distributed representations. This pa-
per has described three developments, enumerated below, inmethods for learning
stochastic generative models. These three methods resulted in a very good way
to initialize the weights of deterministic feedforward neural networks. With this
initialization, backpropagation works much better.

The weights of a deep Boltzmann machine can also be initialised in a similar
way, and a fourth development then allows deep Boltzmann machines to be fine-
tuned as a generative model. After 25 years, this finally makes it possible to learn
large, deep Boltzmann machines.

1. Variational learning: With the advent of graphical models, it became ob-
vious that the stochastic binary variables used in the Boltzmann machine
could be used in directed generative models – sigmoid beliefnets – and this
revived interest in stochastic neural nets. For these directed nets, learning is
easy if the hidden states can be sampled from their posteriordistribution but
sampling from this distribution is infeasible in large and densely connected
networks. Surprisingly, learning still works pretty well if we sample the hid-
den states from a much simpler distribution, because the learning optimizes
a variational bound on the log probability of generating thedata. Optimiz-
ing this bound changes the weights to achieve a compromise between two
goals: maximize the probability of generating the trainingdata and make
the true posterior be as similar as possible to the type of simple distribution
that is being used to approximate it.

2. Contrastive divergence: There is a very simple form of the Boltzmann
machine, first described by Paul Smolensky, in which inference is very easy
because the hidden units really are independent given the data. Learning is
still a problem because it appears to require samples from the model and
these are hard to get for undirected models. Again, the solution is to use
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the wrong statistics. In this case the activity products during generation
are replaced by the activity products after reconstructingthe data from the
hidden activities. This finally made it possible to learn large Boltzmann
machines, albeit ones with very restricted connectivity.

3. Forming deep models by stacking RBMs: After learning one RBM, the
states of its hidden units can be used as data to train anotherRBM. A stack
of RBMs learned in this way is a good way to initialize the weights of a
feedforward neural net that is then fine-tuned with backpropagation. How-
ever, the composite generative model formed by a stack of RBMs is not a
multilayer Boltzmann machine. It is a hybrid that has an undirected RBM
in its top two layers and a directed belief net in its lower layers. To compose
a multilayer Boltzmann machine out of RBMs, we need to average the top-
down and bottom-up input that a hidden layer receives from the two RBM’s
in the stack that contain that layer. This is different from simply replacing
the bottom-up input with the top-down input which is what happens in the
generative model when RBMs are composed to form a deep belief net.

4. Combining variational learning with persistent Markov chains: Early
attempts to find an effective learning procedure for Boltzmann machines
just assumed that the same method would be used for estimating both the
data-dependent and the data-independent statistics. Variational methods are
no good for the data-independent statistics and persistentchains are no good
for the data-dependent statistics when using small minibatches and large
datasets because the saved state of a persistent chain for a given mini-batch
is completely out of date by the time that mini-batch is revisited. How-
ever, combining variational learning for the data-dependent statistics with
persisitent chains for the data-independent statistics works well due to an
unexpected interaction: In addition to trying to make the variational ap-
proximation tight, the learning makes the persistent chains move around the
space rapidly. For deep Boltzmann machines that have alreadybeen pre-
trained, this combination is very effective.

In this paper I have described how two learning procedures from the 1980’s
evolved over the next 25 years. I focussed on the main ideas that were required to
get these learning procedures to work really well. Other important developments
could not be covered. These include related developments inthe types of units
that can be used [54, 34], the ways they can interact [16], theways they can
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share weights [29], and the modifications that allow these ideas to be applied
to sequential data [49]. Another important thread has been the development of
alternative unsupervised modules that can be used to replace RBMs in the pre-
training phase. These include denoising and contractive autoencoder modules
developed by Yoshua Bengio’s group [1, 43] and sparse energy-based modules
developed by Yann LeCun’s group [40].

11 A speculation on the future of neural network
models

I currently believe that the highly idealized “neurons” used in this paper may
suffer from a serious flaw as models of real neurons. They assume that a real
cortical neuron cannot communicate an approximate real value efficiently. Exper-
iments by Markram and others[31] have shown that synaptic learning rules can
be exquisitely sensitive to the precise time of a spike and this casts doubt on the
idea that the precise time of a spike is unreliable and therefore conveys little in-
formation. When performing signal processing, communicating a0 or a1 is not
nearly as useful as communicating either a0 or the combination of a1 with a real
number that is accurate to within about10%. It would be very surprising if hun-
dreds of millions of years of evolution had failed to notice that the precise time
of a spike can be used to convey this additional analog value.For tasks such as
sound localization, spike times can be made accurate to within less than 1 ms,
so the only thing that could prevent evolution from exploiting this free additional
bandwidth would be if there was some other very important reason for making
cortical neurons extremely noisy[4].

Of course, for precise spike times to be useful, neurons mustbe able to com-
pute with them. I shall therefore sketch out very briefly how this could be done.
The method I propose here is almost certainly wrong in its details, but once you
have seen how convenient it is to use spike times for signal processing you are
forced to choose between two possibilities both of which areproblematic: Either
the brain uses spike times to communicate analog values or there is some good
reason why it does not need to communicate analog values.

The first operation I shall consider is comparing some real values to see if
many of them are approximately equal. This is very hard to do using standard bi-
nary, sigmoid or linear threshold neurons. Even for only twovalues it is equivalent
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to solving the famous XOR problem and requires an extra layerof processing. Us-
ing spike times it is trivial. We simply use feedforward excitation followed, a few
milleseconds later, by feedforward inhibition via one or more inhibitory interneu-
rons. To exceed its threshold, the receiving neuron must receive several excitatory
spikes in the same narrow temporal window before the inhibition arrives. If it
does, it has detected that some numbers agree and it reports the binary existence
of this agreement by spiking and the agreed value by the time of the spike.

The second operation I shall consider is computing a scalar product between a
vector of spike times and a vector of synaptic weights. For simplicity, let us make
the gross assumption that an excitatory post-synaptic potential has a very fast rise
time followed by a rate of injection of charge that is constant over the next 20ms or
so. Let us also assume that there is a global oscillation and that a particular phase
of this oscillation is called the “deadline”. A spike arriving at a timeti before the
deadline will initiate the injection of charge at a rate ofwi. The temporal integral
of the injected charge at the deadline will therefore be the scalar product

∑
i tiwi.

The multiplies have been computed by temporal integration and the adds by the
addition of charge. We then need to convert the amount of injected charge into
the time advance of an outgoing spike. This can be done by injecting additional
charge at a rate of1−

∑
i wi starting at the deadline. The total rate of injection of

charge will then be1 and the time after the deadline at which the neuron crosses
its threshold will be advanced by exactly the amount of charge that was already
injected by the deadline. So the scalar product has been computed and converted
back into the advance of a spike time in one cycle of the globaloscillation.

There are numerous problems with this over-simplified model: EPSPs decay
with time, the rate of injection of charge depends on the membrane potential,
incoming spikes after the deadline need to be blocked, membranes leak, not all
numbers are positive, and so on. Nevertheless, the combination of temporal in-
tegration for computing multiplies, charge accumulation for computing adds, and
an additional clocked input for converting accumulated charge into the time ad-
vance of an outgoing spike seems like a very efficient way to use a membrane to
compute a scalar product.

If precise spike times are being used by cortex, it is rather surprising that there
is not more experimental evidence in their favor. One possible reason is that ex-
perimentalists have been trying to correlate precise spiketimes with the wrong
kind of information. In inferotemporal cortex, for example, the existenceof a
spike could be used to represent the presence of an entity of aparticular kind, and
the precise times of spikes could represent the pose parameters (i.e. the position,
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orientation and scale of the entity relative to the viewer).A scalar product can
then be used to predict one of the pose parameters of a whole from all the pose
parameters of a part9 and if many parts agree a neuron could use this coincidence
to decide that the whole is present and also to report the value of the pose parame-
ter. The precise time of a spike would not convey any additional information about
the presence or absence of a visual entity but it would conveyinformation about
the pose of the entity. This seems worth looking for in inferotemporal cortex10.

The idea that neurons can communicate approximate real numbers also under-
mines one of the main motivations behind coarse coding [44].In coarse coding,
the six pose parameters of a 3-D object (three orientation and three position) are
coded by using a large number of binary neurons that each havea large, receptive
field in the six-dimensional pose space. The intersection ofthe receptive fields of
the active neurons can then code the six pose parameters fairly accurately. Indeed,
as the receptive fields get larger, the accuracy of the encoding gets better, so large
receptive fields cannot be interpreted as evidence against accurate representations
of pose. This is an ingenious way of using binary neurons, butsix numbers is a
lot more economical and is also a lot more useful for the computations required
to recognize an object by recognizing that its parts all predict the same pose for
the whole and therefore have the appropriate spatial relationships to each other,
as described in the previous paragraph. Scalar products of vectors of pose param-
eters with vectors of weights that describe spatial relationships are the way that
computer graphics deals with viewpoint so effortlessly andit makes a lot of sense
for the cortex to use the same method. The idea that vision is inverse graphics[24]
may be more than just a guiding principle: It may be true rightdown to the level
of the matrix multiplies used to relate the poses of wholes tothe poses of their
parts.
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layer below and different hidden units tend to discover different
features that are useful for predicting the correct output.. . . . . . 31

2 A multi-layer belief net composed of logistic binary units. To gen-
erate fantasies from the model during the sleep phase, we start by
picking a random binary state of 1 or 0 for each top-level unit.
Then we perform a stochastic downwards pass in which the prob-
ability, ĥi, of turning on each unit,i, is determined by applying
the logistic function,σ(x) = 1/(1 + exp(−x)), to the total in-
put

∑
j hjwji that i receives from the units,j, in the layer above,

wherehj is the binary state that has already been chosen for unit
j. It is easy to give each unit an additional bias, but this has been
omitted for simplicity.rij is a recognition weight that is used for
inferring the activity in one layer from the activities in the layer
below during the wake phase using exactly the same inference
procedure as the sleep phase but in the reverse direction. . .. . . 32
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3 a) Two separate restricted Boltzmann machines (RBM’s). The
stochastic, binary variables in the hidden layer of each RBM are
symmetrically connected to the stochastic, binary variables in the
visible layer. There are no connections within a layer. The higher-
level RBM is trained by using “data” that consists of the inferred
hidden activities of the lower RBM, when it is presented with real
data. b) The composite generative model produced by composing
the two RBM’s. Note that the connections in the lower layer of
the composite generative model are directed. The hidden states
are still inferred by using bottom-up recognition connections, but
these are no longer part of the generative model. . . . . . . . . . .33
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Figure 1: A feedforward neural network containing two hidden layers. The net-
work maps input vectors to predicted output vectors in a forward pass. The in-
coming weights to each hidden or output unit are learned gradually by changing
them in the direction that reduces the discrepancy between the predicted output
and the correct output, averaged over a set of training cases. For each training
case, the effect of changing a weight on the discrepancy is computed by using the
chain rule to backpropagate error derivatives from one layer to the previous layer.
The incoming weights of each hidden unit determine how it responds to patterns
of activity in the layer below and different hidden units tend to discover different
features that are useful for predicting the correct output.
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Figure 2: A multi-layer belief net composed of logistic binary units. To generate
fantasies from the model during the sleep phase, we start by picking a random
binary state of 1 or 0 for each top-level unit. Then we performa stochastic down-
wards pass in which the probability,ĥi, of turning on each unit,i, is determined
by applying the logistic function,σ(x) = 1/(1 + exp(−x)), to the total input∑

j hjwji that i receives from the units,j, in the layer above, wherehj is the bi-
nary state that has already been chosen for unitj. It is easy to give each unit an
additional bias, but this has been omitted for simplicity.rij is a recognition weight
that is used for inferring the activity in one layer from the activities in the layer
below during the wake phase using exactly the same inferenceprocedure as the
sleep phase but in the reverse direction.
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Figure 3: a) Two separate restricted Boltzmann machines (RBM’s). The stochas-
tic, binary variables in the hidden layer of each RBM are symmetrically connected
to the stochastic, binary variables in the visible layer. There are no connections
within a layer. The higher-level RBM is trained by using “data”that consists
of the inferred hidden activities of the lower RBM, when it is presented with real
data. b) The composite generative model produced by composing the two RBM’s.
Note that the connections in the lower layer of the compositegenerative model are
directed. The hidden states are still inferred by using bottom-up recognition con-
nections, but these are no longer part of the generative model.

33


