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Introduction

Many probleﬁé in visual processing can be formulated as searches:
Giﬁen an image or sequence of images find the best interpretation
from amongst a large set of possible internal models; That we are
able to recognize three-dimensional objects in images within a few
hundred milliseconds implies an effective search strategy. Mistakes,
when they do cccur, are usually confusiops among similar objects.

These fast, effortless and generally reliable searches are carried

out in parallel by a large number of neurons in the visual cortex.

The architecture of visual cortex in primates has imspired recent
parallel models of visual computation (Arbib 1975; Marr, 1982; Feldman
& Ballard, 1982; Ballard, Hinton & Sejnowski, 1983).

In this chapter we review a class of parallel visual algorithms
that use relaxation to perform rapid best-fit searches and we examine
some of the difficulties inherent with this search technique. In
particular, we analyée the problem of separating figure from ground
in an image apd show how a parallel relaxation algorithm can be trapped
in states that are locally optimal but globally incorrect. A general
parallel search method is introduced, based on statistical mechanics,
that overcomes this shortcoming-and finds globally optimal solutions
with a high probabiliﬁy (Kirkpatrick et al., 1983; Hinton & Sejnowski,
1983). This approach is effective in small-scale simulations of parallel
visual algorifhmsj its usefulness for large problems is still uncertain.

An intriguing aspect of the stochastic search procedure is that
it depends on the presence of noise, which normally is considered

a nuisance and typically degrades the performance of a system., There




1970; Julesz, 1971; Dev, 1975; Nelson, 1975; Marr & Poggio, 1976).
The problem is then reduced to finding the matches that best satisfy
all the local constraints.

In the Marr-Poggio (1976) algorithm for random-dot stereograms,
each unit stands for a binary hypothesis about the correspondence
of a particular pair of dots and therefore represents the.existence
of a patch of surface at a particular depth. There are excitatory
interactions between neighboring units with the same depth to ensure
continuity of suffaces, and inhibitory interactions between units
that represent differeﬁt depths at thé same image location to ensure

that depth assignments are unique; if the sum of all the inputs to

a unit from the two images and from local interactions is above threshold,

the value of the unit is set to 1, and otherwise to 0. Starting from
all 0”°s, the units are iteratively updated: Dﬁring the relaxation
varidus combinations of depth assignments are tried and the network
eventually "locks" into a generally consistent solution in a way that
resembles our perceptual experience when we fuse random-dot stereograms
(Julesz, 1971).

In general it is not possible to prove that this algorithm always

converges to the correct depth assignments, in part because small

clusters of units may form coalitioms that are.lécally optimal but

are not the globally best solution (Burt, 1977; Marr, Palm & Poggio,
1978). Another drawback of this relaxation method 1is the iarge number
of iterations required to reach the fiﬁal solution, If there are

only nearest-neighbor interactions between units, then at least as

many iterations are required as there are units across the image,




that a globally optimal solution can no longer be assured. Discrete
decisions must therefore be made together with the estimation of continuous
variables: similar problems occur in many other computations of intrimsic

surface properties in early vision (Ballard, Hinton & Sejnowski, 1983).

Figure—Ground Separatiom

One of the simplest problems in visual perception where a discrete
choice at a boundary affects subsequent processing is the organization
of figure and ground in an image (Weisstein, this volume), An illustration
of the classic drawing that can be interpreted as-either a vase or
two faces is shown in Fig. 1. The drawing gives rise to two percepts
depending on whether the figural part of the drawing is on the imside
of the outside of the closed outline. We are remarkably good at performing
the separation and can report within a few hundred ms whether a small
_ spot is inside or outside a briefly-flashed closed outline (Ullman,
1983), The discrimination probably requires two steps: a segmentation
of the figure and ground, and a subsequent decision about ﬁhether
the spot is located in the figure.

We briefly summarize here a simple parallél relaxation model
of one type of process that occurs during figure-ground separation
(Sejnowski, Hinton, Kienker & Schumacher, 1985; for previous work
on scene segmentation using felaxation algorithmé see Prager, 1980;
Zucker & Hummel, 1979; Danker & Rosenfeld, 1981). The model is designed
to mark the inside or the outside of connected figure when given some
. lines that represent its edges and an "attentional spotlight"” that

provides a bias to either the inside or outside. Examples of these




the two edge units inhibit each other.

To implement the constraint that lines in the inpuf require inter-
pretation, each line segment provides equal excitatory imput to the
two relevant edge units. To implement the comstraint that edges are
implausible in places where there are no lines in the input, edge
units have high thresholds that normally require excitatory inmput
to overcome them. To implement the constraint that edges tend to
be continuous, a figure unit supports the colinear neighbors of 1its
bounding edge units. This was found to work better than direct support
between the colinear edge units themselves, because it allows edge
completion to occur around the figure region, but not elsevhere.

The complete set of interactions of a figure unit and an edge
unit are shown in Figure 2. The precise strengths of the interactions
were chosen by trial and error using a variety of outlines and were
guided by the following two considerations:

1. The region within the attentional spotlight should tend to
be figure and the region outside should tend to be background.

2. The discontinuity betweén figure and background should normally
appear as a line in the image, and so there should be a penalty for
"open frontier" where the figure region ends without there being a
line in the image.

Whenever the spotlight of attention does not precisely align
with the lines in the image, these two comsiderations are antagonistic
and it is the frustration between them that makes it necessary to
perform a best-fit search.

One of he simplest updating algorithms comsists of dhoosing a




separation previously discussed have the ﬁroperty that the connectidns,
considered a matrix, are symmetrip. A large classrof constraint-
satisfaction problems can be implemented with symmetric weights, including
ones that require asymmetric cogétraints bétwéen hypotheses. For

example, two hypotheses related by implication can be impleménted

by two units connected by symmetric weights and having different thresholds
(Hinton & Sejnowski, 1983). Symmetric connectivity has the significant
advantége that optimization techniques and variational principles

can be used to analyze the performance of the network_(Hummel & Zucker,
1983). 1In particular, Hopfield (1982) has shown that one can define

an “energy" for a symmetric network of binary hypotheses that can

be usgd to analyze its convergence. Each state is assigned an energy

according to

| .
E=-5 Z WySisj— 2(-8)S; (1)
%] !

where Si is the state of unit | s Vvi] is the strength of connection
between the units | andJ s Y]' are the inputs to unit} , and 6,

the threshold of unit } . A simple asynéhronous algorithm for finding
the combimation of hypotheses that has a local energy minimum is to
choose asynchronously a unit at random and set its state to the one
with the lowest energy. Because of the symmetric weights, this updating

rule requires that the unit be set to 1 if the "energy gap"

AE; = JZw;jsJH);_gi _ (%)
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dynamic systems (Binder, 1978) and has recently been applied to problems
of constraint satisfaction (Rirkpatrick et al., 1983; Hinton & Sejnowski,
1983; Smolensky, 1983; Geman & Geman, 1985; Bienenstock, 1985). Boltzmann
Machines (Fahlman, Hinton & Sejnowski, 1983) are networks of bimary
processors tﬁat use as their update rule a form of the Metropolis
algorithm that is suitable for parallel computation: If the energy

gap between the 1 and 0 states of a unit is AEI then regardless

of the previous state set the unit to 1 with probability

pi=( 1+ e E/TYT @)

where T is a parameter that dcts like temperature (see Fig. 5). Observe
that as T approaches zero, Eq. (3) approaches a step function, the
deterministic update rule for binary threshold units already introduced.
Our analysis of Boltzmann Machines is based on the statistical
mechanics of physical systems (Schroedinger, 1946). The probabilistic
decision rule in Eq. (3) is the same as the equilibrium probability
distribution for a system with two energy states. A system of particles
in contact with a heat‘bath_at a given temperature will eventually
reach thermal equilibrium and the probabilities of finding the system
in any global state will then obey a Boltzmanm distribution. Similarly,
a network of units obeying this decision rule will eventually reach
"thermal equilibrium" in which the relative probability of two global

states of the network follows the Boltzmann distribution:

_E:’- - ( Ed—EP)/T
A 3
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at éolf {Andrew Witkin, personal communication). It is theretore
not at all clear whether simulated annealing would be useful when
trying to satisfy multiple weak constraints such as those found im
visual algorithmsﬂ

As a test case we have applied the Metropolis algorithm and simmlated
annealing to the parallel algorithm for separating figure from ground
introduced previously (A more detailed account can be found in Sejnowski,
Hinton, Kienker & Schumacher, 1984). At high temperatures the figure
and edge units make a structureless pattern, as shown in Fig.76a.
As the temperature is exponentially reduced the figure units around
the center of attention tend to remain oﬁ, and fhese on average support
those edge units whose orientation is coﬁsistent with them (Fig. 6b).
As the temperature is further reduced local inconsistencies are resolved
and the entire network "crystalizes" to the correct solution. In
a series of 1000 annealings from random starting configurations every
trial reached the correct solution, as éhown by the histogram in Fig. 7.
A single iteration consisted of 2,000 updates in which one of the
2,000 units in the problem was chosen at random. Similar results
have been obtained for a variety of simple figures, including ones
where the outline is incomplete. In contrast, the performance of
the algorithm on spirals using the same annealing schedule is very
'poor and humans also have great difficulty with the same figures;
however, with a much slower annealing schedule the algorithm reliably
finds the correct solution,

The model of figure-ground separation presented here is clearly

much too simple to explain how the problem is solved in our visual
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Relationship Between Boltzmann Machines and Neural-Hodéls
| The energy gap for a binary unit has a role similar to that played
by the membrane potential for a neuron: both are the sum of the excitatory
and inhibitory inputs and both are usea to determine the output state
through a nonlinear transformation. However, a neuron produces action
potentials; which are ffief spikes that propagate down its axon, rather
than a binary output. When the action.potential reaches a synapse,
the signal it produces in the postsynaptic neuron rises to a maximum
and then decays with the time constant of the membrane (typically
afound 5 msec for neurons in cerebral cortex). The effect of a single
spike on the postsynaptic cell body may be further broadened by electro-
tonic transmission down the dendrite to the spike-initiating zone
near the cell body.

This suggests a neural interpretation for the binary pulses
in a Boltzmann Machine: If the average time between updates is identified
with the average duration of a postsynaptic potemtial then the binary
pulse between updates can be considered an approximation to the post-
synaptic potential, Although the shape of a single binary pulse differs
significantly from a postsynaptic potential, the sum of a large number
of pulses stochastically impinging on a processing unit is independent
of the shape of the individual pdlses. Thus for networks having the
large fan~ins typical of cerebral cortex (several thousand) the emergy
gap of a binary unit should behave like the membrane potential of
a spike-producing neuron. |

In additiom to the nonlinear membrane currents in axons that
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inputs.

Intracellular recordings in the central nervous system reveal
stochastic variability in the membrane potential of most neurons,
in part due to fluctuations-in the transmitter released by presynaptic
terminals. Other sources of noise may also be present and could be
controlled by cellular mechanisms (Verveen & Derk;en, 1968; Holden,
1976). If some sources of noise in the central nervous system are
gated or modulated, it should be possible to experimentally identify
them. For example, the noise could be regularly cycled and this would
be apparent in the massed activity. Alternatively, noise may always
be ﬁresent at a low level and be iﬁcreased irregularly whenever there
is an identified need.

In the visual cortex of primates single neurons respond to the
same visual stimulus with different sequences of action potentials '
on each trial (Sejmowski, 1981)., In order to measure a repeatable
response, spike trains are typically averaged over 10 trials. The
result, called the post-stimulus time histogram, gives the probability
for a spike to occur as a function of the time after the onset of
the stimulus. However, this averaging procedure removes out all infor-
mation about the.variance of the noise, so that there is no ﬁay to
determine whether the noise varies systematically during the response
to the stimulus or perhaps on a longer time scale, while the stimulus
is being attended. Such measurements of the noise variance over a
range of time scales could provide evidence that this parameter has
an active role in neural processing.

There are two ways to view the sigmoidal probability rule used
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few ms. The time required for transmission of a spike down the axon

to the nerve termimal, for the release of neurotransmitter, and for
postsynaptic integration can delay the signal from reaching the spike-
initiating zone of the target neuron by several ms. In some simulations
both simultaneous updates and transmission delays were included and

these appear to increase the noise in the system, effectively increasing
the temperature (Sejnowski, Hinton, Kienker & Schumacher, 1985; Venkat-
asubramanian & Hinton, 1985). At low temperatures these effects are

less pronounced_because the rate of flipping is lower; thus, simultaneous
decisions and time delays contribute noise that could mimic annealing
even without an explicit temperature control (Francis Crick, private
communication). Time delays are especially effective at introducing
noise, and a delay of one iteration (2,000 updates in these simulations)
starting from a random state and running at T = 1 was almost as effective

as the standard exponential annealing.

'Learning in Cerebral Cortex and Boltzmann Machines

"The values of weights between units for the two examples of networks
discussed in this chapter were chosen as much by trial and error as
by plan, and it would be desireable to have an automated procedure
for incorporating the constraints from a given task domain into the
weights, The evolution of ;erebral cortex is closely linked to the
ability of mammals to learn from experience and adapt to their enviromment;
this adaptability may be the consequence of rules for modifying the
| strengths of cortical synapses.

A single weight between two units can be considered a "microscopic”
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areas. Many problems in speech recogrition, associative retrieval

of information, and motor control can be formulated as searches.
However, there is a serious obstacle that appea;s to prevent symmetric
modules from modeling sequential information processing: At thermal
equilibrium there can be no consistent sequences of states. It is
" tempting to use asymmetriéal weights to produce sequences, but this
would be incompatible with the central idea of performing searches

by settling to equilibrium.

An alternative that we are exploring is sequential settlings

in a hierarchy of asymmetrically connected modules. The result of
each search could be considered a single s£ep in a sfrictly.serial
process, with each search setting up boundary conditions for the next.
An attractive possibility for speeding up sequential settlings is

to cascade partial seﬁtlings so that an abpfoximate solution for one
modulé could be used to start the search for the next one up the

line (McClelland, 1979). Although there are some similarities between
the organization of cerebral cortex and parallel stocﬁastic search

in Boltzmann machines, we need more experience with larger problems
and a wider range of applications before the general usefulness of
this approach can be properly assessed (Fahlman, Hinton & Sejnowski,
1983).
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between edge and figure units.

3. Two types of inputs to the figure—groﬁnd module: Bottom-up
inputs from the image to some of the edge units (arrowbeads) which
in this case form a 9x6 rectangle, and top-down attentional inputs
to the figure units (cross-~hatched squares). The strengths of the
inputs to the figures units have a Gaussian distribution centered
on the unit just tb the right of the rectangle”s center given by
]5“6"‘ (d/z—)L where d, is the Euclidean distance of the unit from
the center of attention. The figure units that are shown cross-hatched
are those whose attentional input exceeds 1, Each figure unit has
a threshold 41, so the top~down input is not enough by itself to turn
the figure units on. The edges composing the outline of the 9x6 rectangle

have extermal inputs of 60 and all edge units have thresholds of 45.

'Thus, there was a strong bias for edge units composing the outline

to be on; however, both types edge units at each position of the outline
received equal input.

4, Final state of the figure-ground module using the gradient~descent
update rule (T = 0). The simulation was started from a random starting
state with approximately 1 out of 10 units on, Each iteration consisted
of 2,000 updates and for each update one of the 2,000 units was chosen
at randém, the weighted inputs from other active units were summed,
and the binary threshold rule applied to determine its new state.

The system reached the steady-state configuration shown here after
28 iterations. Notice that the bottom line of figure units has been
incorrectly stabilized outside the rectangle.

5. Probability for a unit to be on as a function of the energy
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