
A New Learning Algorithm for Mean FieldBoltzmann MahinesMax Welling and Geo�rey E. HintonDepart. of Computer Siene, Univ. of Toronto10 King's College Road, Toronto, M5S 3G5 Canada.fwelling,hintong�s.toronto.eduAbstrat. We present a new learning algorithm for Mean Field Boltz-mann Mahines based on the ontrastive divergene optimization rite-rion. In addition to minimizing the divergene between the data dis-tribution and the equilibrium distribution, we maximize the divergenebetween one-step reonstrutions of the data and the equilibrium distri-bution. This eliminates the need to estimate equilibrium statistis, so wedo not need to approximate the multimodal probability distribution ofthe free network with the unimodal mean �eld distribution. We test thelearning algorithm on the lassi�ation of digits.1 IntrodutionA network of symmetrially-oupled binary (0/1) threshold units has a simplequadrati energy funtion that governs its dynami behavior [4℄.E(v;h) = �(12vTVv + 12hTWh+ vTJh) (1)where v represent visible units whose states are �xed by the data fd1:Ng, hrepresent hidden units, and where we have added one unit with value always 1,whose weights to all other units represent the biases. The energy funtion anbe viewed as an indiret way of de�ning a probability distribution over all thebinary on�gurations of the network [2℄ and if the right stohasti updating ruleis used, the dynamis eventually produes samples from this Boltzmann distri-bution, P (v;h) = e�E(v;h)=Z where Z denotes the normalization onstant orpartition funtion. This \Boltzmann mahine" (BM) has a simple learning rule[2℄ whih minimizes the Kullbak-Leibler divergene between the data distribu-tion P0(v;h) = P (hjv) ~P0(v) (where ~P0(v) is the empirial data distribution)and the equilibrium distribution PEQ(v;h).ÆW / hhhT i0�hhhT iEQ ÆV / hvvT i0�hvvT iEQ ÆJ / hvhT i0�hvhT iEQ(2)This learning rule is both simple and loal, but the settling time required to getsamples from the right distribution and the high noise in the estimates of theorrelations make learning slow and unreliable.



To improve the eÆieny of the BM learning algorithm Peterson and An-derson [6℄ introdued the mean �eld (MF) approximation whih replaes theaverages in eqn. 2 with averages over fatorized distributions.hhhT i0 ! 1N NXn=1q0;nqT0;n hvvT iEQ ! rEQrTEQ hhhT iEQ ! qEQqTEQ (3)where the parameters q0;n, rEQ and qEQ are omputed through the mean �eldequations,q0;n = � �Wq0;n + JTdn� rEQ = � (VrEQ + JqEQ) qEQ = � �WqEQ + JT rEQ�(4)and � denotes the sigmoid funtion. These learning rules perform gradient de-sent on the ost funtionFMF = FMF0 � FMFEQ with FMFQ = hEiQ �H(Q) (5)where Q =Qi qsii (1� qi)1�si is a fatorized MF distribution, E is the energy ineqn. 1 and H denotes the entropy of Q.The main drawbak of training BMs using MF distributions is that we areapproximating distributions whih are potentially highly multimodal with a uni-modal fatorized distribution. This is espeially dangerous in the negative phasewhere no units are lamped to data and the equilibrium distribution is expetedto have many modes.2 Contrastive Divergene LearningContrastive Divergene (CD) learning was introdued in [1℄, to train\Produtsof Experts" models from data. We start by realling that the KL-divergenebetween the data distribution and the model distribution an be written as adi�erene between two free energies,KL[P0(v)jjPEQ(v)℄ = KL[P0(v;h)jjPEQ(v;h)℄ = F0 � FEQ � 0 (6)To get samples from the equilibrium distribution we imagine running a Markovhain, �rst sampling the hidden units with the data lamped to the visible units,then �xing the hidden units and sampling the visible units and so on until weeventually reah equilibrium. It is not hard to show that at every step of Gibbssampling the free energy dereases on average, F0 � Fi � FEQ. It must thereforebe true that if the free energy hasn't hanged after i steps of Gibbs sampling (forany i), either P0 = PEQ or the Markov hain does not mix (whih must thereforebe avoided). The above suggests that we ould use the following ontrastive freeenergy (setting i = 1),CD = F0 � F1 = KL [P0(v;h)jjPEQ(v;h)℄�KL [P1(v;h)jjPEQ(v;h)℄ � 0 (7)as an objetive to minimize. The big advantage is that we do not have to waitfor the hain to reah equilibrium. Learning proeeds by taking derivatives with



respet to the parameters and performing gradient desent on CD. The derivativeis given by, �CD�� = ��E�� �0 ���E�� �1 � �F1�P1 �P1�� (8)with � = fV;W;Jg. The last term is hard to evaluate, but small ompared withthe other two. Hinton [1℄ shows that this awkward term an be safely ignored.For the BM, this results in the following learning rules,ÆW / hhhT i0�hhhT i1 ÆV / hvvT i0�hvvT i1 ÆJ / hvhT i0�hvhT i1 (9)Intuitively, these update rules derease any systemati tendeny of the one-stepreonstrutions to move away from the data-vetors.Although some progress has been been made, this algorithm still needs equi-librium samples from the onditional distribution P (hjv) 1. Unfortunately, thisimplies that in the presene of lateral onnetions among hidden units furtherapproximations remain desirable.3 Contrastive Divergene Mean Field LearningIn this setion we formulate the deterministi mean �eld variant of the on-trastive divergene learning objetive. First, let's assume that the MF equationsminimize the MF free energy FMFQ = hEiQ�H(Q). Imagine N independent sys-tems where data-vetors dn are lamped to the visible units and MF equationsare run to solve for the means of the hidden units q0;n. The sum of the resultantMF free energies is denoted with FMF0 = Pn FMF0;n . Next, we �x the means ofthe hidden units, initialize the means of the visible units at the data and takea few steps downhill on the MF free energy. For onveniene we will assumethat a few iterations of the MF equations ahieves this2 but alternative desentmethods are ertainly allowed. Finally, we �x these reonstrutions of the datar1;n, initialize the means of the hidden units at q0;n and run the MF equationsto ompute q1;n. Call the sum of the resultant free energies FMF1 = Pn FMF1;n .Summarizing the above with equations we haveq0;n = �(Wq0;n+JTdn)! r1;n = �(Vr1;n+Jq0;n)! q1;n = �(Wq1;n+JT r1;n)(10)The last argument in the sigmoid is �xed and ats as a bias term. By the as-sumption that the MF equations minimize the MF free energy, we may interpretthe above proedure as oordinate desent on the MF free energy in the variablesfq; rg. When this oordinate desent proedure is performed until onvergene,eah hain, initialized at a partiular data-vetor, ends up in some loal mini-mum. The sum of the resultant free energies will be alled FMF1 =Pn FMF1;n. The1 However, when initialized at the data, brief sampling from P (vjh) is suÆient.2 By running the MF equations sequentially, or by damping them suÆiently this aneasily be ahieved.



global minimum is denoted as FMFEQ . It is now easy to verify that the followinginequalities must hold. FMF0 � FMF1 � FMF1 � N FEQ (11)By analogy with the stohasti ontrastive divergene objetive we now proposethe following 1-step MF ontrastive divergene (CDMF) objetive,CDMF = FMF0 � FMF1 = KL[Q0(v;h)jjPEQ(v;h)℄ �KL[Q1(v;h)jjPEQ(v;h)℄ � 0(12)where Q0(v;h) = ~P0(v)Q0(hjv) and Q1 is the MF distribution after one step ofoordinate desent in the variables fq; rg. Due to the inequalities in eqn. 11 thisobjetive is always positive. Notie that the only di�erene with the usual MFobjetive (eqn. 5) is the fat that we have replaed QEQ with Q1. The above ost-funtion is minimized when the distribution of reonstrutions Q1 � fr1;n;q1;ngafter one step of MF oordinate desent does not show any average tendeny todrift away from the data distribution Q0 � fdn;q0;ng. One ould envision ballsinitialized at the data whih roll down towards their respetive loal minima inthe MF free energy surfae over a distane FÆt. When the shape of the surfae issuh that the outer produts of all fores F (instead of distanes to the minima)anel, learning stops.To ompute the update rules we take the derivatives of the CDMF objetivewith respet to the weights,�CDMF�� = ��E�� �Q0 ���E�� �Q1 � �FMF�Q1 �Q1�� (13)where � = fV;W;Jg. The last term represents the e�et that the parametersfq1;n; r1;ng will have di�erent values when we hange the shape of the surfaeon whih we perform oordinate desent to ompute them. This term vanishesfor the usual MF objetive sine in that ase we have �FMF=�Q1 = 0. Althoughthis term is awkward to ompute, it turns out to be muh smaller than the othertwo in eqn. 13 and an be safely ignored. In setion 4 we show experimentalevidene to support this laim. Thus, the following update rules an be derivedto minimize the CDMF objetive eqn. 12,ÆW /Xn �q0;nqT0;n � q1;nqT1;n� ÆV /Xn �dndTn � r1;nrT1;n�ÆJ /Xn �dnqT0;n � r1;nqT1;n� (14)The main advantage of the above learning algorithm is that it only runs MFequations (until onvergene) over the hidden units onditioned on data-vetorsor one-step reonstrutions of these data-vetors3. Most importantly, MF equa-tions on the highly multimodal energy surfae of the free network are entirelyavoided.3 In fat, for the q1;n a few steps downhill on the MF free energy is suÆient.



a  e g ib d f h jFig. 1. (a,b)-Two examples of the weights from one hidden unit to all visible units(features) whih an be interpreted as thinning (a) and shifting (b) operators. ()-Visible-to-visible weights for one unit. (d)-ZCA-whitening �lter for the same unit asin (), providing evidene that the visible weights deorrelate the data. (e,f)-Two datavetors. (g,h)-One-step reonstrutions of (e,f) by the two-model. (i,j)-Loal minimaof the two-model orresponding to (e,f). Note that the \8" is being reonstruted as a\2".4 ExperimentsIn the experiments desribed below we have used 16 � 16 real valued digitsfrom the \br" set on the CEDAR drom # 1. There are 11000 digits availableequally divided into 10 lasses. The �rst 7000 were used for training, while weyled through the last 4000, using 3000 as a validation set and testing on theremaining 1000 digits. The �nal test-error was averaged over the 4 test-runs. Alldigit-images were separately saled (linearly) between 0 and 1, before presen-tation to the algorithm. Separate models were trained for eah digit, using 700training examples. Eah model was a fully onneted MF-BM with 50 hiddenunits. A total of 2000 updates were performed on mini-bathes of 100 data-vetors using a small weight-deay term and a momentum term. When trainingwas ompleted, we omputed the free energy FMF0 for all data on all models(inluding validation and test data). Sine it is very hard to ompute the termFMFEQ , we �t a multinomial logisti regression model to the training data plus thevalidation data, using the 10 free energies FMF0 for eah model as \features". Thepredition of this logisti regression model on the test data is �nally omparedwith ground truth, from whih a onfusion matrix is alulated (�gure 2-a). Thetotal averaged lassi�ation error is 2:5% on this data set, whih is a signif-iant improvement over simple lassi�ers suh as a 1-nearest-neighbor (5:5%)and multinomial logisti regression (6:4%). By omparison, a (stohasti) RBMwith 50 and 100 hidden units, trained and tested using the same proedure, sore3:1% and 2:4% mislassi�ation respetively. Figures 1 and 2 show some furtherresults for this experiment (see �gure aptions for explanation).5 DisussionIn this paper we have shown that eÆient ontrastive divergene learning an beused for BMs with lateral onnetions by replaing expensive Gibbs samplingwith MF equations. During learning the negative phase is replaed with a \one-step-reonstrution" phase, for whih the unimodal mean �eld approximation is



4 8
0

0 2

5 0 1

19

14

1 2 3 5 6 7 9 0
1
2
3
4

5
6
7
8
9
0

396

0

0

0

1

0

0

3

0

0 1

0

5

1

2

0

2

2

387

0 0

2

390

0

7

0

1

2

0

0 0

4

2

0

1

0

389

0

1

1 1

0

389

2

0

1

1

0 1

2

0

392

0

2

0

1

1 0

3

0

0

0

394

0

60

0 1

3

381

1

1

2

3

1

4

1 0

0

1

4

0

0

3

3

386

0 397

0

1

0

2

1

0

4

13

10

11

11

8

6

3

99TOTAL  ERROR 0 20 40 60 80 100
−150

−100

−50

0

50

100

Iteration

F
re

e
 E

n
e

rg
y

F
0
−F

1
 

F
0
 

F
1

 

0 20 40 60 80 100
−5

−4

−3

−2

−1

0

C
h

a
n

g
e

 i
n

 F
re

e
 E

n
e

rg
y

Iteration

onset of momentum 

a b Fig. 2. (a)-Confusion matrix for the digit lassi�ation task. (b)-Contrastive MF freeenergy (omputed every 20 iterations). ()-Change in ontrastive MF free energy. Notethat this hange is always negative supporting our laim that the ignored term in eqn.13 is muh smaller than the other two.expeted to be appropriate. Reently (see [7℄ in this volume) this algorithm hasbeen suesfully applied to the study of assoiative mental arithmeti.The approah presented in this paper is straightforwardly extended to su-pervised learning (see [5℄ for related work) but seems less suessful on the digitreognition task.CD-learning is a very general method for training undireted graphial mod-els from data. The ideas presented in this paper are easily modi�ed to moresophistiated deterministi approximations of the free energy like the TAP andBethe approximations. Also, both the stohasti and deterministi versions areeasily extended to disrete models with an arbitrary number of states per unit.We have reently also applied CD-learning to models with ontinuous states,where Hybrid Monte Carlo sampling was used to ompute the one-step reon-strutions of the data [3℄.Referenes1. G.E. Hinton. Training produts of experts by minimizing ontrastive divergene.Tehnial Report GCNU TR 2000-004, Gatsby Computational Neurosiene Unit,University College London, 2000.2. G.E. Hinton and T.J. Sejnowski. Learning and relearning in Boltzmann mahines,volume Volume 1: Foundations. MIT Press, 1986.3. G.E. Hinton, M. Welling, Y.W. Teh, and K. Osindero. A new view of ICA. In Int.Conf. on Independent Component Analysis and Blind Soure Separation, 2001.4. J.J. Hop�eld. Neural networks and physial systems with emergent olletive om-putational abilities. In Proeedings of the National Aademy of Sienes, volume 79,pages 2554{2558, 1982.5. J.R. Movellan. Contrastive hebbian learning in the ontinuous hop�eld model. InConnetionist Models, Proeedings of the 1990 Summer Shool, pages 10{17, 1991.6. C. Peterson and J. Anderson. A mean �eld theory learning algorithm for neuralnetworks. Complex Systems, 1:995{1019, 1987.7. I. Stoianov, M. Zorzi, S. Beker, and C. Umilta. Assoiative arithmeti with Boltz-mann mahines: the role of number representations. In International Conferene onArti�ial Neural Networks, 2002.


