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Connectionist networks are composed of relatively simple, neuron-like process- 
ing elements that store all their long-term knowledge in the strengths of the 
connections between processors. In the last decade there has been considerable 
progress in developing learning procedures for these networks that allow them 
to automatically construct their own internal representations [6-8, 10]. The 
learning procedures are typically applied in networks that map input vectors to 
output vectors via a few layers of "hidden" units. The network learns to 
dedicate particular hidden units to particular pieces or aspects of the input 
vector that are relevant in determining the output. The network generally 
learns to use distributed representations [5] in which each input vector is 
represented by activity in many different hidden units, and each hidden unit is 
involved in representing many different input vectors. 

Within the connectionist community, there has been a long and unresolved 
debate between those who favor localist representations in which each process- 
ing element corresponds to a meaningful concept [3, 11] and those who favor 
distributed representations. The major criticism of distributed representations 
has been that they cannot handle structured knowledge properly and this 
criticism has motivated many of the papers in this issue. Another criticism has 
been the unintelligibility of distributed representations. As soon as there are 
several hidden layers, it becomes very difficult to say what each hidden unit is 
representing. Other things being equal, it is clearly desirable to understand 
how a system performing a task such as medical diagnosis arrives at a particular 
conclusion and to provide this information to the user. A large pattern of 
activities or set of learned weights is not a convincing explanation. If, however, 
the large set of weights performs consistently better than an alternative system 
that can explain its reasoning, it might be better to settle for the system that 
works best. Under certain conditions, we can be quite justified in trusting a 
system even if we have very little understanding of how it arrives at a particular 
conclusion. Using the probably approximately correct framework developed in 
[12], Baum and Haussler [1] have shown that if a neural network can be 
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adapted to produce the correct answer for a number of training cases that is 
large compared with the size of the network, it can be trusted to respond 
correctly to previously unseen cases provided they are drawn from the same 
population using the same distribution as the training cases. This remarkable 
result undermines the common idea that explanations are a necessary feature of 
trustworthy systems. 

Unfortunately, the kinds of networks in which the learning procedures have 
generally been applied lack some properties that AI researchers working within 
the symbolic paradigm consider to be essential in a general-purpose informa- 
tion processing system [4]. The ability to represent complex hierarchical 
structures efficiently and to apply structure sensitive operations to these 
representations seems to be essential. Most connectionist researchers accept 
this, though they expect that this ability may be implemented in ways that have 
not been anticipated within the standard symbol-processing tradition. More- 
over, they hope that the connectionist approach will be far better at dealing 
with interactions between levels. Many of the challenging phenomena in 
language, for example, have to do with cross-over phenomena, in which details 
at one level have consequences for details at another. Such phenomena are 
often difficult to capture within the more traditional framework. 1 

Most connectionist researchers are aware of the gulf in representational 
power between a typical connectionist network and a set of statements in a 
language such as predicate calculus. They continue to develop the connection- 
ist framework not because they are blind to its current limitations, but because 
they aim to eventually bridge the gulf by building outwards from a foundation 
that includes automatic learning procedures and/or massively parallel compu- 
tation as essential ingredients. Subject to these hard constraints, they aim to 
progressively improve representational power. The papers in this special issue 
should be interpreted from that perspective. It is not the standard AI perspec- 
tive in which the ability to succinctly represent and efficiently apply complex 
knowledge is viewed as a more important consideration than automatic 
learning. 

There have been important battles in the past between symbolic AI re- 
searchers who focussed on representational power and other researchers who 
nailed their flag to automatic learning procedures. The perceptron battle was a 
resounding victory for symbolic AI. A single layer of adaptive linear threshold 
units was just too limited, and no effective learning procedure was then known 
for multilayer networks. The subsequent speech recognition battle between 
symbolic AI and those who believed in adaptive hidden Markov models 
(HMMs) is not as commonly mentioned in AI circles. It turned out that the 
complex, hand-designed representations and rules in systems like HEARSAY 
[9] were no match for HMMs even though HMMs, being a variety of finite 
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state machine, are clearly very limited in representational power. The out- 
comes of these two battles suggest that as the learning procedures become 
more sophisticated the advantage of automatic parameter tuning may more 
than outweigh the representational inadequacies of the restricted systems that 
admit such optimization techniques. An optimal member of a class of incorrect 
models may work much better than a far from optimal member of a class that 
contains the right model. Clearly, the ultimate goal is efficient learning 
procedures for representationally powerful systems. The disagreement is about 
which of these two objectives should be sacrificed in the short term. 

Current connectionist learning procedures such as backpropagation are 
comparable in power to the learning procedure for HMMs. Indeed, one kind 
of backpropagation network is equivalent to one kind of hidden Markov 
recognizer [2]. As further theoretical progress is made, we can expect the 
optimization techniques used for connectionist learning to become much more 
efficient and, if these techniques can be applied in networks with greater 
representational abilities, we may see artificial neural networks that can do 
much more than just classify patterns. But for now, the problem is to devise 
effective ways of representing complex structures in connectionist networks 
without sacrificing the ability to learn the representations. My own view is that 
connectionists are still a very long way from solving this problem, but the 
papers in this issue suggest some interesting directions to pursue. 
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