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R E SEARCH ON ARTIFICIAL neural networks was 
motivated by the observation that human intelligence 
emerges from highly parallel networks of relatively 
simple, non-linear neurons that learn by adjusting 
the strengths of their connections. This observation 
leads to a central computational question: How is it 
possible for networks of this general kind to learn 
the complicated internal representations that are 
required for difficult tasks such as recognizing

objects or understanding language? 
Deep learning seeks to answer this 
question by using many layers of activ-
ity vectors as representations and 
learning the connection strengths that 
give rise to these vectors by following 
the stochastic gradient of an objective 
function that measures how well the 
network is performing. It is very sur-
prising that such a conceptually simple 
approach has proved to be so effective 
when applied to large training sets us-
ing huge amounts of computation and 
it appears that a key ingredient is 
depth: shallow networks simply do not 
work as well.

We reviewed the basic concepts 
and some of the breakthrough 
achievements of deep learning several 
years ago.63 Here we briefly describe 
the origins of deep learning, describe 
a few of the more recent advances, and 
discuss some of the future challenges. 
These challenges include learning with 
little or no external supervision, coping 
with test examples that come from a 
different distribution than the training 
examples, and using the deep learning 
approach for tasks that humans solve 
by using a deliberate sequence of steps 
which we attend to consciously—tasks 
that Kahneman56 calls system 2 tasks as 
opposed to system 1 tasks like object 
recognition or immediate natural lan-
guage understanding, which generally 
feel effortless.

From Hand-Coded Symbolic 
Expressions to Learned Distributed 
Representations
There are two quite different para-
digms for AI. Put simply, the logic-in-
spired paradigm views sequential rea-
soning as the essence of intelligence 
and aims to implement reasoning in 
computers using hand-designed rules 
of inference that operate on hand-de-
signed symbolic expressions that for-
malize knowledge. The brain-inspired 
paradigm views learning representa-
tions from data as the essence of in-
telligence and aims to implement 
learning by hand-designing or evolv-
ing rules for modifying the connec-
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tion strengths in simulated networks 
of artificial neurons.

In the logic-inspired paradigm, a 
symbol has no meaningful internal 
structure: Its meaning resides in its 
relationships to other symbols which 
can be represented by a set of sym-
bolic expressions or by a relational 
graph. By contrast, in the brain-in-
spired paradigm the external sym-
bols that are used for communica-
tion are converted into internal 
vectors of neural activity and these 
vectors have a rich similarity struc-
ture. Activity vectors can be used to 

model the structure inherent in a set 
of symbol strings by learning appro-
priate activity vectors for each symbol 
and learning non-linear transforma-
tions that allow the activity vectors 
that correspond to missing elements 
of a symbol string to be filled in. This 
was first demonstrated in Rumelhart 
et al.74 on toy data and then by Bengio 
et al.14 on real sentences. A very im-
pressive recent demonstration is 
BERT,22 which also exploits self-at-
tention to dynamically connect 
groups of units, as described later.

The main advantage of using vec-

tors of neural activity to represent 
concepts and weight matrices to cap-
ture relationships between concepts 
is that this leads to automatic gener-
alization. If Tuesday and Thursday 
are represented by very similar vec-
tors, they will have very similar causal 
effects on other vectors of neural ac-
tivity. This facilitates analogical rea-
soning and suggests that immediate, 
intuitive analogical reasoning is our 
primary mode of reasoning, with logi-
cal sequential reasoning being a 
much later development,56 which we 
will discuss.



60    COMMUNICATIONS OF THE ACM   |   JULY 2021  |   VOL.  64  |   NO.  7

turing lecture

the task, it makes sense to start by using 
some other source of information to cre-
ate layers of feature detectors and then 
to fine-tune these feature detectors us-
ing the limited supply of labels. In trans-
fer learning, the source of information is 
another supervised learning task that 
has plentiful labels. But it is also possi-
ble to create layers of feature detectors 
without using any labels at all by stack-
ing auto-encoders.15,50,59

First, we learn a layer of feature de-
tectors whose activities allow us to re-
construct the input. Then we learn a 
second layer of feature detectors whose 
activities allow us to reconstruct the ac-
tivities of the first layer of feature detec-
tors. After learning several hidden lay-
ers in this way, we then try to predict 
the label from the activities in the last 
hidden layer and we backpropagate the 
errors through all of the layers in order 
to fine-tune the feature detectors that 
were initially discovered without using 
the precious information in the labels. 
The pre-training may well extract all 
sorts of structure that is irrelevant to 
the final classification but, in the re-
gime where computation is cheap and 
labeled data is expensive, this is fine so 
long as the pre-training transforms the 
input into a representation that makes 
classification easier.

In addition to improving generaliza-
tion, unsupervised pre-training initial-
izes the weights in such a way that it is 
easy to fine-tune a deep neural network 
with backpropagation. The effect of 
pre-training on optimization was his-
torically important for overcoming the 
accepted wisdom that deep nets were 
hard to train, but it is much less rele-
vant now that people use rectified lin-
ear units (see next section) and residu-
al connections.43 However, the effect of 
pre-training on generalization has 
proved to be very important. It makes it 
possible to train very large models by 
leveraging large quantities of unla-
beled data, for example, in natural lan-
guage processing, for which huge cor-
pora are available.26,32 The general 
principle of pre-training and fine-tun-
ing has turned out to be an important 
tool in the deep learning toolbox, for 
example, when it comes to transfer 
learning or even as an ingredient of 
modern meta-learning.33

The mysterious success of rectified 
linear units. The early successes of 

deep networks involved unsupervised 
pre-training of layers of units that used 
the logistic sigmoid nonlinearity or the 
closely related hyperbolic tangent. Rec-
tified linear units had long been hy-
pothesized in neuroscience29 and al-
ready used in some variants of RBMs70 
and convolutional neural networks.54 It 
was an unexpected and pleasant sur-
prise to discover35 that rectifying non-
linearities (now called ReLUs, with 
many modern variants) made it easy to 
train deep networks by backprop and 
stochastic gradient descent, without 
the need for layerwise pre-training. 
This was one of the technical advances 
that enabled deep learning to outper-
form previous methods for object rec-
ognition,60 as outlined here.

Breakthroughs in speech and object 
recognition. An acoustic model con-
verts a representation of the sound wave 
into a probability distribution over frag-
ments of phonemes. Heroic efforts by 
Robinson72 using transputers and by 
Morgan et al.69 using DSP chips had al-
ready shown that, with sufficient pro-
cessing power, neural networks were 
competitive with the state of the art for 
acoustic modeling. In 2009, two gradu-
ate students68 using Nvidia GPUs 
showed that pre-trained deep neural 
nets could slightly outperform the SOTA 
on the TIMIT dataset. This result reig-
nited the interest of several leading 
speech groups in neural networks. In 
2010, essentially the same deep network 
was shown to beat the SOTA for large vo-
cabulary speech recognition without re-
quiring speaker-dependent training28,46 
and by 2012, Google had engineered a 
production version that significantly 
improved voice search on Android. This 
was an early demonstration of the dis-
ruptive power of deep learning.

At about the same time, deep learn-
ing scored a dramatic victory in the 
2012 ImageNet competition, almost 
halving the error rate for recognizing a 
thousand different classes of object in 
natural images.60 The keys to this vic-
tory were the major effort by Fei-Fei Li 
and her collaborators in collecting 
more than a million labeled images31 

for the training set and the very effi-
cient use of multiple GPUs by Alex 
Krizhevsky. Current hardware, includ-
ing GPUs, encourages the use of large 
mini-batches in order to amortize the 
cost of fetching a weight from memory 

The Rise of Deep Learning
Deep learning re-energized neural net-
work research in the early 2000s by in-
troducing a few elements which made 
it easy to train deeper networks. The 
emergence of GPUs and the availability 
of large datasets were key enablers of 
deep learning and they were greatly en-
hanced by the development of open 
source, flexible software platforms 
with automatic differentiation such as 
Theano,16 Torch,25 Caffe,55 Tensor-
Flow,1 and PyTorch.71 This made it easy 
to train complicated deep nets and to 
reuse the latest models and their build-
ing blocks. But the composition of 
more layers is what allowed more com-
plex non-linearities and achieved sur-
prisingly good results in perception 
tasks, as summarized here.

Why depth? Although the intuition 
that deeper neural networks could be 
more powerful pre-dated modern deep 
learning techniques,82 it was a series of 
advances in both architecture and 
training procedures,15,35,48 which ush-
ered in the remarkable advances which 
are associated with the rise of deep 
learning. But why might deeper net-
works generalize better for the kinds of 
input-output relationships we are in-
terested in modeling? It is important 
to realize that it is not simply a ques-
tion of having more parameters, since 
deep networks often generalize better 
than shallow networks with the same 
number of parameters.15 The practice 
confirms this. The most popular class 
of convolutional net architecture for 
computer vision is the ResNet family43 

of which the most common represen-
tative, ResNet-50 has 50 layers. Other 
ingredients not mentioned in this arti-
cle but which turned out to be very use-
ful include image deformations, drop-
out,51 and batch normalization.53

We believe that deep networks excel 
because they exploit a particular form 
of compositionality in which features 
in one layer are combined in many dif-
ferent ways to create more abstract fea-
tures in the next layer.

For tasks like perception, this kind 
of compositionality works very well and 
there is strong evidence that it is used 
by biological perceptual systems.83

Unsupervised pre-training. When the 
number of labeled training examples is 
small compared with the complexity of 
the neural network required to perform 
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tecture in many applications, stacks 
many layers of ”self-attention” modules. 
Each module in a layer uses a scalar 
product to compute the match be-
tween its query vector and the key vec-
tors of other modules in that layer. The 
matches are normalized to sum to 1, 
and the resulting scalar coefficients are 
then used to form a convex combina-
tion of the value vectors produced by 
the other modules in the previous layer. 
The resulting vector forms an input for 
a module of the next stage of computa-
tion. Modules can be made multi-
headed so that each module computes 
several different query, key and value 
vectors, thus making it possible for 
each module to have several distinct in-
puts, each selected from the previous 
stage modules in a different way. The 
order and number of modules does not 
matter in this operation, making it pos-
sible to operate on sets of vectors rather 
than single vectors as in traditional 
neural networks. For instance, a lan-
guage translation system, when pro-
ducing a word in the output sentence, 
can choose to pay attention to the cor-
responding group of words in the input 
sentence, independently of their posi-
tion in the text. While multiplicative 
gating is an old idea for such things as 
coordinate transforms44 and powerful 
forms of recurrent networks,52 its re-
cent forms have made it mainstream. 
Another way to think about attention 
mechanisms is that they make it possi-
ble to dynamically route information 
through appropriately selected mod-
ules and combine these modules in po-
tentially novel ways for improved out-
of-distribution generalization.38

Transformers have produced dra-
matic performance improvements that 
have revolutionized natural language 
processing,27,32 and they are now being 
used routinely in industry. These sys-
tems are all pre-trained in a self-super-
vised manner to predict missing words 
in a segment of text.

Perhaps more surprisingly, trans-
formers have been used successfully to 
solve integral and differential equa-
tions symbolically.62 A very promising 
recent trend uses transformers on top 
of convolutional nets for object detec-
tion and localization in images with 
state-of-the-art performance.19 The 
transformer performs post-processing 
and object-based reasoning in a differ-

across many uses of that weight. Pure 
online stochastic gradient descent 
which uses each weight once converges 
faster and future hardware may just 
use weights in place rather than fetch-
ing them from memory. 

The deep convolutional neural net 
contained a few novelties such as the 
use of ReLUs to make learning faster 
and the use of dropout to prevent over-
fitting, but it was basically just a feed-
forward convolutional neural net of the 
kind that Yann LeCun and his collabo-
rators had been developing for many 
years.64,65 The response of the computer 
vision community to this breakthrough 
was admirable. Given this incontro-
vertible evidence of the superiority of 
convolutional neural nets, the commu-
nity rapidly abandoned previous hand-
engineered approaches and switched 
to deep learning.

Recent Advances
Here we selectively touch on some of 
the more recent advances in deep 
learning, clearly leaving out many im-
portant subjects, such as deep rein-
forcement learning, graph neural net-
works and meta-learning.

Soft attention and the transformer 
architecture. A significant development 
in deep learning, especially when it 
comes to sequential processing, is the 
use of multiplicative interactions, par-
ticularly in the form of soft atten-
tion.7,32,39,78 This is a transformative ad-
dition to the neural net toolbox, in that 
it changes neural nets from purely vec-
tor transformation machines into ar-
chitectures which can dynamically 
choose which inputs they operate on, 
and can store information in differen-
tiable associative memories. A key 
property of such architectures is that 
they can effectively operate on different 
kinds of data structures including sets 
and graphs.

Soft attention can be used by mod-
ules in a layer to dynamically select 
which vectors from the previous layer 
they will combine to compute their 
outputs. This can serve to make the 
output independent of the order in 
which the inputs are presented (treat-
ing them as a set) or to use relation-
ships between different inputs (treat-
ing them as a graph).

The transformer architecture,85 
which has become the dominant archi-

We believe that 
deep networks 
excel because 
they exploit a 
particular form of 
compositionality 
in which features 
in one layer are 
combined in many 
different ways 
to create more 
abstract features  
in the next layer. 
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ment is large and complex and repre-
senting the distribution of plausible 
continuations properly is essentially 
an unsolved problem.

Contrastive learning. One way to ap-
proach this problem is through latent 
variable models that assign an energy 
(that is, a badness) to examples of a 
video and a possible continuation.a

Given an input video X and a pro-
posed continuation Y , we want a mod-
el to indicate whether Y is compatible 
with X by using an energy function 
E(X, Y) which takes low values when 
X and Y are compatible, and higher 
values otherwise.

E(X, Y) can be computed by a deep 
neural net which, for a given X, is 
trained in a contrastive way to give a 
low energy to values Y that are compat-
ible with X (such as examples of (X, Y) 
pairs from a training set), and high en-
ergy to other values of Y that are incom-
patible with X. For a given X, inference 
consists in finding one Y̌ that minimizes 
E(X, Y) or perhaps sampling from the Y s 
that have low values of E(X, Y). This en-
ergy-based approach to representing 
the way Y depends on X makes it possi-
ble to model a diverse, multi-modal set 
of plausible continuations.

The key difficulty with contrastive 
learning is to pick good “negative” 
samples: suitable points Y whose ener-
gy will be pushed up. When the set of 
possible negative examples is not too 
large, we can just consider them all. 
This is what a softmax does, so in this 
case contrastive learning reduces to 
standard supervised or self- supervised 
learning over a finite discrete set of 
symbols. But in a real-valued high-di-
mensional space, there are far too 
many ways a vector Ŷ  could be different 
from Y and to improve the model we 
need to focus on those Ys that should 
have high energy but currently have low 
energy. Early methods to pick negative 
samples were based on Monte-Carlo 
methods, such as contrastive divergence 
for restricted Boltzmann machines48 and 
noise-contrastive estimation.41

Generative Adversarial Networks 
(GANs)36 train a generative neural net to 
produce contrastive samples by apply-

a As Gibbs pointed out, if energies are defined 
so that they add for independent systems, they 
must correspond to negative log probabilities 
in any probabilistic interpretation.

entiable manner, enabling the system 
to be trained end-to-end.

Unsupervised and self-supervised 
learning. Supervised learning, while 
successful in a wide variety of tasks, 
typically requires a large amount of 
human-labeled data. Similarly, when 
reinforcement learning is based only 
on rewards, it requires a very large 
number of interactions. These learn-
ing methods tend to produce task-spe-
cific, specialized systems that are often 
brittle outside of the narrow domain 
they have been trained on. Reducing 
the number of human-labeled samples 
or interactions with the world that are 
required to learn a task and increasing 
the out-of-domain robustness is of cru-
cial importance for applications such 
as low-resource language translation, 
medical image analysis, autonomous 
driving, and content filtering.

Humans and animals seem to be 
able to learn massive amounts of back-
ground knowledge about the world, 
largely by observation, in a task-inde-
pendent manner. This knowledge un-
derpins common sense and allows hu-
mans to learn complex tasks, such as 
driving, with just a few hours of prac-
tice. A key question for the future of AI 
is how do humans learn so much from 
observation alone?

In supervised learning, a label for 
one of N categories conveys, on aver-
age, at most log2(N) bits of information 
about the world. In model-free rein-
forcement learning, a reward similarly 
conveys only a few bits of information. 
In contrast, audio, images and video 
are high-bandwidth modalities that 
implicitly convey large amounts of in-
formation about the structure of the 
world. This motivates a form of predic-
tion or reconstruction called self-su-
pervised learning which is training to 
“fill in the blanks” by predicting 
masked or corrupted portions of the 
data. Self-supervised learning has been 
very successful for training transform-
ers to extract vectors that capture the 
context-dependent meaning of a word 
or word fragment and these vectors 
work very well for downstream tasks.

For text, the transformer is trained 
to predict missing words from a dis-
crete set of possibilities. But in high-
dimensional continuous domains 
such as video, the set of plausible con-
tinuations of a particular video seg-

A key question  
for the future  
of AI is how do 
humans learn 
so much from 
observation  
alone? 
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ties with current AI suggests several di-
rections for improvement: 

1. Supervised learning requires too 
much labeled data and model-free rein-
forcement learning requires far too 
many trials. Humans seem to be able to 
generalize well with far less experience.

2. Current systems are not as robust 
to changes in distribution as humans, 
who can quickly adapt to such changes 
with very few examples.

3. Current deep learning is most 
successful at perception tasks and gen-
erally what are called system 1 tasks. 
Using deep learning for system 2 tasks 
that require a deliberate sequence of 
steps is an exciting area that is still in 
its infancy.

What needs to be improved. From 
the early days, theoreticians of ma-
chine learning have focused on the iid 
assumption, which states that the test 
cases are expected to come from the 
same distribution as the training ex-
amples. Unfortunately, this is not a re-
alistic assumption in the real world: 
just consider the non-stationarities 
due to actions of various agents chang-
ing the world, or the gradually expand-
ing mental horizon of a learning agent 
which always has more to learn and 
discover. As a practical consequence, 
the performance of today’s best AI sys-
tems tends to take a hit when they go 
from the lab to the field.

Our desire to achieve greater robust-
ness when confronted with changes in 
distribution (called out-of-distribution 
generalization) is a special case of the 
more general objective of reducing 
sample complexity (the number of ex-
amples needed to generalize well) when 
faced with a new task—as in transfer 
learning and lifelong learning81—or 
simply with a change in distribution or 
in the relationship between states of 
the world and rewards. Current super-
vised learning systems require many 
more examples than humans (when 
having to learn a new task) and the situ-
ation is even worse for model-free rein-
forcement learning23 since each re-
warded trial provides less information 
about the task than each labeled exam-
ple. It has already been noted61,76 that 
humans can generalize in a way that is 
different and more powerful than ordi-
nary iid generalization: we can correctly 
interpret novel combinations of exist-
ing concepts, even if those combina-

ing a neural network to latent samples 
from a known distribution (for exam-
ple, a Gaussian). The generator trains 
itself to produce outputs Ŷ  to which the 
model gives low energy E(Ŷ). The gen-
erator can do so using backpropagation 
to get the gradient of E(Ŷ) with respect 
to Ŷ. The generator and the model are 
trained simultaneously, with the model 
attempting to give low energy to train-
ing samples, and high energy to gener-
ated contrastive samples.

GANs are somewhat tricky to opti-
mize, but adversarial training ideas 
have proved extremely fertile, produc-
ing impressive results in image synthe-
sis, and opening up many new applica-
tions in content creation and domain 
adaptation34 as well as domain or style 
transfer.87

Making representations agree using 
contrastive learning. Contrastive learn-
ing provides a way to discover good fea-
ture vectors without having to recon-
struct or generate pixels. The idea is to 
learn a feed-forward neural network that 
produces very similar output vectors 
when given two different crops of the 
same image10 or two different views of 
the same object17 but dissimilar output 
vectors for crops from different images 
or views of different objects. The squared 
distance between the two output vectors 
can be treated as an energy, which is 
pushed down for compatible pairs and 
pushed up for incompatible pairs.24,80

A series of recent papers that use 
convolutional nets for extracting repre-
sentations that agree have produced 
promising results in visual feature 
learning. The positive pairs are com-
posed of different versions of the same 
image that are distorted through crop-
ping, scaling, rotation, color shift, blur-
ring, and so on. The negative pairs are 
similarly distorted versions of different 
images which may be cleverly picked 
from the dataset through a process 
called hard negative mining or may 
simply be all of the distorted versions of 
other images in a minibatch. The hid-
den activity vector of one of the higher-
level layers of the network is subse-
quently used as input to a linear 
classifier trained in a supervised man-
ner. This Siamese net approach has 
yielded excellent results on standard 
image recognition bench-
marks.6,21,22,43,67 Very recently, two Sia-
mese net approaches have managed to 

eschew the need for contrastive sam-
ples. The first one, dubbed SwAV, quan-
tizes the output of one network to train 
the other network,20 the second one, 
dubbed BYOL, smoothes the weight 
trajectory of one of the two networks, 
which is apparently enough to prevent a 
collapse.40

Variational auto-encoders. A popu-
lar recent self-supervised learning 
method is the Variational Auto-Encoder 
(VAE).58 This consists of an encoder 
network that maps the image into a la-
tent code space and a decoder network 
that generates an image from a latent 
code. The VAE limits the information 
capacity of the latent code by adding 
Gaussian noise to the output of the 
encoder before it is passed to the de-
coder. This is akin to packing small 
noisy spheres into a larger sphere of 
minimum radius. The information ca-
pacity is limited by how many noisy 
spheres fit inside the containing 
sphere. The noisy spheres repel each 
other because a good reconstruction 
error requires a small overlap between 
codes that correspond to different 
samples. Mathematically, the system 
minimizes a free energy obtained 
through marginalization of the latent 
code over the noise distribution. How-
ever, minimizing this free energy with 
respect to the parameters is intracta-
ble, and one has to rely on variational 
approximation methods from statisti-
cal physics that minimize an upper 
bound of the free energy.

The Future of Deep Learning
The performance of deep learning sys-
tems can often be dramatically im-
proved by simply scaling them up. 
With a lot more data and a lot more 
computation, they generally work a lot 
better. The language model GPT-318 
with 175 billion parameters (which is 
still tiny compared with the number of 
synapses in the human brain) gener-
ates noticeably better text than GPT-2 
with only 1.5 billion parameters. The 
chatbots Meena2 and BlenderBot73 also 
keep improving as they get bigger. 
Enormous effort is now going into scal-
ing up and it will improve existing sys-
tems a lot, but there are fundamental 
deficiencies of current deep learning 
that cannot be overcome by scaling 
alone, as discussed here.

Comparing human learning abili-
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because their activity vector in the 
higher-level call can be reconstructed 
later using the information in the fast 
weights. Multiple time scales of adap-
tion also arise in learning to learn, or 
meta-learning.12,33,75

Higher-level cognition. When think-
ing about a new challenge, such as driv-
ing in a city with unusual traffic rules, 
or even imagining driving a vehicle on 
the moon, we can take advantage of 
pieces of knowledge and generic skills 
we have already mastered and recom-
bine them dynamically in new ways. 
This form of systematic generalization 
allows humans to generalize fairly well 
in contexts that are very unlikely under 
their training distribution. We can 
then further improve with practice, 
fine-tuning and compiling these new 
skills so they do not need conscious at-
tention anymore. How could we endow 
neural networks with the ability to 
adapt quickly to new settings by mostly 
reusing already known pieces of knowl-
edge, thus avoiding interference with 
known skills? Initial steps in that direc-
tion include Transformers32 and Recur-
rent Independent Mechanisms.38

It seems that our implicit (system 1) 
processing abilities allow us to guess 
potentially good or dangerous futures, 
when planning or reasoning. This rais-
es the question of how system 1 net-
works could guide search and plan-
ning at the higher (system 2) level, 
maybe in the spirit of the value func-
tions which guide Monte-Carlo tree 
search for AlphaGo.77

Machine learning research relies on 
inductive biases or priors in order to en-
courage learning in directions which 
are compatible with some assumptions 
about the world. The nature of system 2 
processing and cognitive neuroscience 
theories for them5,30 suggests several 
such inductive biases and architec-
tures,11,45 which may be exploited to de-
sign novel deep learning systems. How 
do we design deep learning architec-
tures and training frameworks which 
incorporate such inductive biases?

The ability of young children to per-
form causal discovery37 suggests this 
may be a basic property of the human 
brain, and recent work suggests that 
optimizing out-of-distribution gener-
alization under interventional changes 
can be used to train neural networks to 
discover causal dependencies or causal 

variables.3,13,57,66 How should we struc-
ture and train neural nets so they can 
capture these underlying causal prop-
erties of the world?

How are the directions suggested by 
these open questions related to the 
symbolic AI research program from the 
20th century? Clearly, this symbolic AI 
program aimed at achieving system 2 
abilities, such as reasoning, being able 
to factorize knowledge into pieces 
which can easily recombined in a se-
quence of computational steps, and 
being able to manipulate abstract vari-
ables, types, and instances. We would 
like to design neural networks which 
can do all these things while working 
with real-valued vectors so as to pre-
serve the strengths of deep learning 
which include efficient large-scale 
learning using differentiable computa-
tion and gradient-based adaptation, 
grounding of high-level concepts in 
low-level perception and action, han-
dling uncertain data, and using distrib-
uted representations. 
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