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The January 1991 issue of Computing Research Newsincludes the headline Formal
Software Design Methods Next Step In Improving Quality, with an
excellent article by Dick Kieburtz [0] explaining the advantage to industry of taking
this step.  The trouble is:  it's been the next step for ten years!  In May 1982 Tony
Hoare [1] made the same argument very persuasively:  software engineering is not
worthy of the name, certainly is not a profession, until it is based on scientific
principles and is practiced with the same degree of precision as other professional
engineering.  Since then, formal methods have been learned and used by a few
companies in Europe, though it is not yet known how successfully (people are always
ready to claim success for their latest efforts).  In North America, formal methods
have hardly made a start.  Why such a poor showing for something so highly
recommended?

Before answering, I should say what is meant by formal programming methods.
There is a widespread misconception that “formal” means careful and detailed, and
“informal” means either sloppy or sketchy.  Even authors of mathematical texts, who
should know better, sometimes make a statement (in English), followed by the word
“Formally”, followed by a more careful and detailed statement (in English).  By
“formal” we mean using a mathematical formalism.  A mathematical formalism is a
notation (set of formulas) intended to aid in the precise and concise expression of
some limited discourse.  A theory is a formalism together with some rules of proof
or calculation so that we can say what observations to expect.  We can have a theory
of almost anything, from a theory of matter, to a theory of motion, to a theory of
computation, to a theory of theories.

What good is a theory of programming?  Who wants it?  Thousands of programmers
program every day without it.  Why should they bother to learn it?  The answer is
the same as for any other theory.  For example, why should anyone learn a theory of
motion?  You can move around perfectly well without it.  You can throw a ball
without it.  Yet we think it important enough to teach a theory of motion in high
school.

What's Right

One answer is that a mathematical theory gives a much greater degree of precision
by providing a method of calculation.  It is unlikely that we could send a rocket to
Jupiter without a mathematical theory of motion.  And even baseball pitchers are
finding that their pitch can be improved by hiring an expert who knows some
theory.  Similarly a lot of mundane programming can be done without the aid of a
theory of programming, but the more difficult programming is very unlikely to be
done correctly without a good theory.  The software industry has an overwhelming
experience of buggy programs to support that statement.  And even mundane
programming can be improved by the use of a theory.



Another answer is that a theory provides a kind of understanding.  Our ability to
control and predict motion changes from an art to a science when we learn a
mathematical theory.  Similarly programming changes from an art to a science when
we learn to understand programs in the same way we understand mathematical
theorems.  With a scientific outlook, we change our view of how the world works
and what is possible.  It is a valuable part of education for anyone.

Formal programming methods allows us to prove that a computation does what its
specification says it should do.  More importantly, formal methods help us to write
specifications, and to design programs so that their computations will provably
satisfy a specification.  This is analogous to the use of mathematics in all professional
engineering:  civil engineers must know and apply the theories of geometry and
material stress;  electrical engineers must know and apply electromagnetic theory.
So why don't software engineers know and apply a theory of programming?

What's Wrong

The reason most often cited is lack of programmer education.  Even programmers
with a degree in computer science from a respectable university are unlikely to
know any formal programming methods, because only a small fraction of
universities teach that subject, and where it is taught it is probably an optional course
taken by a small fraction of the students there.  It is usually placed late in the
curriculum, after students have been taught to program, and so implicitly taught that
formal methods are not necessary.

Education may be part of the reason, but I think there is another reason that the
software industry has not yet adopted formal methods.  The methods offered by
academia so far have been clumsy, unwieldy, awkward methods.  They slow down
the process of software production without increasing the quality.  It is just as easy to
make mistakes in the use of the formalism and in proofs as it is to make mistakes in
programming.  The typical result at present is a buggy program together with a
buggy proof resulting in the erroneous conclusion:  program proved correct.

Formal methods with proofs potentially offer a far more powerful means of finding
errors in programs than testing, because a proof considers all possible computations
at once, whereas testing considers only one computation at a time.  To realize this
potential, we must be able to do proofs accurately.  Verification of a finished
program against the original specification has been justifiably criticized as next to
impossible.  But proofs of programming steps, during program construction, have
been shown to be quite do-able.  Typically they are not too deep, but they involve a
lot of detail, and that's where the errors occur.  That's exactly the sort of task that
computers should be helping us with.  It is reasonable to hope that some day a
prover will be as common and helpful a part of programming systems as a syntax
checker and type checker are today.  If history is any guide, the first ones will be
usable only by their own designers, and they may confirm negative feeling about
formal methods.  But later, polished provers will be able to say “bug on line 123”,
with an indication of what's wrong, as reliably as syntax checkers and type checkers
do now.



Three formalisms

Let us examine some of the formal methods academia has offered industry.  The first
usable theory was outlined by Hoare [2] in 1969 (based on earlier work by Floyd);
it is still probably the most widely known.  In it, a specification is a pair of
predicates of the state, called the precondition and the postcondition.  To say that a
program or program fragment  S satisfies the specification given by precondition
P and postcondition  R we write

{ P} S { R}
meaning:  if P is true at the start of execution of  S , then execution will terminate
and  R will be true at the end.  (The notation here is not the original one, but it is
the one universally used now;  the meaning here is total correctness, not the original
partial correctness.)  Let's try it on a trivial example.  Informally, the specification
is to increase the value of integer variable  x .  Formally, we face a problem:  we are
given no way to relate the final value of a variable to its initial value.  We have to
use a trick:  introduce an extra variable, not part of the state space, to carry the
relation.  We write

∀X· {x = X} S { x > X}
meaning:  whatever  x may have been equal to at the start, it is greater than that at
the end.  For  S we might propose the assignment  x:= x+1 .  To prove it correct,
we must use the assignment rule

{substitute  e for  x in  R } x:= e { R}
In the example, this means

{ x+1 > X} x:= x+1 {x > X}
The precondition is not what we want, so we now use the consequence rule

(∀σ· A ⇒ P)  ∧ { P} S { R} ∧ (∀σ· R ⇒ Z)  ⇒ { A} S { Z}
where  σ (the state) stands for all variables.  In the example, this means we must
prove

∀x· (x = X) ⇒ (x+1 > X)
which is now a simple theorem of ordinary logic.  All that, just to prove the
obvious!  Perhaps the example is unfair precisely because it is so obvious;  the
formalism is meant to help with problems that are not obvious.  On the other hand,
we fear that if trivial problems are this difficult, nontrivial ones will be impossible.
We'll try a slightly bigger example later.  Also, a sequence of proof steps can be
collapsed into one step by the use of derived rules.  There is a trade-off:  fewer
steps, but more rules to learn.

Dijkstra [3] designed a formalism in 1976 that defines the semantics of programs
explicitly by a function instead of implicitly by axioms.  This formalism is probably
the most studied one, certainly the one used by most textbooks on formal methods
(including one by me).  For program (fragment)  S and postcondition  R , wp(S, R)
is the necessary and sufficient precondition for execution of  S to end in
postcondition  R .  As before, we use a pair of predicates of the state as specification.
To say that a program or program fragment  S satisfies the specification given by
precondition  P and postcondition  R we write

∀σ· P ⇒ wp(S, R)
To say “increase  x ”, we still face the problem of relating final values to initial



values.  We write
∀x, X· (x = X) ⇒ wp(S, x > X)

As before, we can try the assignment  x:= x+1  for  S .  wp applied to an assignment
is defined as

wp(x:= e, R) = (substitute  e for  x in  R )
so we must prove, as before,

∀x, X· (x = X) ⇒ (x+1 > X)

The formalism that has been used most by industry (in Europe) is Jones's VDM [4].
As in the previous two, a specification is a pair of predicates, but the second
predicate is a relation between the initial and final states.  The formalism
automatically gives us a way to refer to the initial values of variables within the
second predicate:  the initial value of  x is an  x with a left-pointing arrow over it.
My word processor lacks that typographic ability, so I shall use  `x , which we can
pronounce “pre x ”.  The semantics of programs is given implicitly by axioms, as in
Hoare logic, and the Hoare triple notation is used.  The problem of increasing  x
becomes

{ true} S { x > `x}
The precondition  true means that we want  x increased under all initial conditions.
Once again, let's take  x:= x+1  for  S .  One of the two rules for assignment is

{ true} x:= e { x = `e}
In our example, that gives us

{ true} x:= x+1 {x = `x+1}
The postcondition is not what we want so we need to use the consequence rule

(∀σ· A ⇒ P)  ∧ { P} S { R} ∧ (∀`σ, σ· R ⇒ Z)  ⇒ { A} S { Z}
This means proving

∀`x, x· (x = `x+1) ⇒ (x > `x)
as before.

A New View

People often confuse programs with computer behavior.  They talk about what a
program “does”;  of course it just sits there on the page or screen;  it is the computer
that “does” something.  They ask whether a program “terminates”;  of course it does;
it is the execution that may not terminate.  A program is not computer behavior, but
a description or specification of computer behavior.  Furthermore, a computer may
not behave as specified by a program for a variety of reasons:  a disk head may
crash, a compiler may have a bug, or a resource may become exhausted (stack
overflow, number overflow), to mention a few.  Then the difference between a
program and computer behavior is obvious.

As we shall see, this small confusion has been a large hindrance in the development
of formal methods.  We have always talked about “the specification of programs”,
and “a program satisfies a specification”.  We have always had two languages:  the
specification language (usually ordinary logic), and the programming language.  But
we are not specifying programs;  we are specifying computation.  A program is a
specification.  We need onelanguage.



A program is a specification, but not every specification is a program.  A program
is an implemented specification, one that a computer can execute.  To be so, it must
be written in a subset of the specification language, called the programming
language.

A specification serves as a contract between a client who wants a computer to behave
a certain way and a programmer who customizes a computer to behave as desired.
For this purpose, a specification must be written as clearly, as understandably, as
possible.  The programmer then refines the specification to obtain a program, which
a computer can execute.  Sometimes the clearest, most understandable specification is
already a program.  When that is so, there is no need for any other specification, and
no need for refinement.  However, the programming notations are only part of the
specification notations:  those that happen to be implemented.  Specifiers should use
whatever notations help to make their specifications clear, including but not limited
to programming notations.

A New Formalism

To go with the change in view, I offer a new formalism, described in [5] and in a
forthcoming book [6].  In it, a specification is a single predicate in the initial and
final values of the variables.  The initial value of  x is undecorated, and the final
value is  x ' .  To say that  x is to be increased, we write simply

x ' > x
That is surely the clearest and simplest form of specification.  As we will see later,
the reduction to a single predicate is no loss of information.  Since a program is a
specification, a program must also be a predicate in the initial and final values of the
variables.  For example, an assignment  x:= e is a predicate that could be written in
conventional logic notation as

(x:= e)  =  (x '=e ∧ y '=y ∧ ... )
saying that  x '=e and all other variables are are unchanged.  Semantics is explicit, as
in Dijkstra's formalism, using initial and final values of variables as in Jones's
formalism.

Given a specification  S , the programmer's problem is to find a program  P such
that computer behavior satisfying  P also satisfies  S .  In logic terms, that means

P ⇒ S
With specification  x ' > x and program  x:= x+1  we must prove

(x ' = x+1) ⇒ (x ' > x)
This is the same as in the previous formalisms, but we arrive here directly.

Multiplication, Hoare-style

A more reasonable comparison of these formal methods can be made with a slightly
larger example.  Let  x and  y be integer variables;  when  x and  y are initially
nonnegative, we want their product  x y to be the final value of variable  x .  The
program could be just

x:= x y
except that we disallow multiplication, allowing only addition, multiplication by 2,



division by 2, testing for even or odd, and testing for zero.  This is exactly the
situation of the designer of a multplier in a binary computer, and our program will
be the standard binary multiplication.

First let us use Hoare Logic.  The most convenient way to use it is not to quote rules
explicitly, but implicitly by the placement of the predicates.  Predicates surrounding
an assignment must be according to the assignment rule.

{substitute  e for  x in  R }
x:= e
{ R}

The sequential composition rule
{ P} A { Q}  ∧ { Q} B { R}  ⇒ { P} A;B { R}

simply places the intermediate predicate between the statements.
{ P}
A;
{ Q}
B
{ R}

Predicates placed next to one another must be according to the consequence rule, the
first implying the second.  A predicate before an i f -statement must be copied to the
start of each branch, in one case conjoined with the condition, and in the other
conjoined with its negation.  The predicate after the entire i f -statement must be the
disjunction of the predicates at the ends of the two branches.

{ P}
i f c then { P ∧ c} A { Q} else{ P ∧ ¬c} B { R}
{ Q ∨ R}

The predicate before a while-loop must be of a particular form:  I ∧ 0≤v where  I
is called the invariant, and  v is an integer expression called the variant.  The
predicate after the loop must be the invariant conjoined with the negation of the
condition.  Using  V as an extra variable to stand for the initial value of the variant,
the body of the loop must satisfy the specification shown below.

{ I ∧ 0≤v}
while c do { I ∧ 0≤v=V ∧ c} B { I ∧ 0≤v<V}
{ I ∧ ¬c}

Here it all is in action.



∀X, Y· {0≤x=X ∧ 0≤y=Y}
s:= 0
{0≤x=X ∧ 0≤y=Y ∧ s=0};
{ s + x y = X Y ∧ 0≤y}
while y 0 do

{ s + x y = X Y ∧ 0<y=Y}
i f even(y) then begin

{ s + x y = X Y ∧ 0<y=Y ∧ even(y)}
{ s + x 2 y/2 = X Y ∧ 0≤y/2<Y}
x:= x 2;
{ s + x y/2 = X Y ∧ 0≤y/2<Y}
y:= y/2
{ s + x y = X Y ∧ 0≤y<Y} end

else begin
{ s + x y = X Y ∧ 0<y=Y ∧ ¬even(y)}
{ s + x + x (y–1) = X Y ∧ 0≤(y–1)/2<Y}
s:= s+x;
{ s + x 2 (y–1)/2 = X Y ∧ 0≤(y–1)/2<Y}
x:= x 2;
{ s + x (y–1)/2 = X Y ∧ 0≤(y–1)/2<Y}
y:= (y–1)/2
{ s + x y = X Y ∧ 0≤y<Y } end

{ s + x y = X Y ∧ 0≤y<Y}
{ s + x y = X Y ∧ y=0};
{ s = X Y}
x:= s
{ x = X Y}

Multiplication, Dijkstra-style

To use Dijkstra's formalism for the multiplication problem we will need to apply
wp to  i f ,  while , and sequential composition, in addition to assignment.  Two of
them are reasonably easy:

wp(i f c then A elseB, R)  =  (c ⇒ wp(A, R)) ∧ ( ¬c ⇒ wp(B, R))
wp(A; B,  R)  =  wp(A, wp(B, R))

The treatment of loops is more difficult.  We must define  wp(W, R)  where  W is
the loop  while c do B .  We do so as the limit of a sequence of approximations.  We
define  W0, W1, W2, ... as follows:

wp(W0, R) = false
wp(Wn+1, R) = wp(i f c then beginB; Wn end, R)

From this recurrence we can calculate  wp(Wn, R)  for any natural  n .  Then
wp(W, R) = ∃n· wp(Wn, R)

Unfortunately, this is not directly usable for the development and practical proving



of programs.  Instead, we use it to prove a theorem similar to the while rule in
Hoare Logic.

I ∧ 0≤v ∧ (I ∧ 0≤v=V ∧c ⇒ wp(B, I ∧ 0≤v<V))  ⇒ wp(W, I ∧ ¬c)
It says roughly:  if the invariant is true before the start of the loop, and the body
maintains the invariant and decreases the variant but not below zero, then the loop
execution terminates and results in the invariant and the negation of the loop
condition.

Most users of Dijkstra's formalism do not state their proof obligations explicitly in
terms of  wp ;  instead they present them implicitly by the placement of assertions in
the program text, exactly as do the user's of the Hoare formalism.  In practice, the
two formalisms are used the same way.

Multiplication, Jones-style

Jones offers two formats for the use of VDM.  One is to name every piece of a
program, and to state separately the pre- and postcondition for each name.  The
other is to place them in the program text as in the Hoare style.  But there is a
difference:  for Jones, a predicate cannot serve as both the postcondition for one
statement and the precondition for the sequentially following statement because a
precondition is a predicate of one state and a postcondition is a predicate of two
states.  The rule for sequential composition is

{ P} A { Q}  ∧ (∀`σ, σ· Q⇒R)  ∧ { R} B { S}  ⇒ { P} A;B { Q;S}
where  Q;S is relational composition, defined as

(Q;S)(`σ, σ)  =  ∃σ"· Q(`σ, σ") ∧ S(σ", σ)
The VDM book suggests that these predicates be placed in the program in the
following format:

{ P}
{ P}
A
{ Q}

;
{ R}
B
{ S}

{ Q;S}
It seems we must pay for the convenience of having initial values given to us in the
formalism by making the sequential composition rule more complicated.  We pay
even more for the while rule.

{ I ∧ 0≤v}
while c do { I ∧ 0≤v ∧ c} B { I ∧ 0≤v<`v ∧ R}
{ I ∧ ¬c ∧ (R ∨ ok)}

where  R must be a transitive relation, and  ok is the identity relation.  The rule for
i f is unchanged from Hoare logic.

Putting it all together, we get the following.



{0≤x ∧ 0≤y}
{0≤y}
s:= 0
{ x=`x ∧ 0≤y=`y ∧ s=0}

;
{0≤y}
while y 0 do

{0<y}
i f even(y) then begin

{0<y ∧ even(y)}
{0<y ∧ even(y)}
x:= x 2
{ x=`x/2 ∧ 0<y=`y ∧ even(`y) ∧ s= s̀}

;
{0<y ∧ even(y)}
y:= y/2
{ x=`x ∧ y=`y/2 ∧ 0<`y ∧ even(`y) ∧ s= s̀}

{0≤y<`y ∧ s+x y = s̀+`x `y} end
else begin

{0<y ∧ ¬even(y)}
{0<y ∧ ¬even(y)}
s:= s+x
{ x=`x ∧ 0<y=`y ∧ ¬even(`y) ∧ s= s̀+`x}

;
{0<y ∧ ¬even(y)}
x:= x 2
{ x=`x 2 ∧ 0<y=`y ∧ ¬even(`y) ∧ s= s̀}

;
{0<y ∧ ¬even(y)}
y:= (y–1)/2
{ x=`x ∧ y=(`y–1)/2 ∧ 0<`y ∧ ¬even(`y) ∧

s= s̀}
{0≤y<`y ∧ s+x y = s̀+`x `y} end

{0≤y<`y ∧ s+x y = s̀+`x `y}
{ y=0 ∧ (s+x y = s̀+`x `y ∨ x=`x ∧ y=`x ∧ s= s̀)}
{ s = s̀ + `x `y}

;
{ true}
x:= s
{ x = s̀}

{ x = `x `y}



Multiplication, new way

In order to use a formalism for program construction, not just for after-the-fact
verification, a programmer has to be able to progress from specification to program
in small steps.  In general, one may need to form a sequence of specifications  S0 S1
S2 ... Sn starting with the given specification  S0 and ending with a program  Sn .
Each specification is said to be “refined” by the next.  Intermediate specifications,
and even the original specification, may be partly in programming notation and
partly in nonprogramming notation waiting to be refined.  Refinement relates two
specifications, not necessarily a specification and a program.  We say specification
S is refined by specification  R , written  S·: R , if all computer behavior satisfying
R also satisfies  S .  We define it formally as

(S·: R)  =  (∀σ, σ'· S⇐ R)
where  ⇐ is “is implied by”.

In this formalism, a program is a predicate, and it could be written in traditional
predicate noations.  The empty (do nothing) program  ok is the identity relation:

ok =   (x '=x ∧ y '=y ∧ s'=s)
We saw assignment previously.  For example,

(x:= x 2)   =   (x ' = x 2 ∧ y '=y ∧ s'=s)
Specifications  P and  Q can be composed by relational composition  P;Q .  And  i f
then else is just a ternary boolean operator that can be defined by a truth table or
by equating to other boolean operators.

i f c then a elseb =   c ∧ a ∨ ¬c ∧ b
We simplify our lives enormously by leaving out the while loop in favor of
recursion.

Here is the multiplication example.

x ' = x y·:  s:= 0;  s' = s + x y;  x:= s

s' = s + x y· : i f y=0 then ok
else ifeven(y) then (x:= x 2;  y:= y/2;  s' = s + x y)
else(s:= s+x;  x:= x 2;  y:= (y–1)/2;  s' = s + x y)

Each of these refinements is a theorem of ordinary logic.  The first says that the
specification  x ' = x y is implied by the relational composition of three predicates.
This relational composition is now a new specification, most of which is already in
programming notation.  We just need to refine the middle part.  There are no special
inference rules for programming.  We can make them look like traditional logic by
making the translations we have given, then prove them in the ordinary way.  Or
better yet, we can prove some laws about programming notations and use them to
prove these theorems more directly.  For example, the Substitution Law says

(x:= e; P)   =   (substitute  e for  x in  P )
This is not an axiom or postulate, but an easily proven law.  Using it to simplify the
y 0 ∧ even(y)  case, we get



x:= x 2;  y:= y/2;  s' = s + x y
= x:= x 2;  s' = s + x y/2
= s' = s + x 2 y/2
= s' = s + x y

Similarly in the  y 0 ∧ ¬even(y)  case, making all three substitutions at once,
s:= s+x;  x:= x 2;  y:= (y–1)/2;  s' = s + x y

= s' = s+x + x 2 (y–1)/2
= s' = s + x y

Each of these cases implies (in fact, equals) the specification being refined.  All that
remains is

y=0 ∧ ok
= y=0 ∧ x '=x ∧ y '=y ∧ s'=s
⇒ s' = s + x y

Clearly these proofs are completely trivial, and can be carried out automatically and
silently by a prover.

To a prover, the programming notations are predicates.  To a compiler, the
nonprogramming notations are just identifiers.  To a compiler, the above
refinements look like this:

P·:   s:= 0;  Q;  x:= s

Q· : i f y=0 then ok
else ifeven(y) then (x:= x 2;  y:= y/2;  Q)
else(s:= s+x;  x:= x 2;  y:= (y–1)/2;  Q)

The occurrence of  Q in the first line can be compiled as an inline “macro”.  The
occurrences of  Q at the ends of the last two lines can be compiled as branches back
to the labelling  Q , and that is the loop.

Execution Time

In one respect, we have been cheating.  If the specification were really as we have
said, we could have written a simpler program, say one that runs in linear time.  We
wanted logarithmic time, but we never said so, and never proved that we have
achieved it.  This criticism applies to all developments so far.

The problem is easily solved:  we just add a time variable  t , and increase its value
to represent the passage of time.  We can use the formalism we already have, without
change, to reason about the final value of  t and thus find the execution time.  The
time variable is ignored by the compiler;  it is there for the prover.

In the multiplication example, we place an assignment  t:= t+something  in each of
the two parts of the  i f that take time.  If we know enough about the compiler and
the hardware to know exactly how long each part takes, we can increase  t by that



amount and find the real-time of execution.  If not, let's just increase  t by  1 .

P·:   s:= 0;  Q;  x:= s

Q· : i f y=0 then ok
else ifeven(y) then (x:= x 2;  y:= y/2;  t:= t+1;  Q)
else(s:= s+x;  x:= x 2;  y:= (y–1)/2;  t:= t+1;  Q)

Each of these refinements is a theorem when we replace  P and  Q by

i f y<0 then t '–t = ∞ else ify=0 then t '–t = 0 elset '–t ≤ 1 + log2y

This says that if  y starts negative, exection time is infinite;  if  y starts at  0 ,
execution time is  0 ;  if  y starts positive, execution time is bounded by  1 + log2y .
The proof proceeds by cases;  we'll look at the case  y>0 ∧ even(y) .  In this case, we
have

x:= x 2;  y:= y/2;  t:= t+1;  t '–t ≤ 1 + log2y
= t '–(t+1) ≤ 1 + log2(y/2)
= t '–t ≤ 1 + log2y

In the previous formalisms, we proved termination by finding a variant.  A variant
is really a time bound, though we did not call it that;  the variant we used proved
that execution time was at most linear in  y .  We then threw away the bound, and
concluded only that execution time was finite.  To conclude that execution terminates
(without stating a bound) is of no practical use, for it gives no clue how long one
must wait for a result.  If a program is claimed to have finite execution time, but in
fact has infinite execution time, there is no time at which a complaint can be made
that execution has taken too long.

It is sometimes important to be able to say and prove that execution will not
terminate.  If we refine  P·: P , we have an infinite loop.  Charging time  1  for each
iteration, we can prove

t '–t = ∞·:  t:= t+1;  t '–t = ∞
The right side of this refinement can be simplified according to the Substitution Law
as follows:

t:= t+1;  t '–t = ∞
= t '–(t+1) = ∞
= t '–t = ∞+1
= t '–t = ∞

which implies (and equals) the left side.



Multiplication, one more time

Here is another solution to the multiplication problem, one that does not use an extra
variable  s to accumulate a sum.  Since multplication is not allowed,  x:= x y is not
a program, but it is still a perfectly good specification of what is wanted (ignoring
time).  It can be refined as follows.

x:= x y· : i f x=0 then ok
else ifeven(x) then (x:= x/2;  x:= x y;  x:= x 2)
else(x:= (x–1)/2;  x:= x y;  x:= x 2;  x:= x+y)

The uses of  x:= x y on the right are compiled as calls.  The proof is very easy, and
we leave it as an exercise.

Data Representation

The formal definition of data types has followed a well-established mathematical
tradition:  we define a space of values of the type, and functions (operations) on
these values.  Here is the well-worn stack example.  We introduce the syntax  stack
as a new type in terms of some already known type  X .  We also introduce  empty,
push,  pop ,  and  top of the following types.

empty: stack
push: stack X→stack
pop: stack→stack
top: stack→X

And we can compare stacks for equality and inequality.  The type  stack can be
defined by a domain axiom and an induction axiom

stack =  empty +  stack X
(∀s· P(s))   =   P(empty) ∧ ∀s, x· (P(s) ⇒ P(push(s, x)))

where  P: stack→bool .  Consequently we can say that all stacks are formed either as
the empty stack or by pushing something onto a stack.  Let  s, t: stack and  x, y: X ;
then

push(s, x) empty
(push(s, x) = push(t, y)) = (s=t) ∧ (x=y)
pop(push(s, x)) = s
top(push(s, x)) = x

These axioms are modelled on the Peano axioms for the natural numbers, and they
provide us with a powerful formal apparatus for the investigation of stacks.  We
have defined  push and  pop as functions, but most programming is not functional;
it is imperative.  We program  push and  pop as procedures with the result that the
theory is not applicable.  And a programmer has no need to prove anything about all
possible stacks by induction.  All we want is some way to prove that data placed in
the stack will be found there later when needed.  Here is a simple imperative stack
theory.



We introduce three names:  push (a procedure with parameter of type  X ),  pop (a
parameterless procedure), and  top (an expression of type  X ) with the axioms

top'=x·:  push(x)
ok·:  push(x); pop

where  x: X .

The first axiom says that  push(x)  makes the  top equal  x .  The second axiom says
that a  pop undoes a  push.  To illustrate their use, we begin with the first axiom,
and sequentially compose the  push with two occurrences of the empty action  ok .

top'=x·:  push(x);  ok;  ok
Next we use the second axiom to refine each of the occurrences of  ok .

top'=x·:  push(x);  push(y);  pop;  push(z);  pop
Let's throw in one more occurrence of the empty action

top'=x·:  push(x);  push(y);  ok;  pop;  push(z);  pop
and refine it

top'=x·:  push(x);  push(y);  push(w);  pop;  pop;  push(z);  pop
We see that properly balanced  pushes and  pops will never disturb data from an
earlier  push;  it will be there when wanted, and that's all a programmer needs to
prove.

Conclusion

What's wrong with formal programming methods?  They are not yet ready for
general use.  I have tried to illustrate, with a few examples, that formal methods of
program development can be greatly simplified without loss, and thereby greatly
improved, over the methods found currently in textbooks.  If I had more space, I
could show that the opportunities for simplification are even greater for
programming with interaction, with parallelism, with communicating processes.  It
is reasonable and necessary for us to go through a period of exploration;  least fixed
points and continuity, temporal logic, and sets of interleaved communication
sequences are all good academic research, but they are not the tools that industry
needs.

Can programmers learn formal methods?  Every programmer has learned a
formalism:  a programming language is a formal language.  But programmers are
naturally reluctant to learn a formalism that seems to be too complicated for its
benefits.  When industry was offered the first usable high-level programming
language (Fortran), they jumped at it;  when something much better came along
shortly afterward (Algol), they were already committed.  This time, they are not
making the same mistake.

With the new, simplified methods outlined in this paper and elsewhere [5, 6], I am
optimistic that Kieburtz is right, that the use of formal design methods is just around
the corner.
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