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[1] This lecture is the final review, and course summary. These are the topics we covered in 
the first half. We've been using [2] the mathematical background a lot, so you should be 
used to it by now. The [3] main point of the course is how to develop programs by writing 
specifications, and refining them, proving your refinements as you go, so that executing the 
programs will always satisfy the specifications. And we include any time and space 
limitations in our specifications and prove that they are met in exactly the same way we 
prove that the computations have the right results.


In the [4] last part of the first half we looked at how some common programming 
language features fit into the theory of programming. Variable declaration is existential 
quantification. Frame, which appears as module or object in some languages, temporarily 
removes variables from a scope. Array element assignment causes a small problem, and we 
saw that the solution is to rewrite it as an assignment to the whole array. And we saw how to 
reason about loop constructs.


[5] Here are the topics of the second half of the course. We [6] continued with some 
programming language features, such as time dependence and backtracking and random 
number generators and functions, that make a big and interesting difference to the way we 
write programs. Then we saw how [7] construction and induction axioms are used to define 
data structures and program structures, so we could use them in [8] theory design and 
implementation. Theory design sounds like something for logicians, but actually all 
programmers are theory designers, and we looked at stacks, queues, and trees as examples 
of theory design. You should know how to show that a theory is consistent or inconsistent, 
and what it means for a theory to be complete or incomplete. [9] Data transformation is a 
great way to reimplement a data structure, and you should know how to do it and why it's 
best to do it that way, rather than reprogramming the operations from scratch. [10] Then we 
looked at concurrency, both as something a programmer might use, and as something a 
compiler might introduce into a program. And finally [11], we saw how to formalize and 
reason about interaction. We looked at a kind of shared variables, called interactive 
variables, and at communication channels, for interaction between concurrent processes or 
between programs and people. It's a lot, but I want you to have a really good introduction to 
formal methods, and see how they apply across a broad range of programming styles and 
constructs.


The world doesn't stand still, and people continue to propose new patterns of 
execution and new notations for them. For example, there are several kinds of concurrent 
execution that are currently used. You can find some of them in the exercises of the 
textbook. I don't think it's important that you know them. I think it's much more important 
that when you are presented with a new execution pattern, you are able to describe it 
formally, and prove properties of it. And when you are presented with a formal description, 
you are able to understand the description and see what execution patterns are possible. For 
example, one of the exercises talks about [12] disjoint composition. I'll read it. Concurrent 
composition P parallel Q requires that P and Q have no variables in common, although each 
can make use of the initial values of the other's variables by making a private copy. An 
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables 
with no restrictions, and then to choose disjoint sets of variables v and w and define disjoint 
composition like that. As you can see, it's [13] P and Q, as usual for concurrent composition, 
but this time P and Q aren't limited to work on just part of the variables, so P and Q could 
easily be false if P says the final value of a variable is one thing, and Q says it's another. So 
that's why we have [14] these equations. After P is executed, we forget about everything P 
says about the final values of variables except for v. And after Q is executed, we forget 
about everything Q says about the final values of variables except for w. Since v and w are 
disjoint sets of variables, there's no conflict.
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The exercise asks [15] us to prove that this kind of concurrency is implementable. To 
prove that, I'm going to need a notation for substitution. [16] Actually, we already have one. 
The application law says that a function applied to an argument is equal to the body, but 
substitute the argument for the parameter. So function application is a formal notation for 
substitution. The question says that variables v and variables w are disjoint, with no 
variables in common. But it doesn't say that's all the variables. [17] So let me use x for the 
remaining variables, if there are any. Before I prove implementability, let me re-express 
disjoint composition. [18] I'll start with P dot v prime equals v. We get [19] rid of the 
sequential composition. There exist intermediate values v double prime, w double prime, 
and x double prime, and now we want P but replace the primed variables with double 
primed variables, conjoined with v prime equals v, but replace the unprimed variables v 
with double primed variables. Now we have exists v double prime, and we have v double 
prime equals something, so we can get rid of v double prime by [20] one point. What I want 
to do next is to [21] rename variables w double prime and x double prime. I want to rename 
them to w prime and x prime. Now it seems that we already have w prime and x prime in 
[22] here. But in here, w prime and x prime are local to this little function. They aren't the 
same variables as the ones that will replace w double prime and x double prime. The new w 
prime and x prime are not local to this little function. So they are fresh variables. And [23] 
here's the result of the renaming. Now the little function's parameters look the same as its 
arguments, even though they aren't the same variables. So when we apply the function to its 
arguments, we get [24] the same expression P. That's the end of that little calculation. And of 
course we can [25] do exactly the same for Q dot w prime equals w. Now I can re-express 
[26] disjoint composition, which is defined [27] this way, and now we can write it like [28] 
this. And that's a lot more convenient for proving implementability. [29] Here we go. We 
haven't been talking about time, so implementability is [30] for all values of unprimed 
variables, there exist values of primed variables such that disjoint composition is satisfied. 
Now we re-express disjoint composition [31]. We can get rid of the [32] first quantification 
over x prime because [33] x prime is local to both conjuncts in the body [34]. Now [35] 
exists v prime and w prime can be split into two separate quantifications [36]. And that's so 
that we can factor out [37] this conjunct in front of exists w prime [38]. And now we factor 
[39] this conjunct out of the exists v prime [40]. And I'll just [41] regroup the existential 
quantifications. Now we use a splitting law [42], and we have the [43] definitions of 
implementability of P and Q. So we've proved that the disjoint composition of P and Q is 
implementable if and only if both P and Q are.


[44] Part b of the exercise asks us to describe how this kind of concurrency can be 
executed. [45] Here's one way. Make a copy of all variables. Execute P using the original set 
of variables and concurrently execute Q using the copies. Then copy back from the copy w 
to the original w. Then throw away the copies. There may be variables other than v and w; if 
so, their final values are arbitrary, and this implementation makes them be what P says they 
should be. Well, that's an informal description of the execution, and we can't prove it's 
correct until we formalize it. [46] Making a copy of the variables means declaring new 
variables that are initialized to the values of the old variables. Then we execute P and 
concurrently we execute Q but substitute the new variables in place of the old. Then we 
copy back w. Throwing away the copies happens because it's the end of their scope. Now 
that we've formalized the implementation, we can prove it correct by proving this 
implication. It's not hard, and I won't bother.


I don't think disjoint composition is important, but I don't know what new 
programming constructs will come along in the future, and I think it is important to be able 
to reason about whatever new constructs may come our way, and to be able to prove 
programming steps that use the new constructs. This was just an example of how you 
formalize a new construct and prove its implementability.
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[talking head] The way we learn to program, certainly the way I learned to program, 
and I bet the same for you, is to learn how programs are executed. And if you don't take this 
course, or one like it, then that's your only understanding of programs. With that 
understanding, the only way to check whether a program is correct is to test it – by 
executing it with a variety of inputs to see if the outputs are right. All programs should be 
tested, but there are two limitations, or problems, with testing.


One problem with testing is: how do you know if the outputs are right? Maybe you 
wrote the program to tell you answers you didn't already know, so testing doesn't tell you if 
it's right. In that case, you should test to see at least if the answers are reasonable.


The other problem with testing is: you cannot try all inputs. There are too many. 
Maybe an infinite number. Even if all the test cases you do try give reasonable answers, 
there might be errors lurking in cases you didn't test.


From this course, you now have an understanding of programs that's completely 
different from execution. When you prove that a program refines a specification, you are 
considering all inputs at once, even if there are infinitely many of them. And you are 
proving that the outputs have the properties stated in the specification, even if you didn't 
know what the value of the output should be. That's far more than can ever be accomplished 
by testing.


But it's also more work than trying some inputs and looking at the outputs. So that 
raises the question: when is the extra assurance of correctness worth the extra work?


If the program you are writing is easy enough that you can probably get it right 
without any theory, and it doesn't really matter if there are some errors in it, then maybe the 
extra assurance isn't worth the trouble. If you are writing a pacemaker controller for a heart, 
or the software that controls a subway system, or an air traffic control program, or nuclear 
power plant software, or any other programs that people's lives will depend on, then the 
extra assurance is definitely worth the trouble, and you would be negligent, and you could be 
sued for negligence, if you did not use the theory.


To prove that a program refines a specification after the program is finished is very 
difficult. It's much easier to do the proof while you're writing the program. The information 
you need, to make one step in programming, is exactly the same information you need to 
prove that step is correct. The extra work is mainly to write down that information formally. 
It's also the same information that will be needed later for program modification, so writing 
it explicitly at each step will save effort later. And if you try to prove a step, and you find 
that it's incorrect, you save all the effort of building the rest of your program on a wrong 
step. And after you become practiced and skillful at using the theory, you find that it helps in 
the program design; it suggests programming steps. In the end, it may not be any extra effort 
at all.


In this course we looked only at small programs. But the theory is not limited to 
small programs; it's independent of scale; it's applicable to any size of software. In a large 
software project, the first design decision might be to divide the task into several pieces that 
will fit together in some way. You can write this decision as a refinement, specifying exactly 
what the parts are and how they fit together. And then the refinement can be proven. Using 
the theory in the early stages of a large project is enormously beneficial, because if an early 
step is wrong, it's enormously costly to correct it later.


As a programmer, you might not be allowed to use formal programming methods. 
Your manager might not know how to use them, and it may not be company policy. But that 
will change, especially when people like you become managers.


What's needed right now are good tools to support the use of formal methods. 
Ideally, an automated prover watches what you do, suggesting refinements, and proving 
each refinement for you.  As long as your program is correct, it keeps quiet. But it complains 
whenever there is a mistake, and says exactly what's wrong. We have syntax checkers that 
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say: syntax error on line 23. And type checkers that say: type violation on line 23. This is 
just the next thing in that series. It's a logic checker. It says: bug on line 23, and tells you 
what the bug is. And the only way to do that is to use the theory of programming – to write 
specifications, and prove refinements. At present there are a few tools in use that provide 
some assistance, but they're far from ideal. There are still plenty of opportunities for tool 
builders.


The main thing that I hope you got out of this course is a new understanding of 
programs.  It's been a pleasure. Bye bye.


