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[1] One of the problems with shared variables, and also with interactive variables, is that 
they provide too much information. A process doesn't need the complete state of another 
process at all times. It just needs something about the state, and only at some times. Another 
problem is that a process has to somehow time its reads so that it isn't reading the value of 
an interactive variable while its owner process is in the middle of writing to it. There's 
another way to get interaction between processes that doesn't have these problems. It's 
called communication channels. And it's good for communication between computers and 
people, also. [2] A communication channel is 4 things. [3] The message script is the string of 
all communications on the channel. That's all communications, past, present, and future. It's 
not a variable; it's a constant. [4] The time script is the string of times that the messages are 
sent. It is also a constant. [5] The read cursor is a variable indexing the two scripts, telling 
how much has been read so far. [6] Likewise the write cursor is a variable telling how much 
has been written. [7] Here's a picture of it. By the way, if there's more than one channel, we 
use the channel name as part of the message script name, and part of the time script name, 
and cursor names, to say which channel we're talking about. But if there's only one channel, 
or it's obvious which channel we're talking about, we might leave out the channel name, as 
I've done in this picture. The messages here are all natural numbers, but they could be any 
type. The times have to be nondecreasing numbers, as you see here. The write cursor, w, 
shows how much has been written, and the read cursor, r, shows how much has been read. 
As the computation progresses, w and r might increase, but they never decrease.

To an observer, watching the computation, future message are unknown. The 
observer does not see these scripts, or the cursors. The observer just sees the messages as 
they are read. But a specifier has to be able to say what the messages will be when the 
program is executed. So the specifier needs to refer to all messages and times, past, present 
and future, and that's what the scripts are for. They are not programming notations. [8] Here 
are some programming notations. [9] This one is output, or writing. On channel c, write the 
value of expression e. It says that the message, at the write cursor, is e, and the time at the 
write cursor is t, and increase the write cursor. [10] Next comes reading, or input. In most 
programming languages, input has a variable to serve as the target of the read. But not here. 
The value being read already exists in some buffer somewhere, and there's really no need to 
make another copy of it. So reading is just increasing the read cursor. [11] The way we refer 
to the value that was just read is by the channel name. That saves having to misspell 
something because the name that is appropriate for the channel is also the name that would 
be appropriate for a variable to receive a message from the channel. And last [12] is a binary 
expression, check c, that tells whether there are any written but unread messages on this 
channel. Script T is the list of times that messages are written, so it says: the time when the 
message-to-be-read-next was written is before now. [13][14] Here's a sample program just 
to see how they look. [15] If there is any input on channel key currently available, then [16] 
read it. And [17] if the key we just read is the letter y, [18] then output this text to channel 
screen, [19] else output some other text, [20] and if there's no input available on channel 
key, then print a prompt on channel screen. [21]

As a simple example of specification, [22] we can repeatedly input numbers from 
channel c, and output their doubles on channel d. Formally, that's [23] for all n, the message 
on channel d at w plus n is twice the message on channel c at r plus n. We cannot assume 
that the messages we are reading and writing are the first ones ever read or written on these 
channels. We have to start at the current read and write cursor positions, and specify that 
after that, whatever we find on channel c will be doubled and written on channel d. Let's call 
the specification [24] S for short. And [25] now we refine it. The program says read on 
channel c, and then output on channel d twice what was read, and then repeat. We have to 
[26] prove the refinement. So I'll [27] start with the right side. Reading on c [28] just means 
increasing the read cursor. Writing on d means [29] the message on d at the write cursor is 
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the expression being written, which is twice the message on c that was just read. And there's 
a time part, but I left that out because we're not worrying about time in this one. And 
increase the write cursor. And then [30] S again. [31] This assignment will be used in the 
substitution law to substitute for [32] r c right here. And [33] these two assignments will be 
used for substitution in [34] S. So [35] here's what we get. The first output is twice the first 
input, and then all the outputs after that are twice the inputs after that. We can simplify that 
[36], and what we get is just [37] S again, so that's the proof.

[38] We need to account for the time of communications. As always, [39] there's real 
time, where we need to know the implementation to know how much time to charge for the 
various operations. [40] Without the implementation, there's transit time, in which input and 
output take no time, but communication transit takes time 1. That means, after the message 
has been written, there's 1 time unit before it's ready to be read. It's in transit between the 
writer and the reader. Also, the reader might have to wait a long time before the writer 
writes the message that the reader is supposed to read. So whenever there's an [41] input, we 
put t gets the maximum of t and time script at read cursor plus 1 in front of it. We have to 
wait at least until it's written, that's script T sub r, plus 1 more time unit for transit. But we 
might not have to wait at all if the message was written more than 1 time unit ago. So that's 
the maximum of the current time, and the time the message is ready to be read. [42] 
Checking for input becomes script T sub r, plus 1, is less than or equal to time t.

Let's try an example with time. [43] W says wait for input, and then read it. This isn't 
really much of an example, because it's just a single input, which is a programming notation, 
with the normal input wait in front of it. So it's program already, and we don't need to 
implement it. But I'm going to implement it like [44] this, because this is how input really is 
implemented on every computer. If the input is there then read it; if not then check again, 
repeatedly. It's a busy-wait loop, with recursive time. To [45] prove the refinement, I start 
with the right side. We [46] replace check c and W with their definitions. In the then-part, 
I'm putting [47] t gets t, which is harmless, and in the else-part I'm using the substitution law 
[48] to replace t in the middle part with t plus 1. Now the main step. In the then-part, we can 
assume the if-part is true, so the time t is the [49] maximum of time t and script T sub r, plus 
1. In the else-part, we can assume the if-part is false, so script T sub r, plus 1 is strictly 
bigger than time t, and I'm also assuming time is integer-valued, so the maximum is script T 
sub r, plus 1, and it's also the maximum of [50] time t and script T sub r, plus 1. Now the 
then-part and else-part are the same, and they're both [51] W. And that completes the proof.

[52] Here's an example of a recursively defined program. It's the example we saw a 
few minutes ago, where the outputs were double the inputs, but there we had a specification, 
and we refined it to a program and proved the refinement. Here we are defining dbl by this 
equation. What makes this different from the recursive definitions we saw before is that this 
is an infinite loop. It has more than one solution. The [53] weakest solution is the 
specification we saw before, but with timing added. It says that the outputs on channel d are 
double the inputs on channel c, and they occur one per time unit. A [54] stronger solution, in 
fact the strongest implementable solution, says also that the read cursor for c and the write 
cursor for d and the time all end at infinity, and the write cursor for c and the read cursor for 
d are unchanged. The [55] strongest solution is false, which is unimplementable. If we want 
to define dbl as the weakest solution, we need to add an induction axiom. Even without an 
induction axiom, we can [56] use dbl to refine the weakest solution, and [57] we can execute 
it.

[58] If you are given a recursive definition, which is what any procedure in your 
favorite programming language is, or even any loop in your favorite programming language, 
and you want to know what is being defined, you can try recursive construction, as usual. 
[59] Suppose we start with true. Then [60] dbl 1 is obtained by using dbl 0 in the definition, 
and after simplification, it says that the first output is twice the first input, and it happens at 
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time t, right away. [61] We get dbl 2 by using dbl 1, and after simplification it tells us that 
the first two outputs are double the first two inputs, and they happen at t and t plus 1. [62] 
When we get to dbl infinity, it says what all the outputs are, and when they are, and it is the 
weakest solution of the dbl equation. And of course we could try other starting points and 
get other solutions.

[63] The last topic for this lecture is the monitor. It's important because this is the 
way shared variables are implemented. Monitors have been invented by more than one 
person, and their origin is in some dispute. But they are used whenever shared memory for 
parallel processes is wanted. [64] A monitor for a shared variable x is a process in parallel 
with all processes that share variable x. If some process, let's say process 0, writes to x, that 
means assigns to x, there must be a channel, let's say channel x0in, to send the value to the 
monitor for x. And the monitor has a channel x0ack to send back an acknowledgement that 
it has assigned the value to x. If another process writes to x, there must be a channel, x1in, 
to send the values it assigns, and a channel x1ack for the monitor to send back 
acknowledgements. And so on. The left side of the picture shows the channels for the 
processes that assign values to x. On the right side we have the channels for the processes 
that need the value of variable x. They may be the same processes that write to x, or 
different processes. If process 0 needs the value of variable x, it sends a request, on channel 
x0req, and then the monitor sends back the current value on channel x0out. And so on for 
any other processes. What does the monitor do? Roughly speaking, it serves the requests 
from the other processes to assign to or read from the value of variable x, in the order it 
receives the requests. Why do we need a process to do that? Because there may be 
conflicting requests, for example, two processes may request to assign different values to x 
at the same time. The monitor has to resolve all such conflicts. [65] Here's its specification. 
There's [66] one line like this for each input channel to the monitor. Each of these lines 
serves one request to assign to x or to read x. And they're all disjoined together, so at least 
one of them has to be satisfied, and then the monitor repeats endlessly. [67] The first line is 
for process 0 to assign to x. The action performed is [68] to read the value to be assigned, 
then [69] to assign it to x, then [70] to send back the acknowledgement. On [71] this line, 
the action is to [72] read the request for a value from process 1, then [73] send back the 
current value of x to process 1. [74] That's what happens. Now the harder part is when it 
happens. [75] Here it says if there is input already on a channel from another process, then 
the corresponding action can happen. If not, if there are no inputs already there, then [76] 
these equations determine which action happens. The script Ts are the times the next input 
will be sent, and [77] m is the minimum of all these times. So if the first request that will 
arrive is on this channel, then this action can be performed. [78] There is some 
nondeterminism. If there's a tie for which request comes first, either one can be served first 
and the other next. If requests arrive faster than they can be served, again the order is 
nondeterministic. When we implement a monitor, we make a choice about how to resolve 
the nondeterminism. For example, [79] here's one way to implement it. The channels are 
checked cyclically, serving requests whenever input is available.

I've shown you how to specify monitors for shared variables, and how to implement 
them. What I haven't shown you is how to use shared variables and reason about them in 
programs. That's because I find them too hard to reason about. That's why I stick to 
interactive variables, which are easier but still hard enough. Or better yet, to boundary 
variables, using channels for interaction. 


