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[1] This lecture is called recursive program definition, but I think that's not the right name. 
Programs are just special cases of specifications, and what I have to say applies to 
specifications generally. So let's rename it [2] recursive specification definition. And [3] here 
is one, where x is an integer variable and t is time. It's really just a [4] recursive procedure 
or method definition as you might write in a programming language, except for some 
syntactic differences, and also the t gets t plus 1 that I put in for recursive time. [5] But it 
doesn't define zap very well because this equation has many [6] solutions for zap. Here are 6 
of them. The [7] top solution is the weakest one; it says the least about the computation 
because it only talks about when x is nonnegative. The [8] bottom two are too strong to be 
talking about computation; they're unimplementable. [9] Here's the relationship among these 
solutions. A structure like this is called a lattice. Even if we don't know any more about zap, 
we at least know that it's [10] stronger than or equal to the weakest solution, so that means 
we can use it to refine at least this one specification. And we know [11] zap is refined by its 
constructor, so it's implemented and we can execute it. I said constructor because the zap 
equation is a fixed-point construction axiom. It says zap equals a function of zap. [12] Let 
me show how we can define zap by ordinary construction and induction. [13] Here are the 
construction axioms. And to help see why these are construction axioms, [14] here are the 
nat construction axioms for comparison. The [15] first one is a base case. For zap it says that 
time doesn't go backwards, which is true for all computation. The reverse implication in the 
zap axiom is playing the same role as the colon in the nat axiom. The [16] other construction 
axiom takes a step. For nat it's adding one; for zap it's one loop iteration. And in each case, 
we can [17] write the pair as a single axiom. And that's helpful for writing the [18] induction 
axiom. For nat, the induction axiom says that of all bunches satisfying the construction 
axiom, nat is the smallest. For zap, induction says that of all specifications satisfying the 
construction axiom, zap is the weakest. I'm not sure that we want to define zap as the 
weakest solution, but if we do, we need this induction axiom. [19] Or, another way to get 
the same result, is [20] fixed-point construction and induction, where we strengthen the 
implication to an equation, both in the construction axiom and in the antecedent of the 
induction axiom.

[21] There's a procedure for finding the fixed point, just like there was for recursive 
data definition. We can start with [22] zap sub 0 equals true, and then [23] zap sub 1 equals 
the constructor but with zap 0 replacing zap. This can be [24] simplified. x equals 0 implies 
x prime and y prime are both 0 and t prime equals t. To get [25] zap 2, use zap 1. And this 
simplifies to [26] if x is in 0 to 2, then x prime and y prime are both 0, and t prime equals t 
plus x. Maybe we should do a few more, or maybe we can now guess the general case. I'm 
guessing [27] zap n equals if x is in 0 to n, then x prime and y prime are 0 and t prime is t 
plus x. Then we [28] replace n with infinity, and we have a candidate, which we have to test 
by seeing if it satisfies the construction axiom. And if we have an induction axiom, we have 
to test it in that too. In this case, it does satisfy both of them. It is the weakest solution for 
zap.

This recursive construction procedure has some options. We [29] don't have to start 
at true. We can start with any specification. Different starting points may give different 
candidates for solutions. And [30] instead of substituting infinity for n, we could take the 
limit. Occasionally that gives a different candidate for solution. [31] My favorite starting 
place is [32] t prime greater than or equal to t. Using that for zap 0, we get [33] this for zap 
1, — and [34] this for zap 2, — and [35] this for zap n, — and finally [36] this for zap 
infinity. It's a different solution of the zap construction axiom. It's not the weakest solution, 
so it doesn't satisfy zap induction. I think it's better than the weakest solution as a 
description of the zap computation.

I gave you the best way of proving programs with while loops and other loop 
constructs in them in a previous lecture. But I said there is another way of dealing with 
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them. And [37] here it is. We can define a while-loop by construction and induction. Here 
are the two construction axioms. The first one is a base case saying that while loops don't 
make time go backwards. The second one is the step, saying that a while loop implements 
its first unrolling. The time increase and placement depends on your choice of timing policy. 
We can write these two axioms as a [38] single axiom, like this. And that helps for writing 
the [39] induction axiom, which says that of all specifications solving the construction 
axiom, the while loop is the weakest. That's ordinary construction and induction. We could 
also write [40] fixed-point construction and induction by changing an implication into an 
equation. The fixed-point definition is equivalent to the ordinary definition. If you ever hear 
the term "least fixed-point semantics", this is what it means. It's the most popular way to 
define the meaning of loops, but I think the way loops are defined in Chapter 4 is both 
simpler and more useful.


