bunch
set
string
list

bunch unpackaged unindexed
setpackagedunindexed
string
list

bunch	unpackaged	unindexed
set	packaged	unindexed
string	unpackaged	indexed

list

bunch	unpackaged	unindexed
set	packaged	unindexed
String	unpackaged	indexed
list	packaged	indexed

String Theory

Strings are indexed sequences.

String Theory

Strings are indexed sequences.
the empty string

String Theory

Strings are indexed sequences.
nil
3
the empty string
a one-item string

String Theory

Strings are indexed sequences.
nil
3
3; 5; 7; 9
the empty string
a one-item string
a four-item string

String Theory

Strings are indexed sequences.

nil	the empty string
3	a one-item string
$3 ; 5 ; 7 ; 9$	a four-item string
$\leftrightarrow(3 ; 5 ; 7 ; 9)=4$	string length operator

nil
3
3; 5; 7; 9
$\leftrightarrow(3 ; 5 ; 7 ; 9)=4$
the empty string
a one-item string
a four-item string
string length operator

String Theory

Strings are indexed sequences.

```
nil the empty string
3 a one-item string
3;5;7;9 a four-item string
\leftrightarrow ( 3 ; 5 ; 7 ; 9 ) = 4 ~ s t r i n g ~ l e n g t h ~ o p e r a t o r ~
3 ; 5 ; 7 7 ; 9 , 
```


String Theory

Strings are indexed sequences.

nil	the empty string
3	a one-item string
3; 5; 7; 9	a four-item string
$\leftrightarrow(3 ; 5 ; 7 ; 9)=4$	string length operator
$3 ; 5 ; 7 ; 9$	
123	\longleftarrow indexes

String Theory

Strings are indexed sequences.

String Theory

Strings are indexed sequences.

nil		the empty string
3		a one-item string
3; 5; 7; 9		a four-item string
$\leftrightarrow(3 ; 5 ; 7 ; 9)=4$		string length operator
$3 ; 5 ; 7 ; 9$		
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4\end{array}$	5	6
$\longleftarrow \rightarrow$		

String Theory

Strings are indexed sequences.

nil	the empty string
3	a one-item string
3; 5; 7; 9	a four-item string
$\leftrightarrow(3 ; 5 ; 7 ; 9)=4$	string length operator
$3 ; 5 ; 7 ; 9$	
$\begin{array}{llllll}0 & 1 & 2 & 3 & 4\end{array}$	6

$$
(3 ; 5 ; 7 ; 9)_{2}=7
$$

String Theory

Strings are indexed sequences.

At index n, the number of items processed is n the next item to be processed is item n

String Theory

Strings are indexed sequences.

```
nil the empty string
3 a one-item string
3;5;7;9 a four-item string
\leftrightarrow ( 3 ; 5 ; 7 ; 9 ) = 4 ~ s t r i n g ~ l e n g t h ~ o p e r a t o r
3 ; 5 ; 7 7 ; 9 , 
(3;5;7;9)}\mp@subsup{)}{2}{=7
(3;5;7;9) 2;1;2 = 7; 5;7
```


Zero

Zero

John Allen Paulos:
Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang, 1988
Beyond Numeracy, Knopf, 1991

Zero

John Allen Paulos:
Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang, 1988
Beyond Numeracy, Knopf, 1991
$0.10 ¢$

Zero

John Allen Paulos:
Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang, 1988
Beyond Numeracy, Knopf, 1991
$0.10 ¢ \quad \$ 1.02 .9$

Zero

John Allen Paulos:
Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang, 1988
Beyond Numeracy, Knopf, 1991
$0.10 ¢ \quad \$ 1.02 .9$
There are a number of things to discuss. (But not zero things to discuss.)

Zero

John Allen Paulos:
Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang, 1988
Beyond Numeracy, Knopf, 1991
$0.10 ¢ \quad \$ 1.02 .9$
There are a number of things to discuss. (But not zero things to discuss.)
Subtract line A from line B; if there is no difference, write "nil".

Zero

John Allen Paulos:
Innumeracy: Mathematical Illiteracy and its Consequences, Hill and Wang, 1988
Beyond Numeracy, Knopf, 1991
$0.10 ¢ \quad \$ 1.02 .9$
There are a number of things to discuss. (But not zero things to discuss.)
Subtract line A from line B; if there is no difference, write "nil".
keyboard, telephone: 1234567890

If you need more space, use the "Comments" section on page 28.
*

Does anyone in this household OPERATE
a farm, ranch or other agricultural
holding?
Other agricultural holdings include, for example:

feedlots; greenhouses; mushroom houses; nurseries; fur farms; and beekeeping, sod, berry and maple syrup operations.

Turn the page and copy the names from
Step 5 into the spaces across the
top of the page.
Then continue with the questionnaire.

Note:
If there are more than six persons in this household, enter the first six on this questionnaire and continue on a second questionnaire. If you do not have a second questionnaire, note this in the "Comments" section on page 28. A census representative will contact you.

36 Overseas Codes

Long Distance Calls

Codes for Dialing Overseas

For station-to-station calls; DIAL/PRESS:
011 + Country Code + Routing Code + Local Number
For automated Calling CardTM calls; PRESS:
$01+$ Country Code + Routing Code + Local Number

+ (after tone) your 14 digit North American card number

For person-to-person and other types of calls; DIAL/PRESS: $01+$ Country Code + Routing Code + Local Number

For countries or cities not listed; DIAL/PRESS: " 0 " (zero) and ask the operator for the routing codes.

Legend: * Routing codes not required
TD Approximate time difference
-- in hours from Eastern Standard time
NA Time difference not applicable
These overseas codes were in effect at the time of printing this directory.

COUNTRY \& COLNTRY CODE	ROUTING CODE	TD	COUNTRY \& COUNTRY CODE	ROUTING CODE	TD	COUNTRY \& COUNTRY CODE	ROUTING CODE	TD
Cameroon 237Chile 56SantiagoValparaisoViña Del Mar		$+6$	Cuba 53 Except Havana	*	NA	Ethiopia 251		$+8$
				7			1	
		+2		5		Asmara	4	
	2		Cyprus 357		$+7$	\% Dire Dawa	5	
	- 32		Larnaca	4		\cdots +		
	32		Limassol	5		Faroe Islands 298		+ 6
			Nicosia			Faroe islands 298	\pm	$+6$
China 86		$+13$						
Beijing (Peking)	1		Czech And Slovak 42		$+6$	Fiji Islands 679	*	$+17$
Chengdu	- 28		Bratislava	7				
Shanghai			: Brno	5	-			
Shanghai	\cdots		Prague	- 2		Finland 358		+7
						- Helsinki	0	
Christmas Island 672		$+12$	n_-n-men			Tampere	31	

34 Overseas Codes

Overseas Calls

Codes for frequently called countries

For station-to-station calls: dial 011 + the country code + the routing code + the local number.
,
Foŕ person-to-person and other types of calls: dial $01+$ the country code + the routing code + the local number.

For Automated Billing Service calls: dial 01 + the country code + the routing code + the local number, and (after the tone) the Automated Billing Service will tell you what steps to take to complete your call.

Dial 0 (zero):

- to obtain a number you don't know.
- to obtain credit for unsatisfactory calls, e.g. when you reach a wrong number.
Legend: * Routing codes not reguired.
TD Approximate time difference in hours. from Eastern Standard time
$=$ Time difference not applicable.
These overseas codes were in effect at the time of printing this directory.

Overseas Calls

Legend for Country and City Code Table

0 No time difference
\star City codes not required.

TD Approximate time difference in hours from Eastern Standard time

FREQUENTLY CALLED PLACES

For countries or cities NOT listed dial "0" (zero) and ask the operator for the appropriate codes.
These overseas codes were in effect at the time of printing this directory.
"Trade mark of Teleglobe Canada Inc.

Zero

Measuring must start at 0 .

Zero

Measuring must start at 0 . Counting is measuring.

Zero

Measuring must start at 0 . Counting is measuring.
An octave is an interval of 8 . What interval is 2 octaves?

Zero

Measuring must start at 0 . Counting is measuring.
An octave is an interval of 8 . What interval is 2 octaves? It's 15 .

Zero

Measuring must start at 0 . Counting is measuring.
An octave is an interval of 8 . What interval is 2 octaves? It's 15 .
How many years from July 1 in year X to July 1 in year Y?

Zero

Measuring must start at 0 . Counting is measuring.
An octave is an interval of 8 . What interval is 2 octaves? It's 15 .
How many years from July 1 in year X to July 1 in year Y? Y-X years?

Zero

Measuring must start at 0 . Counting is measuring.
An octave is an interval of 8 . What interval is 2 octaves? It's 15 .
How many years from July 1 in year X to July 1 in year Y? Y-X years?
Fortran 1955 loop body had to be executed at least once.

Zero

Measuring must start at 0 . Counting is measuring.
An octave is an interval of 8 . What interval is 2 octaves? It's 15 .
How many years from July 1 in year X to July 1 in year Y? Y-X years?
Fortran 1955 loop body had to be executed at least once.
count $:=0$.
while there's another one
do count $:=$ count +1
od

Zero

Measuring must start at 0 . Counting is measuring.
An octave is an interval of 8 . What interval is 2 octaves? It's 15 .
How many years from July 1 in year X to July 1 in year Y? Y-X years?
Fortran 1955 loop body had to be executed at least once.
count $:=0$.
while there's another one
do count $:=$ count +1
od
Algol 1958, PL/I, Pascal: array must have at least 1 element.

Zero

Zero

first: preceding all others in time, order, or importance

Zero

first: preceding all others in time, order, or importance
last: following all others in time, order, or importance

Zero

first: preceding all others in time, order, or importance
last: following all others in time, order, or importance
second: following the first

Zero

first: preceding all others in time, order, or importance 1st
last: following all others in time, order, or importance
second: following the first
2nd

Zero

first: preceding all others in time, order, or importance 4st 0st
last: following all others in time, order, or importance second: following the first 2nd 1nd

Zero

first: preceding all others in time, order, or importance 4st

Ost
last: following all others in time, order, or importance
second: following the first
2nd
4nd

Zero

first: preceding all others in time, order, or importance 4st

Ost
last: following all others in time, order, or importance second: following the first 2nd 4nd third year of life $=$ what age ?

Zero

first: preceding all others in time, order, or importance 4st

Ost
last: following all others in time, order, or importance second: following the first

2nd
4nd

Zero

first: preceding all others in time, order, or importance 1st

Ost
last: following all others in time, order, or importance second: following the first 2nd 1nd
tenth annual picnic $=$ how many years?

Zero

first: preceding all others in time, order, or importance 1st

Ost
last: following all others in time, order, or importance second: following the first 2nd fnd third year of life $=$ what age ? 2
tenth annual picnic $=$ how many years? 9

Zero

first: preceding all others in time, order, or importance 1st

Ost
last: following all others in time, order, or importance
second: following the first
2nd
fnd
third year of life $=$ what age ? 2
tenth annual picnic = how many years? 9
the eleventh hour: the latest possible time

Zero

first: preceding all others in time, order, or importance 4st Ost
last: following all others in time, order, or importance
second: following the first
2nd
4nd
third year of life $=$ what age? 2
tenth annual picnic $=$ how many years? 9
the eleventh hour: the latest possible time 10 to 11 o'clock?

Zero

first: preceding all others in time, order, or importance 4st Ost
last: following all others in time, order, or importance
second: following the first
2nd
1nd
third year of life $=$ what age? 2
tenth annual picnic $=$ how many years? 9
the eleventh hour: the latest possible time 10 to 11 o'clock?

Zero

first: preceding all others in time, order, or importance 4st Ost
last: following all others in time, order, or importance
second: following the first
2nd
1nd
third year of life $=$ what age? 2
tenth annual picnic = how many years? 9
the eleventh hour: the latest possible time 10 to 11 o'clock?
the fifteenth item $=$ item 15 ? item 14 ?

Zero

first: preceding all others in time, order, or importance 4st Ost
last: following all others in time, order, or importance
second: following the first
2nd
1nd
third year of life $=$ what age? 2
tenth annual picnic = how many years? 9
the eleventh hour: the latest possible time 10 to 11 o'clock?
the fifteenth item $=$ item 15 ? item 14 ?
zeroth item $=$ item 0 ?

Zero

first: preceding all others in time, order, or importance 4 st 0 st
last: following all others in time, order, or importance
second: following the first
2nd
4nd
third year of life $=$ what age? 2
tenth annual picnic = how many years? 9
the eleventh hour: the latest possible time 10 to 11 o'clock?
the fifteenth item $=$ item 15 ? item 14 ?
zeroth item $=$ item 0 ? first item

String Theory

Strings are indexed sequences.

String Theory

Strings are indexed sequences.

$$
3 ; 6 ; 4 ; 1<3 ; 7 ; 2 \quad \text { order }
$$

String Theory

Strings are indexed sequences.

$$
\begin{array}{ll}
3 ; 6 ; 4 ; 1<3 ; 7 ; 2 & \text { order } \\
3 ; 6 ; 4<3 ; 6 ; 4 ; 1 & \text { order }
\end{array}
$$

String Theory

Strings are indexed sequences.
$3 ; 6 ; 4 ; 1<3 ; 7 ; 2$
$3 ; 6 ; 4<3 ; 6 ; 4 ; 1$
$x ;. . y$
order
order
" x to $y "$ for $x \leq y$

String Theory

Strings are indexed sequences.

$$
\begin{array}{ll}
3 ; 6 ; 4 ; 1<3 ; 7 ; 2 & \text { order } \\
3 ; 6 ; 4<3 ; 6 ; 4 ; 1 & \text { order } \\
x ; . . y & \text { " } x \text { to } y " \text { for } x \leq y \\
\leftrightarrow(x ; . . y)=y-x & \text { length }
\end{array}
$$

String Theory

Strings are indexed sequences.

$$
\begin{array}{ll}
3 ; 6 ; 4 ; 1<3 ; 7 ; 2 & \text { order } \\
3 ; 6 ; 4<3 ; 6 ; 4 ; 1 & \text { order } \\
x ; . . y & \text { " } x \text { to } y " \text { for } x \leq y \\
\leftrightarrow(x ; . . y)=y-x & \text { length } \\
(x ; . y) ;(y ; . . z)=x ; . z & \text { join }
\end{array}
$$

String Theory

Strings are indexed sequences.

$3 ; 6 ; 4 ; 1<3 ; 7 ; 2$	order
$3 ; 6 ; 4<3 ; 6 ; 4 ; 1$	order
$x ;. . y$	" x to $y "$ for $x \leq y$
$\leftrightarrow(x ; . . y)=y-x$	length
$(x ; . . y) ;(y ; . . z)=x ; . . z$	join
"Don't say ""'no"".".	text

String Theory

Strings are indexed sequences.

$$
\begin{aligned}
& 3 ; 6 ; 4 ; 1<3 ; 7 ; 2 \\
& 3 ; 6 ; 4<3 ; 6 ; 4 ; 1 \\
& x ; . . y \\
& \leftrightarrow(x ; . . y)=y-x \\
& (x ; . . y) ;(y ; . . z)=x ; . z \\
& \text { "Don't say "" no""," } \\
& \text { order } \\
& \text { order } \\
& \text { " } x \text { to } y " \text { for } x \leq y \\
& \text { length } \\
& \text { join } \\
& \text { text } \\
& =\quad " D " ; \text { "o"; "n"; "'"; "t"; " "; "s"; "a"; "y"; " "; """‘"; "n"; "o"; "‘"""; "." }
\end{aligned}
$$

String Theory

Strings are indexed sequences.

String Theory

Strings are indexed sequences.

$3 ; 6 ; 4 ; 1<3 ; 7 ; 2$	order
$3 ; 6 ; 4<3 ; 6 ; 4 ; 1$	order
$x ;. . y$	" x to y " for $x \leq y$
$\leftrightarrow(x ; . . y)=y-x$	length
$(x ; . . y) ;(y ; . z)=x ; . . z$	join
"Don't say ""'no""."	text
"abcdefghij" ${ }_{3 ; . .6}=$ "def"	subtext
nat; 1; (0,..10)	distribution

String Theory

Strings are indexed sequences.

	$3 ; 6 ; 4 ; 1<3 ; 7 ; 2$	order
	$3 ; 6 ; 4<3 ; 6 ; 4 ; 1$	order
	$x ;. . y$	" x to y " for $x \leq y$
	$\leftrightarrow(x ; . . y)=y-x$	length
	$(x ; . . y) ;(y ; . z)=x ; . . z$	join
	"Don't say ""no""."	text
$=$	"D"; "o"; "n"; "'"; "t"; " "; "s"; "a"; "y"; " "; ""،"'"; "n"; "o"; "'">">, "."	
	"abcdefghij" ${ }_{3 ; . .6}=$ "def"	subtext
	0; 1; 2: nat; $1 ;(0, . .10)$	distribution

String Theory

Strings are indexed sequences.

$3 ; 6 ; 4 ; 1<3 ; 7 ; 2$	order
$3 ; 6 ; 4<3 ; 6 ; 4 ; 1$	order
$x ;. . y$	" x to y " for $x \leq y$
$\leftrightarrow(x ; . . y)=y-x$	length
$(x ; . . y) ;(y ; . z)=x ; . . z$	join
"Don't say ""'no"",."	text
"abcdefghij" ${ }_{3, .6}=$ "def"	subtext
0; 1; 2: nat; $1 ;(0, . .10)$	distribution
$3 *(4 ; 5)=4 ; 5 ; 4 ; 5 ; 4 ; 5$	repetition

String Theory

Strings are indexed sequences.

	$3 ; 6 ; 4 ; 1<3 ; 7 ; 2$	order
	$3 ; 6 ; 4<3 ; 6 ; 4 ; 1$	order
	$x ;. . y$	" x to y " for $x \leq y$
	$\leftrightarrow(x ; . . y)=y-x$	length
	$(x ; . . y) ;(y ; . z)=x ; . . z$	join
	"Don't say ""no"",."	text
$=$		
	"abcdefghij" ${ }_{3}{ }^{. .6}$ = "def"	subtext
	0; 1; 2: nat; $1 ;(0, . .10)$	distribution
	$3 *(4 ; 5)=4 ; 5 ; 4 ; 5 ; 4 ; 5$	repetition
	*3 = nil, 3,$3 ; 3,3 ; 3 ; 3, \ldots$	repetition

String Theory

Strings are indexed sequences.

3; 6; 4; $1<3 ; 7 ; 2$	order
3; 6; $4<3 ; 6 ; 4 ; 1$	order
$x ;. . y$	" x to y " for $x \leq y$
$\leftrightarrow(x ; . . y)=y-x$	length
$(x ; . . y) ;(y ; . . z)=x ; . . z$	join
"Don't say ""no"", "	text
"abcdefghij" ${ }_{3, .6}=$ "def"	subtext
0; 1; 2: nat; 1; (0,..10)	distribution
$3 *(4 ; 5)=4 ; 5 ; 4 ; 5 ; 4 ; 5$	repetition
*3 = nil , 3, 3;3, 3;3;3, \ldots	repetition
$(3 ; 5 ; 9) \triangleleft 2 \triangleright 8=3 ; 5 ; 8$	modification

List Theory

List Theory

[0; 1; 2]
a string in a package

List Theory

[0; 1; 2]
[nat; 1; (0,..10)]
a string in a package
distribution

List Theory

[0; 1; 2]
[0;1; 2]: [nat; 1; (0,..10)]
a string in a package
distribution

List Theory

[0; 1; 2]
[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]
a string in a package
distribution

List Theory

[0; 1; 2]
[$0 ; 1 ; 2]$: [nat $; 1 ;(0, . .10)]: \quad[3 *$ nat $]: \quad[* n a t]$
a string in a package
distribution

List Theory

$$
\begin{aligned}
& {[0 ; 1 ; 2]} \\
& {[0 ; 1 ; 2]:[n a t ; 1 ;(0, . .10)]:[3 * n a t]:\left[{ }^{* n a t]} \quad\right.} \\
& \begin{array}{l}
\text { a string in a } \\
\text { distribution }
\end{array} \\
& -(a, b)=-a,-b \\
& \\
& \text { negation of bunch }=\text { bunch of negations }
\end{aligned}
$$

List Theory

$$
\begin{aligned}
& {[0 ; 1 ; 2]} \\
& {[0 ; 1 ; 2]: \quad[n a t ; 1 ;(0, . .10)]:[3 * n a t]:\left[{ }^{*} n a t\right] \quad \text { distribution }} \\
& -(a, b)=-a,-b \\
& \\
& \begin{array}{c}
\text { negation of bunch }=\text { bunch of negations }
\end{array} \\
& (a+b) \times(c+d)=a \times c+a \times d+b \times c+b \times d \\
& \\
& \text { product of sums }=\text { sum of products }
\end{aligned}
$$

List Theory

```
[0;1;2]
[0;1;2]: [nat; 1;(0,..10)]: [3*nat]: [*nat] distribution
-(a,b) = -a,-b
    negation of bunch = bunch of negations
(a+b)\times(c+d) = a\timesc+a\timesd+b\timesc+b\timesd
    product of sums = sum of products
(a\veeb)^(c\veed) = a^c\vee 
    conjunction of disjunctions = disjunction of conjunctions
```


List Theory

```
[0; 1; 2]
[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat] distribution
-(a,b) = -a,-b
    negation of bunch = bunch of negations
(a+b)\times(c+d) = a\timesc+a\timesd +b\timesc+b\timesd
    product of sums = sum of products
(a\veeb)^(c\veed) = a^c \vee a^d v b^c\veeb^d
    conjunction of disjunctions = disjunction of conjunctions
[(2,3);(4,5)] = [2; 4], [2; 5],[3; 4], [3; 5]
    list of bunches = bunch of lists
```


List Theory

[0; 1; 2]
[$0 ; 1 ; 2]$: [nat $; 1 ;(0, . .10)]: \quad[3 *$ nat $]: \quad[* n a t]$
a string in a package
distribution

List Theory

[0; 1; 2]
[0; 1; 2]: [nat; 1; (0,..10)]: [3*nat]: [*nat]
$\sim[3 ;[5 ; 7] ; 4]=3 ;[5 ; 7] ; 4$
a string in a package
distribution
content

List Theory

[0; 1; 2]
[$0 ; 1 ; 2]$: [nat; $1 ;(0, . .10)]: \quad[3 *$ nat $]: \quad\left[{ }^{*}\right.$ nat $]$
$\sim[3 ;[5 ; 7] ; 4]=3 ;[5 ; 7] ; 4$
\#[3; [5; 7]; 4] $=3$
a string in a package
distribution
content
length

List Theory

[0; 1; 2]
[$0 ; 1 ; 2]$: [nat; $1 ;(0, . .10)]: \quad[3 *$ nat $]: \quad\left[{ }^{*}\right.$ nat $]$
$\sim[3 ;[5 ; 7] ; 4]=3 ;[5 ; 7] ; 4$
\#[3; [5; 7]; 4] $=3$
$[3 ;[5 ; 7] ; 4] 2=4$
a string in a package
distribution
content
length
index

List Theory

[0; 1; 2]
[$0 ; 1 ; 2]$: [nat; $1 ;(0, . .10)]: \quad[3 *$ nat $]: \quad\left[{ }^{*}\right.$ nat $]$
$\sim[3 ;[5 ; 7] ; 4]=3 ;[5 ; 7] ; 4$
\#[3; [5; 7]; 4] $=3$
$[3 ;[5 ; 7] ; 4] 2=4$
$\square[3 ;[5 ; 7] ; 4]=0, . .3$
a string in a package
distribution
content
length
index
domain

List Theory

[0; 1; 2]
[0; 1; 2]: [nat; $1 ;(0, . .10)]: \quad[3 *$ nat $]: \quad\left[{ }^{* n a t}\right]$
$\sim[3 ;[5 ; 7] ; 4]=3 ;[5 ; 7] ; 4$
\#[3; [5; 7]; 4] $=3$
$[3 ;[5 ; 7] ; 4] 2=4$
$\square[3 ;[5 ; 7] ; 4]=0, . .3$
$[3 ; 5 ; 7 ; 4][2 ; 1 ; 2]=[7 ; 5 ; 7]$
a string in a package
distribution
content
length
index
domain
composition

List Theory

[0; 1; 2]
[$0 ; 1 ; 2]$: [nat; $1 ;(0, . .10)]: \quad[3 *$ nat $]: \quad\left[{ }^{*}\right.$ nat $]$
$\sim[3 ;[5 ; 7] ; 4]=3 ;[5 ; 7] ; 4$
\#[3; [5; 7]; 4] $=3$
$[3 ;[5 ; 7] ; 4] 2=4$
$\square[3 ;[5 ; 7] ; 4]=0, . .3$
$[3 ; 5 ; 7 ; 4][2 ; 1 ; 2]=[7 ; 5 ; 7]$
$[3 ; 5 ; 7 ; 4] ;[2 ; 1 ; 2]=[3 ; 5 ; 7 ; 4 ; 2 ; 1 ; 2]$
a string in a package
distribution
content
length
index
domain
composition
join

List Theory

$[0 ; 1 ; 2]$	a string in a package
$[0 ; 1 ; 2]:[$ nat $; 1 ;(0, . .10)]:[3 *$ nat $]:\left[{ }^{*}\right.$ nat $]$	distribution
$\sim[3 ;[5 ; 7] ; 4]=3 ;[5 ; 7] ; 4$	content
$\#[3 ;[5 ; 7] ; 4]=3$	length
$[3 ;[5 ; 7] ; 4] 2=4$	index
$\square[3 ;[5 ; 7] ; 4]=0, . .3$	domain
$[3 ; 5 ; 7 ; 4][2 ; 1 ; 2]=[7 ; 5 ; 7]$	composition
$[3 ; 5 ; 7 ; 4] ;[2 ; 1 ; 2]=[3 ; 5 ; 7 ; 4 ; 2 ; 1 ; 2]$	join
$[3 ; 6 ; 4 ; 1]<[3 ; 7 ; 2]$	order
$[3 ; 6 ; 4]<[3 ; 6 ; 4 ; 1]$	order

List Theory

$[0 ; 1 ; 2]$	a string in a package
$[0 ; 1 ; 2]:[$ nat $1 ;(0, . .10)]:[3 *$ nat $]:\left[{ }^{*}\right.$ nat $]$	distribution
$\sim[3 ;[5 ; 7] ; 4]=3 ;[5 ; 7] ; 4$	content
$\#[3 ;[5 ; 7] ; 4]=3$	length
$[3 ;[5 ; 7] ; 4] 2=4$	index
$\square[3 ;[5 ; 7] ; 4]=0, . .3$	domain
$[3 ; 5 ; 7 ; 4][2 ; 1 ; 2]=[7 ; 5 ; 7]$	composition
$[3 ; 5 ; 7 ; 4] ;[2 ; 1 ; 2]=[3 ; 5 ; 7 ; 4 ; 2 ; 1 ; 2]$	join
$[3 ; 6 ; 4 ; 1]<[3 ; 7 ; 2]$	order
$[3 ; 6 ; 4]<[3 ; 6 ; 4 ; 1]$	order
$2 \rightarrow 22 \mid[10 ; .15]=[10 ; 11 ; 22 ; 13 ; 14]$	modification

List Theory

modification

Let $L=[10 ; . .15]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| L=
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| L=
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| \underline{L}=
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| L=[10 ; 11 ; 12 ; 13 ; 14]
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| L=[10 ; 11 ; 12 ; 13 ; 14]
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| L=[10 ; 11 ; 12 ; 12 ; 14]
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
\underline{2 \rightarrow L 3}|3 \rightarrow L 2| L=[10 ; 11 ; 12 ; 12 ; 14]
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| L=[10 ; 11 ; 12 ; 12 ; 14]
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| L=
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| \underline{L}=
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| L=[10 ; 11 ; 12 ; 13 ; 14]
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| L=[10 ; 11 ; 12 ; 13 ; 14]
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| L=[10 ; 11 ; 12 ; 12 ; 14]
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
\underline{2 \rightarrow L 3}|3 \rightarrow L 2| L=[10 ; 11 ; 12 ; 12 ; 14]
$$

List Theory

modification

Let $L=[10 ; . .15]=[10 ; 11 ; 12 ; 13 ; 14]$

$$
2 \rightarrow L 3|3 \rightarrow L 2| L=[10 ; 11 ; 13 ; 12 ; 14]
$$

String and List Theory

$$
S_{n, m}=S_{n}, S_{m}
$$

$$
L(n, m)=L n, L m
$$

String and List Theory

$$
\begin{aligned}
& S_{n, m}=S_{n}, S_{m} \\
& S_{\{n, m\}}=\left\{S_{n}, S_{m}\right\} \\
& S_{n ; m}=S_{n} ; S_{m} \\
& S_{[n ; m]}=\left[S_{n} ; S_{m}\right]
\end{aligned}
$$

$$
\begin{aligned}
& L(n, m)=L n, L m \\
& L\{n, m\}=\{L n, L m\} \\
& L(n ; m)=L n ; L m \\
& L[n ; m]=[L n ; L m]
\end{aligned}
$$

String and List Theory

$$
\begin{aligned}
& S_{n, m}=S_{n}, S_{m} \\
& S_{\{n, m\}}=\left\{S_{n}, S_{m}\right\} \\
& S_{n ; m}=S_{n} ; S_{m} \\
& S_{[n ; m]}=\left[S_{n} ; S_{m}\right]
\end{aligned}
$$

$$
L(n, m)=L n, L m
$$

$$
L\{n, m\}=\{L n, L m\}
$$

$$
L(n ; m)=L n ; L m
$$

$$
L[n ; m]=[L n ; L m]
$$

$$
S_{0,\{1,[2 ; 1] ; 0\}}
$$

$$
=\quad S_{0},\left\{S_{1},\left[S_{2} ; S_{1}\right] ; S_{0}\right\}
$$

List Theory

multidimensional structures

$$
\begin{aligned}
A=[& {[6 ; 3 ; 7 ; 0] } \\
& {[4 ; 9 ; 2 ; 5] } \\
& {[1 ; 5 ; 8 ; 3]] }
\end{aligned}
$$

List Theory

multidimensional structures

$$
\begin{aligned}
A=[& {[6 ; 3 ; 7 ; 0] } \\
& {[4 ; 9 ; 2 ; 5] } \\
& {[1 ; 5 ; 8 ; 3]] }
\end{aligned}
$$

A: $[3 *[4 * n a t]]$

List Theory

multidimensional structures

$$
\begin{aligned}
A=[& {[6 ; 3 ; 7 ; 0] } \\
& {[4 ; 9 ; 2 ; 5] } \\
& {[1 ; 5 ; 8 ; 3]] }
\end{aligned}
$$

A: $[3 *[4 * n a t]]$
$A 1=[4 ; 9 ; 2 ; 5]$

List Theory

multidimensional structures

$$
\begin{aligned}
& \begin{array}{l}
A=[\\
\\
\\
{[4 ; 3 ; 7 ; 2 ; 5] ;} \\
\\
\\
[1 ; 5 ; 8 ; 3]]
\end{array} \\
& A:[3 *[4 * n a t] \\
& A 1=[4 ; 9 ; 2 ; 5] \\
& A 12=2
\end{aligned}
$$

List Theory

multidimensional structures

```
A = [ [6;3;7;0];
    [4;9;2;5];
    [1;5;8;3]]
A: [3*[4*nat]]
A1 = [4;9;2;5]
A12 = 2
A(1,2)
A[1,2]
```


List Theory

multidimensional structures

$$
\begin{aligned}
& \begin{array}{l}
A=[6 ; 3 ; 7 ; 0] ; \\
\\
{[4 ; 9 ; 2 ; 5] ;} \\
\\
[1 ; 5 ; 8 ; 3]]
\end{array} \\
& A:[3 *[4 * n a t] \\
& A 1=[4 ; 9 ; 2 ; 5] \\
& A 12=2
\end{aligned}
$$

List Theory

multidimensional structures

```
A = [ [6;3;7;0];
    [4;9;2;5];
    [1;5;8;3]]
A: [3*[4*nat]]
A 1 = [4;9;2;5]
A12 = 2
A(1,2) = A 1, A 2 = [4;9;2; 5],[1;5;8;3]
A[1,2]
```


List Theory

multidimensional structures

```
A = [ [6;3;7;0];
    [4;9;2;5];
    [1;5;8;3]]
A: [3*[4*nat]]
A1 = [4;9;2;5]
A12 = 2
A(1,2) = A 1, A 2 = [4;9;2;5],[1;5;8;3]
A[1,2] = [l 1, A 2]
```


List Theory

multidimensional structures

```
A = [ [6;3;7;0];
    [4;9;2;5];
    [1;5;8;3]]
A: [3*[4*nat]]
A 1 = [4;9;2;5]
A12 = 2
A(1,2) = A 1, A 2 = [4;9;2;5],[1;5;8;3]
A[1,2] = [A 1, A 2] = [[4;9;2;5],[1;5;8;3]]
```


List Theory

multidimensional structures

```
A = [ [6;3;7;0];
    [4;9;2;5];
    [1;5;8;3]]
A: [3*[4*nat]]
A 1 = [4;9;2;5]
A12=2 
A(1,2) = A 1,A 2 = [4;9;2;5],[1;5;8;3]
A[1,2] = [A 1, A 2] = [[4;9;2;5],[1;5;8;3]]
```

