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Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Pphwl QO = (P. v'=v) A (Q. w'=w)
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Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Pphwl QO = (P. v'=v) A (Q. w'=w)

(a) Prove that if P and Q are implementable specifications, then P |[v|w| Q is

implementable.

Application Law (v b) a (substitute a for v in b)

Let the remaining variables (if any) be x .
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P. Vv=v expand sequential composition
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Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Pphwl QO = (P. v'=v) A (Q. w'=w)

(b) Describe how P |vlw| Q can be executed.
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Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Ppw|Q = (P. v'=v) A (Q. W'=w)
(b) Describe how P |vlw| Q can be executed.
Make a copy of all variables. Execute P using the original set of variables and in parallel

execute Q using the copies. Then copy back from the copy w to the original w . Then throw

away the copies.
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Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Ppw|Q = (P. v'=v) A (Q. W'=w)
(b) Describe how P |vlw| Q can be executed.

P v|w| Q@ < var cv:=v- var cw:=w" var cx:=x-

(P || (v,w,x,v,w',x"* Q) cvew cx eV’ ew' ex'). wi=cw
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