Binary Theory
Number Theory
Bunches
Functions
Specification
Time Calculation
Space Calculation
assertions

Scope

Data Structures

Control Structures

Review

laws

Character Theory
Sets

Quantifiers
Refinement

real time
maximum space

exact precondition

variable declaration

proof

Strings Lists

Program Development

recursive time

average space

invariant

exact postcondition

frame

array element assignment

while-loop

loop with exit for-loop

1/46

Review

Binary Theory laws proof

Number Theory Character Theory

Bunches Sets Strings Lists
Functions Quantifiers

Specification Refinement Program Development

Time Calculation real time recursive time

Space Calculation maximum space average space

assertions exact precondition exact postcondition invariant
Scope variable declaration frame

Data Structures array element assignment

Control Structures while-loop loop with exit for-loop

2/46

Binary Theory
Number Theory
Bunches

Functions
Specification
Time Calculation
Space Calculation
assertions

Scope

Data Structures

Control Structures

Review

laws

Character Theory
Sets

Quantifiers
Refinement

real time
maximum space
exact precondition

variable declaration

proof

Strings Lists

Program Development

recursive time

average space

array element assignment

while-loop

exact postcondition invariant
frame
loop with exit for-loop

3/46

Binary Theory
Number Theory
Bunches
Functions
Specification
Time Calculation
Space Calculation
assertions

Scope

Data Structures

Control Structures

Review

laws proof

Character Theory

Sets Strings Lists
Quantifiers

Refinement Program Development

real time recursive time

maximum space average space

exact precondition exact postcondition invariant

variable declaration frame
array element assignment

while-loop loop with exit for-loop

4/46

Time Dependence

Assertions

Subprograms

Probabilistic Programming
Functional Programming
Recursive Data Definition
Recursive Program Definition
Theory Design and Implementation
Data Transformation

Concurrent Composition

Interactive Variables

Review

wait
backtracking
function procedure

random number generator

refinement timing
construction induction
construction induction

data theory program theory

sequential to concurrent transformation

Communication Channels

5/46

Time Dependence

Assertions

Subprograms

Probabilistic Programming
Functional Programming
Recursive Data Definition
Recursive Program Definition
Theory Design and Implementation
Data Transformation

Concurrent Composition

Interactive Variables

Review

wait
backtracking
function procedure

random number generator

refinement timing
construction induction
construction induction

data theory program theory

sequential to concurrent transformation

Communication Channels

6/46

Time Dependence

Assertions

Subprograms

Probabilistic Programming
Functional Programming
Recursive Data Definition
Recursive Program Definition
Theory Design and Implementation
Data Transformation

Concurrent Composition

Interactive Variables

Review

wait
backtracking
function procedure

random number generator

refinement timing
construction induction
construction induction

data theory program theory

sequential to concurrent transformation

Communication Channels

7/46

Time Dependence

Assertions

Subprograms

Probabilistic Programming
Functional Programming

Recursive Data Definition

Recursive Program Definition
Theory Design and Implementation
Data Transformation

Concurrent Composition

Interactive Variables

Review

wait
backtracking
function procedure

random number generator

refinement timing
construction induction
construction induction

data theory program theory

sequential to concurrent transformation

Communication Channels

8/46

Time Dependence

Assertions

Subprograms

Probabilistic Programming
Functional Programming
Recursive Data Definition
Recursive Program Definition
Theory Design and Implementation
Data Transformation

Concurrent Composition

Interactive Variables

Review

wait
backtracking
function procedure

random number generator

refinement timing
construction induction
construction induction

data theory program theory

sequential to concurrent transformation

Communication Channels

9/46

Time Dependence

Assertions

Subprograms

Probabilistic Programming
Functional Programming
Recursive Data Definition
Recursive Program Definition
Theory Design and Implementation
Data Transformation

Concurrent Composition

Interactive Variables

Review

wait
backtracking
function procedure

random number generator

refinement timing
construction induction
construction induction

data theory program theory

sequential to concurrent transformation

Communication Channels

10/46

Time Dependence

Assertions

Subprograms

Probabilistic Programming
Functional Programming
Recursive Data Definition
Recursive Program Definition
Theory Design and Implementation
Data Transformation

Concurrent Composition

Interactive Variables

Review

wait
backtracking
function procedure

random number generator

refinement timing
construction induction
construction induction

data theory program theory

sequential to concurrent transformation

Communication Channels

11/46

Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Pphwl QO = (P. v'=v) A (Q. w'=w)

12/46

Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Pphwl QO = (P. v'=v) A (Q. w'=w)

[

13/46

Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Pphwl QO = (P. v'=v) A (Q. w'=w)

r 1

14/46

Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Pphwl QO = (P. v'=v) A (Q. w'=w)

(a) Prove that if P and Q are implementable specifications, then P |[v|w| Q is

implementable.

15/46

Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Pphwl QO = (P. v'=v) A (Q. w'=w)

(a) Prove that if P and Q are implementable specifications, then P |[v|w| Q is

implementable.

Application Law (v b) a (substitute a for v in b)

16/46

Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Pphwl QO = (P. v'=v) A (Q. w'=w)

(a) Prove that if P and Q are implementable specifications, then P |[v|w| Q is

implementable.

Application Law (v b) a (substitute a for v in b)

Let the remaining variables (if any) be x .

17/46

Disjoint Composition

P. Vv=vy

18/46

Disjoint Composition

P. Vv=v expand sequential composition

r’ r’

WX VWX PYV W X A V=Y

19/46

Disjoint Composition

P. Vv=v expand sequential composition

r’ r’

WX VWX PYV W X A V=Y

I I/

A", X" VW X PYV W x

one-point V"’

20/46

Disjoint Composition

P. Vv=v expand sequential composition

HV”,W”,X”' <V,, W,,X,' P> V” W” X” A V,:V”

HW”,X”' <Vl, W,,x,’ P> V, W” .X”

one-point V"’

rename w'',x"" to w',x’

21/46

Disjoint Composition

P. Vv=v expand sequential composition

HV”,W”,X”' <V,, W,,X,' P> V” W” x// A V,:V”

HW”,X”' <Vl’wl,x!. P> V, W” .X”

one-point V"’

rename w'',x"" to w',x’

22/46

Disjoint Composition

P. Vv=v expand sequential composition
WX VWX PYV W X A V=Y one-point V"’
A", XWX PYV W X rename w'',x"" to w',x'

', x (VW X PV W X

23/46

Disjoint Composition

P. Vv=v expand sequential composition
WX VWX PYV W X A V=Y one-point V"’
A", XWX PYV W X rename w'',x"" to w',x'
', x (VW X PV W X apply
aw', x'- P

24/46

Disjoint Composition

P. Vv=v expand sequential composition
WX VWX PYV W X A V=Y one-point V"’
A", XWX PYV W X rename w'',x"" to w',x'
', x (VW X PV W X apply
aw', x'- P
Q. w=w

', x'- QO

25/46

Disjoint Composition

P. Vv=v expand sequential composition
WX VWX PYV W X A V=Y one-point V"’
A", XWX PYV W X rename w',x" to w',x’
', x (VW X PV W X apply
aw', x'- P
!/
0. w=w
', x" O

Phiwl 0

26/46

Disjoint Composition

P. Vv=v expand sequential composition
WX VWX PYV W X A V=Y one-point V"’
A", XWX PYV W X rename w',x" to w',x’
', x (VW X PV W X apply
aw', x'- P
!/
0. w=w
', x" O

Pphwl QO = (P. v'=v) A (Q. w'=w)

27146

Disjoint Composition

P. Vv=v expand sequential composition
WX VWX PYV W X A V=Y one-point V"’
A", XWX PYV W X rename w',x" to w',x’
', x (VW X PV W X apply
aw', x'- P
!/
0. w=w
', x" O

Phw|Q = (P. V=n) A (Q. w=w) = @AW, X" P)ar @, X" Q)

28/46

Disjoint Composition

(P |vjw| Q is implementable)

29/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable

Yv,w,x ', w',x" Plvw|l Q

30/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable
Yv,w,x ', w',x" Plvw|l Q use previous result

Vv,w,x V', w', x"@w',x P)a @V, x"- O

31/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable
Yv,w,x ', w',x" Plvw| Q use previous result

Vv,w,x V', w', x"@w',x P)a @V, x"- O

!

32/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable
Yv,w,x ', w',x" Plvw| Q use previous result

Vv,w,x V', w', x"@w',x P)a @V, x"- O

! !

33/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable
Yv,w,x ', w',x" Plvw|l Q use previous result
Vv,w,x V', w', x"@w',x P)a @V, x"- O identity for x'

Vv,w,x V', w @w',x"- P) A (V',x"- Q)

34/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable
Yv,w,x ', w',x" Plvw| Q use previous result
Vv,w,x V', w', x"@w',x P)a @V, x"- O identity for x'

Vv,w,x V', w @w',x"- P) A (V',x"- Q)

M

35/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable
Yv,w,x ', w',x" Plvw|l Q use previous result
Vv,w,x V', w', x"@w',x P)a @V, x"- O identity for x'

Vv,w,x V', w @w',x"- P) A (V',x"- Q)

Vv,w,x V- I’ @w', x- P) A AV, X" O)

36/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable
Yv,w,x ', w',x" Plvw|l Q use previous result
Vv,w,x V', w', x"@w',x P)a @V, x"- O identity for x'

Vv,w,x V', w @w',x"- P) A (V',x"- Q)

Vv,w,x V- I’ @w', x- P) A AV, X" O)

37/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable
Yv,w,x ', w',x" Plvw|l Q use previous result
Vv,w,x V', w', x"@w',x P)a @V, x"- O identity for x'

Vv,w,x V', w @w',x"- P) A (V',x"- Q)
Vv,w,x V- I’ @w', x- P) A AV, X" O) distribution (factoring)

VYv,w,x - @w',x"- P) A @w'- V', x"- Q)

38/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable
Yv,w,x ', w',x" Plvw|l Q use previous result
Vv,w,x V', w', x"@w',x P)a @V, x"- O identity for x'

Vv,w,x V', w @w',x"- P) A (V',x"- Q)
Vv,w,x V- I’ @w', x- P) A AV, X" O) distribution (factoring)

VYv,w,x V- @w',x P) n @w' V', X"+ 0)

39/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable
Yv,w,x ', w',x" Plvw|l Q use previous result
Vv,w,x V', w', x"@w',x P)a @V, x"- O identity for x'

Vv,w,x V', w @w',x"- P) A (V',x"- Q)
Vv,w,x V- I’ @w', x- P) A AV, X" O) distribution (factoring)
VYv,w,x V- @w',x P) n @w' V', X"+ 0) distribution (factoring)

Vv,w,x (V- I, X P) n @w'" V', X" O)

40/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable
Yv,w,x ', w',x" Plvw|l Q use previous result
Vv,w,x V', w', x"@w',x P)a @V, x"- O identity for x'

Vv,w,x V', w @w',x"- P) A (V',x"- Q)

Vv,w,x V- I’ @w', x- P) A AV, X" O) distribution (factoring)
VYv,w,x V- @w',x P) n @w' V', X"+ 0) distribution (factoring)
Vv,w,x (V- I, X P) n @w'" V', X" O)

Yv,w,x (@', w',x" Py a (D', W', x" Q)

41/46

Disjoint Composition

(P |vjw| Q is implementable) definition of implementable
Yv,w,x ', w',x" Plvw|l Q use previous result
Vv,w,x V', w', x"@w',x P)a @V, x"- O identity for x'

Vv,w,x V', w @w',x"- P) A (V',x"- Q)

Vv,w,x V- I’ @w', x- P) A AV, X" O) distribution (factoring)
VYv,w,x V- @w',x P) n @w' V', X"+ 0) distribution (factoring)
Vv,w,x (V- I, X P) n @w'" V', X" O)

VYv,w,x (@', w',x""P)an @, w,x" Q) splitting law

Vv,w,x ', W', x"P)n (Vv,w,x ', w, x" Q)

42/46

Disjoint Composition

(P |vjw| Q is implementable)

Yv,w,x ', w',x" Plvw|l Q

Vv,w,x V', w', x"@w',x P)a @V, x"- O
Vv,w,x V', w @w',x"- P) A (V',x"- Q)
Vv,w,x V- I’ @w', x- P) A AV, X" O)
VYv,w,x V- @w',x P) n @w' V', X"+ 0)
Vv,w,x (V- I, X P) n @w'" V', X" O)
VYv,w,x (@', w',x""P)an @, w,x" Q)

Vv, w,x ' W, xP)an (Vv,w,x IV, w,x" Q)

(P is implementable) A (Q is implementable)

definition of implementable
use previous result

identity for x’

distribution (factoring)

distribution (factoring)

splitting law

definition of implementable

43/46

Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Pphwl QO = (P. v'=v) A (Q. w'=w)

(b) Describe how P |vlw| Q can be executed.

44/46

Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Ppw|Q = (P. v'=v) A (Q. W'=w)
(b) Describe how P |vlw| Q can be executed.
Make a copy of all variables. Execute P using the original set of variables and in parallel

execute Q using the copies. Then copy back from the copy w to the original w . Then throw

away the copies.

45/46

Disjoint Composition

Concurrent composition P||Q requires that P and Q have no variables in common, although
each can make use of the initial values of the other's variables by making a private copy. An
alternative, let's say disjoint composition, is to allow both P and Q to use all the variables with
no restrictions, and then to choose disjoint sets of variables v and w and define

Ppw|Q = (P. v'=v) A (Q. W'=w)
(b) Describe how P |vlw| Q can be executed.

P v|w| Q@ < var cv:=v- var cw:=w" var cx:=x-

(P || (v,w,x,v,w',x"* Q) cvew cx eV’ ew' ex'). wi=cw

46/46

