example: nat

example: nat

can be constructed by starting with 0 and repeatedly adding 1

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

construction axiom *nat*+1: *nat*

Т

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

construction axiom *nat*+1: *nat*

T

 \Rightarrow 0: nat

by the axiom, 0: nat

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

construction axiom *nat*+1: *nat*

T

 \Rightarrow 0: nat

 \Rightarrow 0+1: nat+1

by the axiom, 0: nat

add 1 to each side

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

construction axiom *nat*+1: *nat*

 \top by the axiom, 0: *nat*

 \Rightarrow 0: nat add 1 to each side

 \Rightarrow 0+1: nat+1 by arithmetic, 0+1 = 1; by the axiom, nat+1: nat

⇒ 1: *nat*

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

1+1: *nat*+1

construction axiom *nat*+1: *nat*

 \top by the axiom, 0: *nat*

 \Rightarrow 0: nat add 1 to each side

 \Rightarrow 0+1: nat+1 by arithmetic, 0+1 = 1; by the axiom, nat+1: nat

 \Rightarrow 1: *nat* add 1 to each side

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

construction axiom *nat*+1: *nat*

 \top by the axiom, 0: *nat*

 \Rightarrow 0: nat add 1 to each side

 \Rightarrow 0+1: nat+1 by arithmetic, 0+1 = 1; by the axiom, nat+1: nat

 \Rightarrow 1: *nat* add 1 to each side

 \Rightarrow 1+1: nat+1 by arithmetic, 1+1 = 2; by the axiom, nat+1: nat

 \Rightarrow 2: nat

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

construction axiom *nat*+1: *nat*

 \top by the axiom, 0: *nat*

 \Rightarrow 0: nat add 1 to each side

 \Rightarrow 0+1: nat+1 by arithmetic, 0+1 = 1; by the axiom, nat+1: nat

 \Rightarrow 1: *nat* add 1 to each side

 \Rightarrow 1+1: nat+1 by arithmetic, 1+1 = 2; by the axiom, nat+1: nat

 \Rightarrow 2: nat and so on

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

$$nat = 0, 1, 2, 3, 4, 5, \dots$$

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

$$nat = 0, 1, 2, 3, 4, 5, \dots$$
 ? $nat = ..., -3, -2, -1, 0, 1, 2, 3, \dots$?

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

$$nat = 0, 1, 2, 3, 4, 5, \dots$$
 $nat = ..., -3, -2, -1, 0, 1, 2, 3, \dots$

$$nat = ..., -3, -2, -1, 0, 1, 2, 3, ...$$

$$nat =$$
the rationals ?

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

$$nat = 0, 1, 2, 3, 4, 5, \dots$$

$$nat = ..., -3, -2, -1, 0, 1, 2, 3, ...$$

$$nat =$$
the rationals ?

$$nat =$$
the reals

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

$$nat = 0, 1, 2, 3, 4, 5, \dots$$

$$nat = ..., -3, -2, -1, 0, 1, 2, 3, ...$$

$$nat =$$
the rationals ?

$$nat =$$
the reals

$$nat = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, \dots$$

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

construction axiom *nat*+1: *nat*

induction axiom $0: B \land B+1: B \Rightarrow nat: B$

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

construction axiom *nat*+1: *nat*

induction axiom $0: B \land B+1: B \Rightarrow nat: B$

construction axiom 0, *nat*+1: *nat*

induction axiom $0, B+1: B \Rightarrow nat: B$

example: nat

can be constructed by starting with 0 and repeatedly adding 1

construction axiom 0: *nat*

construction axiom *nat*+1: *nat*

induction axiom $0: B \land B+1: B \Rightarrow nat: B$

construction axiom 0, *nat*+1: *nat*

induction axiom $0, B+1: B \Rightarrow nat: B$

construction axiom $P \ 0 \land \forall n : nat \cdot P \ n \Rightarrow P(n+1) \iff \forall n : nat \cdot P \ n$

induction axiom $P \ 0 \land \forall n : nat \cdot P \ n \Rightarrow P(n+1) \Rightarrow \forall n : nat \cdot P \ n$

```
P \ 0 \land \forall n: nat \cdot P \ n \Rightarrow P(n+1) \Rightarrow \forall n: nat \cdot P \ n
P \ 0 \lor \exists n: nat \cdot \neg P \ n \land P(n+1) \Leftarrow \exists n: nat \cdot P \ n
\forall n: nat \cdot P \ n \Rightarrow P(n+1) \Rightarrow \forall n: nat \cdot (P \ 0 \Rightarrow P \ n)
\exists n: nat \cdot \neg P \ n \land P(n+1) \Leftarrow \exists n: nat \cdot (\neg P \ 0 \land P \ n)
\forall n: nat \cdot (\forall m: nat \cdot m < n \Rightarrow P \ m) \Rightarrow P \ n \Rightarrow \forall n: nat \cdot P \ n
\exists n: nat \cdot (\forall m: nat \cdot m < n \Rightarrow \neg P \ m) \land P \ n \Leftarrow \exists n: nat \cdot P \ n
```

```
P \ 0 \land \forall n: nat \cdot P \ n \Rightarrow P(n+1) \Rightarrow \forall n: nat \cdot P \ n
P \ 0 \lor \exists n: nat \cdot \neg P \ n \land P(n+1) \Leftarrow \exists n: nat \cdot P \ n
\forall n: nat \cdot P \ n \Rightarrow P(n+1) \Rightarrow \forall n: nat \cdot (P \ 0 \Rightarrow P \ n)
\exists n: nat \cdot \neg P \ n \land P(n+1) \Leftarrow \exists n: nat \cdot (\neg P \ 0 \land P \ n)
\forall n: nat \cdot (\forall m: nat \cdot m < n \Rightarrow P \ m) \Rightarrow P \ n \Rightarrow \forall n: nat \cdot P \ n
\exists n: nat \cdot (\forall m: nat \cdot m < n \Rightarrow \neg P \ m) \land P \ n \Leftarrow \exists n: nat \cdot P \ n
```

```
P \ 0 \land \forall n: nat \cdot P \ n \Rightarrow P(n+1) \Rightarrow \forall n: nat \cdot P \ n
P \ 0 \lor \exists n: nat \cdot \neg P \ n \land P(n+1) \Leftarrow \exists n: nat \cdot P \ n
\forall n: nat \cdot P \ n \Rightarrow P(n+1) \Rightarrow \forall n: nat \cdot (P \ 0 \Rightarrow P \ n) \leftarrow
\exists n: nat \cdot \neg P \ n \land P(n+1) \Leftarrow \exists n: nat \cdot (\neg P \ 0 \land P \ n)
\forall n: nat \cdot (\forall m: nat \cdot m < n \Rightarrow P \ m) \Rightarrow P \ n \Rightarrow \forall n: nat \cdot P \ n
\exists n: nat \cdot (\forall m: nat \cdot m < n \Rightarrow \neg P \ m) \land P \ n \Leftarrow \exists n: nat \cdot P \ n
```

```
P \ 0 \land \forall n: nat \cdot P \ n \Rightarrow P(n+1) \Rightarrow \forall n: nat \cdot P \ n
P \ 0 \lor \exists n: nat \cdot \neg P \ n \land P(n+1) \Leftarrow \exists n: nat \cdot P \ n
\forall n: nat \cdot P \ n \Rightarrow P(n+1) \Rightarrow \forall n: nat \cdot (P \ 0 \Rightarrow P \ n)
\exists n: nat \cdot \neg P \ n \land P(n+1) \Leftarrow \exists n: nat \cdot (\neg P \ 0 \land P \ n)
\forall n: nat \cdot (\forall m: nat \cdot m < n \Rightarrow P \ m) \Rightarrow P \ n \Rightarrow \forall n: nat \cdot P \ n
\exists n: nat \cdot (\forall m: nat \cdot m < n \Rightarrow \neg P \ m) \land P \ n \Leftarrow \exists n: nat \cdot P \ n
```

```
P \ 0 \land \forall n: nat \cdot P \ n \Rightarrow P(n+1) \implies \forall n: nat \cdot P \ n
P \ 0 \lor \exists n: nat \cdot \neg P \ n \land P(n+1) \iff \exists n: nat \cdot P \ n
\forall n: nat \cdot P \ n \Rightarrow P(n+1) \implies \forall n: nat \cdot (P \ 0 \Rightarrow P \ n)
\exists n: nat \cdot \neg P \ n \land P(n+1) \iff \exists n: nat \cdot (\neg P \ 0 \land P \ n)
\forall n: nat \cdot (\forall m: nat \cdot m < n \Rightarrow P \ m) \Rightarrow P \ n \implies \forall n: nat \cdot P \ n
\exists n: nat \cdot (\forall m: nat \cdot m < n \Rightarrow \neg P \ m) \land P \ n \iff \exists n: nat \cdot P \ n
```

philosophical induction: guessing the general case from special cases

(an important skill in mathematics)

philosophical induction: guessing the general case from special cases (an important skill in mathematics)

philosophical deduction: proving, using the rules of logic

philosophical induction: guessing the general case from special cases (an important skill in mathematics)

philosophical deduction: proving, using the rules of logic

mathematical induction: an axiom (sometimes presented as a proof rule)

(mathematical induction is part of philosophical deduction)

```
philosophical induction: guessing the general case from special cases (an important skill in mathematics)
```

philosophical deduction: proving, using the rules of logic

mathematical induction: an axiom (sometimes presented as a proof rule) (mathematical induction is part of philosophical deduction)

engineering induction:

If it works for n = 1, 2, and 3 then that's good enough for me.

```
philosophical induction: guessing the general case from special cases (an important skill in mathematics)
```

philosophical deduction: proving, using the rules of logic

mathematical induction: an axiom (sometimes presented as a proof rule) (mathematical induction is part of philosophical deduction)

engineering induction:

If it works for n = 1, 2, and 3 then that's good enough for me.

military induction:

philosophical deduction: proving, using the rules of logic

mathematical induction: an axiom (sometimes presented as a proof rule) (mathematical induction is part of philosophical deduction)

engineering induction:

If it works for n = 1, 2, and 3 then that's good enough for me.

military induction:

tax deduction:

example: int

example: int

Define int = nat, -nat

example: int

Define int = nat, -nat

or 0, *int*+1, *int*-1: *int*

 $0, B+1, B-1: B \Rightarrow int: B$

example: int

Define int = nat, -nat

or 0, int+1, int-1: int

 $0, B+1, B-1: B \Rightarrow int: B$

or $P \ 0 \land (\forall i: int \cdot P \ i \Rightarrow P(i+1)) \land (\forall i: int \cdot P \ i \Rightarrow P(i-1)) = \forall i: int \cdot P \ i$

example: pow

example: pow

Define $pow = 2^{nat}$

example: pow

Define $pow = 2^{nat}$

or $pow = \S p: nat \cdot \exists m: nat \cdot p = 2^m$

example: pow

Define $pow = 2^{nat}$

or $pow = \S p: nat \cdot \exists m: nat \cdot p = 2^m$

or $1, 2 \times pow: pow$

 $1, 2 \times B : B \Rightarrow pow : B$

example: pow

Define $pow = 2^{nat}$

or $pow = \S p: nat \cdot \exists m: nat \cdot p = 2^m$

or $1, 2 \times pow: pow$

 $1, 2 \times B : B \Rightarrow pow : B$

or $P \mid 1 \land \forall p : pow \cdot P p \Rightarrow P(2 \times p) = \forall p : pow \cdot P p$

nat construction: 0, *nat*+1: *nat*

nat induction: $0, B+1: B \Rightarrow nat: B$

nat construction: 0, *nat*+1: *nat*

nat induction: $0, B+1: B \Rightarrow nat: B$

nat fixed-point construction: nat = 0, nat+1

nat fixed-point induction: $B = 0, B+1 \implies nat$: $B = 0, B+1 \implies nat$

nat construction: 0, *nat*+1: *nat* ←

nat induction: $0, B+1: B \Rightarrow nat: B$

nat fixed-point construction: nat = 0, nat+1

nat fixed-point induction: $B = 0, B+1 \implies nat$: $B = 0, B+1 \implies nat$

nat construction: 0, *nat*+1: *nat*

nat induction: $0, B+1: B \Rightarrow nat: B \longleftarrow$

nat fixed-point construction: nat = 0, nat+1

nat fixed-point induction: $B = 0, B+1 \implies nat$: B = 0

nat construction: 0, *nat*+1: *nat*

nat induction: $0, B+1: B \Rightarrow nat: B$

nat fixed-point construction: nat = 0, nat+1

nat fixed-point induction: $B = 0, B+1 \implies nat$: $B = 0, B+1 \implies nat$

x is a fixed-point of f

nat construction: 0, *nat*+1: *nat*

nat induction: $0, B+1: B \Rightarrow nat: B$

nat fixed-point construction: nat = 0, nat+1

nat fixed-point induction: $B = 0, B+1 \implies nat$: $B = 0, B+1 \implies nat$

x is a fixed-point of f x = fx

nat construction: 0, *nat*+1: *nat*

nat induction: $0, B+1: B \Rightarrow nat: B$

nat fixed-point construction: nat = 0, nat+1

nat fixed-point induction: $B = 0, B+1 \implies nat$: $B = 0, B+1 \implies nat$

x is a fixed-point of f x = fx

nat construction: 0, *nat*+1: *nat*

nat induction: $0, B+1: B \Rightarrow nat: B$

nat fixed-point construction: nat = 0, nat+1

nat fixed-point induction: $B = 0, B+1 \implies nat$: B = 0

x is a fixed-point of f x = fx

nat construction: 0, *nat*+1: *nat*

nat induction: $0, B+1: B \Rightarrow nat: B$

nat fixed-point construction: nat = 0, nat+1

nat fixed-point induction: $B = 0, B+1 \implies nat$: $B = 0, B+1 \implies nat$

x is a fixed-point of f x = fx

grammar: exp = ``x'', exp; ``+''; exp

nat construction: 0, *nat*+1: *nat*

nat induction: $0, B+1: B \Rightarrow nat: B$

nat fixed-point construction: nat = 0, nat+1

nat fixed-point induction: $B = 0, B+1 \implies nat$: $B = 0, B+1 \implies nat$

x is a fixed-point of f x = fx

grammar: exp = ``x'', exp; ``+''; exp

 $B = \text{``x''}, B; \text{``+''}; B \implies exp: B$

name = (expression involving name)

```
name = (expression involving name)
```

0. Construct $name_0 = null$ $name_{n+1} = (expression involving name_n)$

```
name = (expression involving name)
```

0. Construct $name_0 = null$ $name_{n+1} = (expression involving name_n)$

1. Guess $name_n = (expression involving n but not name)$

```
name = (expression involving name)
```

0. Construct $name_0 = null$

 $name_{n+1} = (expression involving name_n)$

1. Guess $name_n = (expression involving n but not name)$

2. Substitute ∞ for n $name_{\infty} = (expression involving neither <math>n$ nor name)

```
name = (expression involving name)
```

0. Construct $name_0 = null$ $name_{n+1} = (expression involving \ name_n)$

1. Guess $name_n = (expression involving n but not name)$

2. Substitute ∞ for n $name_{\infty} = (expression involving neither <math>n$ nor name)

3. Test fixed-point $name_{\infty} = (expression involving name_{\infty})$

name = (expression involving name)

0. Construct $name_0 = null$ $name_{n+1} = (expression involving name_n)$

1. Guess $name_n = (expression involving n but not name)$

2. Substitute ∞ for n $name_{\infty} = (expression involving neither <math>n$ nor name)

3. Test fixed-point $name_{\infty} = (expression involving name_{\infty})$

4. Test least fixed-point $B = (\text{expression involving } B) \implies name_{\infty} : B$

example: pow

 $pow = 1, 2 \times pow$

example: pow

$$pow = 1, 2 \times pow$$

example: pow

$$pow = 1, 2 \times pow$$

$$pow_0 = null$$

example: pow

$$pow = 1, 2 \times pow$$

$$pow_0 = null$$

$$pow_1 = 1, 2 \times pow_0$$

example: pow

$$pow = 1, 2 \times pow$$

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null$

example: pow

$$pow = 1, 2 \times pow$$

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null$

example: pow

$$pow = 1, 2 \times pow$$

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null = 1$

example: pow

$$pow = 1, 2 \times pow$$

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null = 1$
 $pow_2 = 1, 2 \times pow_1$

example: pow

$$pow = 1, 2 \times pow$$

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null = 1$
 $pow_2 = 1, 2 \times pow_1 = 1, 2 \times 1$

example: pow

$$pow = 1, 2 \times pow$$

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null = 1$
 $pow_2 = 1, 2 \times pow_1 = 1, 2 \times 1 = 1, 2$

example: pow

$$pow = 1, 2 \times pow$$

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null = 1$
 $pow_2 = 1, 2 \times pow_1 = 1, 2 \times 1 = 1, 2$
 $pow_3 = 1, 2 \times pow_2$

example: pow

$$pow = 1, 2 \times pow$$

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null = 1$
 $pow_2 = 1, 2 \times pow_1 = 1, 2 \times 1 = 1, 2$
 $pow_3 = 1, 2 \times pow_2 = 1, 2 \times (1, 2)$

example: pow

$$pow = 1, 2 \times pow$$

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null = 1$
 $pow_2 = 1, 2 \times pow_1 = 1, 2 \times 1 = 1, 2$
 $pow_3 = 1, 2 \times pow_2 = 1, 2 \times (1, 2) = 1, 2, 4$

example: pow

$$pow = 1, 2 \times pow$$

0. Construct

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null = 1$
 $pow_2 = 1, 2 \times pow_1 = 1, 2 \times 1 = 1, 2$
 $pow_3 = 1, 2 \times pow_2 = 1, 2 \times (1, 2) = 1, 2, 4$

1. Guess

example: pow

$$pow = 1, 2 \times pow$$

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null = 1$
 $pow_2 = 1, 2 \times pow_1 = 1, 2 \times 1 = 1, 2$
 $pow_3 = 1, 2 \times pow_2 = 1, 2 \times (1, 2) = 1, 2, 4$

$$pow_n = 2^{0,..n}$$

example: pow

$$pow = 1, 2 \times pow$$

0. Construct

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null = 1$
 $pow_2 = 1, 2 \times pow_1 = 1, 2 \times 1 = 1, 2$
 $pow_3 = 1, 2 \times pow_2 = 1, 2 \times (1, 2) = 1, 2, 4$

1. Guess

$$pow_n = 2^{0,..n}$$

2. Substitute ∞ for n

example: pow

$$pow = 1, 2 \times pow$$

0. Construct

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null = 1$
 $pow_2 = 1, 2 \times pow_1 = 1, 2 \times 1 = 1, 2$
 $pow_3 = 1, 2 \times pow_2 = 1, 2 \times (1, 2) = 1, 2, 4$

1. Guess

$$pow_n = 2^{0,..n}$$

2. Substitute ∞ for n

$$pow_{\infty} = 2^{0,..\infty}$$

example: pow

$$pow = 1, 2 \times pow$$

0. Construct

$$pow_0 = null$$

 $pow_1 = 1, 2 \times pow_0 = 1, 2 \times null = 1, null = 1$
 $pow_2 = 1, 2 \times pow_1 = 1, 2 \times 1 = 1, 2$
 $pow_3 = 1, 2 \times pow_2 = 1, 2 \times (1, 2) = 1, 2, 4$

1. Guess

$$pow_n = 2^{0,..n}$$

2. Substitute ∞ for n

$$pow_{\infty} = 2^{0,..\infty} = 2^{nat}$$

example: pow

$$pow = 1, 2 \times pow$$

example: pow

$$pow = 1, 2 \times pow$$

$$2^{nat} = 1, 2 \times 2^{nat}$$

example: pow

$$pow = 1, 2 \times pow$$

$$2^{nat} = 1, 2 \times 2^{nat}$$

$$=$$
 $2^{nat} = 2^0, 2^1 \times 2^{nat}$

example: pow

$$pow = 1, 2 \times pow$$

$$2^{nat} = 1, 2 \times 2^{nat}$$

$$=$$
 $2^{nat} = 2^0, 2^1 \times 2^{nat}$

$$=$$
 $2^{nat} = 2^0, 2^{1+nat}$

example: pow

$$pow = 1, 2 \times pow$$

3. Test fixed-point.

$$2^{nat} = 1, 2 \times 2^{nat}$$
 $2^{nat} = 2^{0}, 2^{1} \times 2^{nat}$
 $2^{nat} = 2^{0}, 2^{1+nat}$

 $2^{nat} = 2^{0, 1+nat}$

example: pow

$$pow = 1, 2 \times pow$$

$$2^{nat} = 1, 2 \times 2^{nat}$$

$$= 2^{nat} = 2^{0}, 2^{1} \times 2^{nat}$$

$$= 2^{nat} = 2^{0}, 2^{1+nat}$$

$$= 2^{nat} = 2^{0}, 1+nat$$

$$\longleftarrow nat = 0, nat+1$$

example: pow

$$pow = 1, 2 \times pow$$

$$2^{nat} = 1, 2 \times 2^{nat}$$

$$= 2^{nat} = 2^{0}, 2^{1} \times 2^{nat}$$

$$= 2^{nat} = 2^{0}, 2^{1+nat}$$

$$= 2^{nat} = 2^{0}, 1+nat$$

$$\longleftarrow nat = 0, nat+1$$

$$= \top$$

example: pow

 $pow = 1, 2 \times pow$

example: pow

$$pow = 1, 2 \times pow$$

4. Test least fixed-point

example: pow

$$pow = 1, 2 \times pow$$

4. Test least fixed-point

example: pow

$$pow = 1, 2 \times pow$$

4. Test least fixed-point

$$= \forall n: nat \cdot 2^n: B$$

$$\iff$$
 $B=1, 2\times B$

example: pow

$$pow = 1, 2 \times pow$$

4. Test least fixed-point

$$= \forall n: nat \cdot 2^n: B$$

$$\iff$$
 20: $B \land \forall n$: nat · 2^n : $B \Rightarrow 2^{n+1}$: B

use *nat* induction with $P n = 2^n$: B

example: pow

$$pow = 1, 2 \times pow$$

4. Test least fixed-point

2*nat*: *B*

$$= \forall n: nat \cdot 2^n: B$$

$$\Leftarrow$$
 20: $B \land \forall n: nat \cdot 2^n: B \Rightarrow 2^{n+1}: B$

$$= 1: B \land \forall m: 2^{nat} \cdot m: B \Rightarrow 2 \times m: B$$

$$\iff$$
 1: $B \land \forall m$: $nat \cdot m$: $B \Rightarrow 2 \times m$: B

= 1:
$$B \wedge \forall m$$
: $nat'B \cdot 2 \times m$: B

$$\iff$$
 1: $B \land \forall m$: $B \cdot 2 \times m$: B

$$\iff$$
 $B = 1, 2 \times B$

use *nat* induction with $P n = 2^n$: B

change variable

increase domain

domain change law

increase domain

Alternative step 0: instead of *null* use

 $name_0 = whatever$

Alternative step 0: instead of *null* use

 $name_0 = whatever$

Alternative step 2: instead of $name_{\infty}$ use

 $\S x \cdot \ \ n \cdot x : name_n$