Hoare Logic, 1969

$$h := 0$$
. $j := \#L$.

while
$$j-h > 1$$

do

$$i := (h+j)/2$$
.

if $L i \le x$ then h := i else j := i fi

od

```
\{ \top \}
h := 0. j := \#L.
\{h < j \land \neg (\exists i: 0, ..h \cdot L \ i = x) \land \neg (\exists i: j, ..\#L \cdot L \ i = x)\}
while j-h > 1
\{j-h > 1 \land \neg(\exists i: 0,..h \cdot L \ i = x) \land \neg(\exists i: j,..\#L \cdot L \ i = x)\}
do { 0 < j-h = V }
      i := (h+j)/2.
      if L i \le x then h := i else j := i fi
      \{h < j \land \neg (\exists i: 0, ..h \cdot L \ i = x) \land \neg (\exists i: j, ..\#L \cdot L \ i = x)\}
      \{ 0 \le j - h < V \}
                                                                           od
\{ j-h \le 1 \land \neg (\exists i: 0,..h \cdot L \ i = x) \land \neg (\exists i: j,..\#L \cdot L \ i = x) \}
\{ (\exists i: 0, ... \#L \cdot L \ i = x) = (L \ h = x) \}
```

{ ⊤ } ← precondition

$$h:=0. \ j:=\#L.$$

{ $h < j \land \neg (\exists i: 0,..h \cdot L \ i = x) \land \neg (\exists i: j,..\#L \cdot L \ i = x)$ }

while $j-h > 1$

{ $j-h > 1 \land \neg (\exists i: 0,..h \cdot L \ i = x) \land \neg (\exists i: j,..\#L \cdot L \ i = x)$ }

do { $0 < j-h = V$ }

 $i:= (h+j)/2.$

if $L \ i \le x$ then $h:= i$ else $j:= i$ fi

{ $h < j \land \neg (\exists i: 0,..h \cdot L \ i = x) \land \neg (\exists i: j,..\#L \cdot L \ i = x)$ }

{ $0 \le j-h < V$ }

od

{ $j-h \le 1 \land \neg (\exists i: 0,..h \cdot L \ i = x) \land \neg (\exists i: j,..\#L \cdot L \ i = x)$ }

{ $(\exists i: 0,..\#L \cdot L \ i = x) = (L \ h = x)$ }

postcondition

$$= \forall x' \cdot x' > 5 \Leftarrow (x := x + 1)$$

(the exact precondition for x'>5 to be refined by x:=x+1)

$$=$$
 $\forall x' \cdot x' > 5 \Leftarrow (x := x+1)$

expand assignment

$$= \forall x' \cdot x' > 5 \Leftarrow x' = x + 1$$

(the exact precondition for x'>5 to be refined by x:=x+1)

$$= \forall x' \cdot x' > 5 \Leftarrow (x := x+1)$$

expand assignment

$$= \forall x' \cdot x' > 5 \Leftarrow x' = x + 1$$

One-Point Law

$$= x+1 > 5$$

$$= \forall x' \cdot x' > 5 \Leftarrow (x = x + 1)$$
 expand assignment

$$= \forall x' \cdot x' > 5 \Leftarrow x' = x + 1$$
 One-Point Law

$$= x+1 > 5$$
 simplify

$$=$$
 $x > 4$

$$= \forall x' \cdot x' > 5 \Leftarrow (x = x + 1)$$
 expand assignment

$$= \forall x' \cdot x' > 5 \Leftarrow x' = x + 1$$
 One-Point Law

$$= x+1 > 5$$
 simplify

$$=$$
 $x > 4$

$$x'>5 \iff x:=x+1$$

$$= \forall x' \cdot x' > 5 \Leftarrow (x := x + 1)$$
 expand assignment

$$= \forall x' \cdot x' > 5 \Leftarrow x' = x + 1$$
 One-Point Law

$$= x+1 > 5$$
 simplify

$$=$$
 $x > 4$

$$x'>5 \iff x:=x+1$$

$$x'>5 \iff x:=x+1$$
 X
 $x>4 \Rightarrow x'>5 \iff x:=x+1$

$$=$$
 $\forall x \cdot x > 4 \Leftarrow (x := x + 1)$

(the exact postcondition for x>4 to be refined by x:=x+1)

$$= \forall x \cdot x > 4 \Leftarrow (x := x + 1)$$

expand assignment

$$= \forall x \cdot x > 4 \Leftarrow x' = x + 1$$

(the exact postcondition for x>4 to be refined by x:=x+1)

$$= \forall x \cdot x > 4 \Leftarrow (x := x + 1)$$

expand assignment

$$=$$
 $\forall x \cdot x > 4 \Leftarrow x' = x + 1$

$$= \forall x \cdot x > 4 \Leftarrow x = x' - 1$$

(the exact postcondition for x>4 to be refined by x:=x+1)

$$= \forall x \cdot x > 4 \Leftarrow (x := x+1)$$

expand assignment

$$=$$
 $\forall x \cdot x > 4 \Leftarrow x' = x + 1$

$$= \forall x \cdot x > 4 \Leftarrow x = x' - 1$$

One-Point Law

$$= x'-1 > 4$$

$$= \forall x \cdot x > 4 \leftarrow (x := x + 1)$$
 expand assignment

$$=$$
 $\forall x \cdot x > 4 \Leftarrow x' = x + 1$

$$= \forall x \cdot x > 4 \Leftarrow x = x' - 1$$
 One-Point Law

$$= x'-1 > 4$$
 simplify

$$= x' > 5$$

 $x>4 \iff x:=x+1$

(the exact postcondition for x>4 to be refined by x:=x+1) $\forall x \cdot x>4 \Leftarrow (x:=x+1) \qquad \text{expand assignment}$ $= \forall x \cdot x>4 \Leftarrow x'=x+1$ $= \forall x \cdot x>4 \Leftarrow x=x'-1 \qquad \text{One-Point Law}$ $= x'-1>4 \qquad \text{simplify}$ = x'>5

(the exact postcondition for x>4 to be refined by x:=x+1) $\forall x \cdot x>4 \Leftarrow (x:=x+1)$ expand assignment $\forall x \cdot x>4 \Leftarrow x'=x+1$ $\forall x \cdot x>4 \Leftarrow x=x'-1$ One-Point Law x'-1>4 simplify x'>5 $x>4 \Leftarrow x:=x+1$ $x'>5 \Rightarrow x>4 \Leftarrow x:=x+1$

(the exact postcondition for x>4 to be refined by x:=x+1) $\forall x \cdot x > 4 \leftarrow (x := x + 1)$ expand assignment $\forall x \cdot x > 4 \iff x' = x + 1$ $\forall x \cdot x > 4 \iff x = x' - 1$ One-Point Law x'-1 > 4simplify x' > 5 $x>4 \iff x:=x+1$ $x'>5 \Rightarrow x>4 \iff x:=x+1$ $x \le 4 \Rightarrow x' \le 5 \iff x := x+1$

sufficient precondition \Rightarrow exact precondition \Rightarrow necessary precondition

sufficient postcondition \Rightarrow exact postcondition \Rightarrow necessary postcondition

sufficient precondition \Rightarrow exact precondition \Rightarrow necessary precondition

sufficient postcondition \Rightarrow exact postcondition \Rightarrow necessary postcondition

precondition law

C is a sufficient precondition for P to be refined by S if and only if $C \Rightarrow P$ is refined by S.

postcondition law

C' is a sufficient postcondition for P to be refined by S if and only if $C' \Rightarrow P$ is refined by S.

invariant

Let S be a specification.

Let I be an assertion with all variables unprimed.

Let I' be the same as I but with primes on all variables.

I is an invariant for S if $I \Rightarrow I'$ is refined by S.

$$\forall \sigma, \sigma' \cdot (I \Rightarrow I') \Leftarrow S$$

invariant

Let S be a specification.

Let I be an assertion with all variables unprimed.

Let I' be the same as I but with primes on all variables.

I is an invariant for S if $I \Rightarrow I'$ is refined by S.

$$\forall \sigma, \sigma' \cdot (I {\Rightarrow} I') \Leftarrow S$$

$$\forall \sigma, \sigma' \cdot S \land I \Rightarrow I'$$

$$(I \Rightarrow I') \Leftarrow S$$

$$(I \Rightarrow I') \Leftarrow S$$
 replace I and S

$$= (y=x^2 \Rightarrow y'=x'^2) \Leftarrow (x:=x+1, y:=y+2\times x-1)$$

$$(I \Rightarrow I') \Leftarrow S$$
 replace I and S

$$= (y=x^2 \Rightarrow y'=x'^2) \Leftarrow (x:=x+1. \ y:=y+2\times x-1)$$
 replace last assignment
$$= (y=x^2 \Rightarrow y'=x'^2) \Leftarrow (x:=x+1. \ x'=x \land y'=y+2\times x-1)$$

$$(I \Rightarrow I') \Leftarrow S$$
replace I and S

$$(y=x^2 \Rightarrow y'=x'^2) \Leftarrow (x:=x+1, y:=y+2\times x-1)$$
replace last assignment
$$(y=x^2 \Rightarrow y'=x'^2) \Leftarrow (x:=x+1, x'=x \land y'=y+2\times x-1)$$
substitution
$$(y=x^2 \Rightarrow y'=x'^2) \Leftarrow x'=x+1 \land y'=y+2\times (x+1)-1$$

Т

$$(I\Rightarrow I') \Leftarrow S \qquad \text{replace } I \text{ and } S$$

$$= (y=x^2\Rightarrow y'=x'^2) \Leftarrow (x:=x+1, y:=y+2\times x-1) \qquad \text{replace last assignment}$$

$$= (y=x^2\Rightarrow y'=x'^2) \Leftarrow (x:=x+1, x'=x \land y'=y+2\times x-1) \qquad \text{substitution}$$

$$= (y=x^2\Rightarrow y'=x'^2) \Leftarrow x'=x+1 \land y'=y+2\times (x+1)-1 \qquad \text{arithmetic}$$

$$= (y=x^2\Rightarrow y'=x'^2) \Leftarrow x'=x+1 \land y'=y+2\times x+1 \qquad \text{context}$$

$$= (y=x^2\Rightarrow y'=x'^2) \Leftarrow x'=x+1 \land y'=y+2\times x+1 \qquad \text{arithmetic}$$

$$= (y=x^2\Rightarrow (y+2\times x+1)=(x+1)^2) \Leftarrow x'=x+1 \land y'=y+2\times x+1 \qquad \text{arithmetic and cancellation}$$

$$= (y=x^2\Rightarrow y=x^2) \Leftarrow x'=x+1 \land y'=y+2\times x+1 \qquad \text{reflexive, base}$$

variant

time bound, recursive measure, clock runs backwards