
binary expressions:

theorems:

antitheorems: 

/1 81

binary expressions: represent anything that comes in two kinds

theorems: represent one kind

antitheorems: represent the other kind 

/2 81

binary expressions: represent anything that comes in two kinds

represent statements about the world (natural or constructed, real or imaginary)

theorems: represent one kind

represent true statements

antitheorems: represent the other kind

represent false statements 

/3 81

binary expressions: represent anything that comes in two kinds

represent statements about the world (natural or constructed, real or imaginary)

represent digital circuits

theorems: represent one kind

represent true statements

represent circuits with high voltage output

antitheorems: represent the other kind

represent false statements

represent circuits with low voltage output 

/4 81

binary expressions: represent anything that comes in two kinds

represent statements about the world (natural or constructed, real or imaginary)

represent digital circuits

represent human behavior

theorems: represent one kind

represent true statements

represent circuits with high voltage output

represent innocent behavior

antitheorems: represent the other kind

represent false statements

represent circuits with low voltage output

represent guilty behavior

/5 81

0 operands ⊤ ⊥ 

/6 81

0 operands ⊤ ⊥

1 operand ¬x 

/7 81

0 operands ⊤ ⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x⧧y 

/8 81

0 operands ⊤ ⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x⧧y

 ↑ 

/9 81

0 operands ⊤ ⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x⧧y

 ↑ 

/10 81

0 operands ⊤ ⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x⧧y

 ↑ 

/11 81

0 operands ⊤ ⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x⧧y

 ↑ 

/12 81

0 operands ⊤ ⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x⧧y

 ↑ 

/13 81

0 operands ⊤ ⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x⧧y

 ↑ 

/14 81

0 operands ⊤ ⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x⧧y

3 operands if x then y else z f 

/15 81

0 operands ⊤ ⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x⧧y

3 operands if x then y else z f

precedence and parentheses 

/16 81

0 operands ⊤ ⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x⧧y

3 operands if x then y else z f

precedence and parentheses

associative operators: ∧ ∨ = ⧧

x ∧ y ∧ z means either (x ∧ y) ∧ z or x ∧ (y ∧ z)

x ∨ y ∨ z means either (x ∨ y) ∨ z or x ∨ (y ∨ z) 

/17 81

0 operands ⊤ ⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x⧧y

3 operands if x then y else z f

precedence and parentheses

associative operators: ∧ ∨ = ⧧

x ∧ y ∧ z means either (x ∧ y) ∧ z or x ∧ (y ∧ z)

x ∨ y ∨ z means either (x ∨ y) ∨ z or x ∨ (y ∨ z)

continuing operators: ⇒ ⇐ = ⧧

x = y = z means x = y ∧ y = z

x ⇒ y ⇒ z means (x ⇒ y) ∧ (y ⇒ z) 

/18 81

0 operands ⊤ ⊥

1 operand ¬x

2 operands x∧y x∨y x⇒y x⇐y x=y x⧧y

3 operands if x then y else z f

precedence and parentheses

associative operators: ∧ ∨ = ⧧

x ∧ y ∧ z means either (x ∧ y) ∧ z or x ∧ (y ∧ z)

x ∨ y ∨ z means either (x ∨ y) ∨ z or x ∨ (y ∨ z)

continuing operators: ⇒ ⇐ = ⧧

x = y = z means x = y ∧ y = z

x ⇒ y ⇒ z means (x ⇒ y) ∧ (y ⇒ z)

big operators: = ⇒ ⇐

same as = ⇒ ⇐ but later precedence

x = y ⇒ z means (x = y) ∧ (y ⇒ z) 
/19 81

truth tables

⊤ ⊥

¬ ⎪ ⊥ ⊤

⊤⊤ ⊤⊥ ⊥⊤ ⊥⊥

∧ ⎪ ⊤ ⊥ ⊥ ⊥
∨ ⎪ ⊤ ⊤ ⊤ ⊥
⇒ ⎪ ⊤ ⊥ ⊤ ⊤
⇐ ⎪ ⊤ ⊤ ⊥ ⊤
= ⎪ ⊤ ⊥ ⊥ ⊤
⧧ ⎪ ⊥ ⊤ ⊤ ⊥

⊤⊤⊤ ⊤⊤⊥ ⊤⊥⊤ ⊤⊥⊥ ⊥⊤⊤ ⊥⊤⊥ ⊥⊥⊤ ⊥⊥⊥

if then else fi ⎪ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥

/20 81

truth tables

⊤ ⊥

¬ ⎪ ⊥ ⊤ ←

⊤⊤ ⊤⊥ ⊥⊤ ⊥⊥

∧ ⎪ ⊤ ⊥ ⊥ ⊥
∨ ⎪ ⊤ ⊤ ⊤ ⊥
⇒ ⎪ ⊤ ⊥ ⊤ ⊤
⇐ ⎪ ⊤ ⊤ ⊥ ⊤
= ⎪ ⊤ ⊥ ⊥ ⊤
⧧ ⎪ ⊥ ⊤ ⊤ ⊥

⊤⊤⊤ ⊤⊤⊥ ⊤⊥⊤ ⊤⊥⊥ ⊥⊤⊤ ⊥⊤⊥ ⊥⊥⊤ ⊥⊥⊥

if then else fi ⎪ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥

/21 81

truth tables

⊤ ⊥

¬ ⎪ ⊥ ⊤

⊤⊤ ⊤⊥ ⊥⊤ ⊥⊥

∧ ⎪ ⊤ ⊥ ⊥ ⊥ ←
∨ ⎪ ⊤ ⊤ ⊤ ⊥
⇒ ⎪ ⊤ ⊥ ⊤ ⊤
⇐ ⎪ ⊤ ⊤ ⊥ ⊤
= ⎪ ⊤ ⊥ ⊥ ⊤
⧧ ⎪ ⊥ ⊤ ⊤ ⊥

⊤⊤⊤ ⊤⊤⊥ ⊤⊥⊤ ⊤⊥⊥ ⊥⊤⊤ ⊥⊤⊥ ⊥⊥⊤ ⊥⊥⊥

if then else fi ⎪ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥

/22 81

truth tables

⊤ ⊥

¬ ⎪ ⊥ ⊤

⊤⊤ ⊤⊥ ⊥⊤ ⊥⊥

∧ ⎪ ⊤ ⊥ ⊥ ⊥
∨ ⎪ ⊤ ⊤ ⊤ ⊥ ←
⇒ ⎪ ⊤ ⊥ ⊤ ⊤
⇐ ⎪ ⊤ ⊤ ⊥ ⊤
= ⎪ ⊤ ⊥ ⊥ ⊤
⧧ ⎪ ⊥ ⊤ ⊤ ⊥

⊤⊤⊤ ⊤⊤⊥ ⊤⊥⊤ ⊤⊥⊥ ⊥⊤⊤ ⊥⊤⊥ ⊥⊥⊤ ⊥⊥⊥

if then else fi ⎪ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥

/23 81

truth tables

⊤ ⊥

¬ ⎪ ⊥ ⊤

⊤⊤ ⊤⊥ ⊥⊤ ⊥⊥

∧ ⎪ ⊤ ⊥ ⊥ ⊥
∨ ⎪ ⊤ ⊤ ⊤ ⊥
⇒ ⎪ ⊤ ⊥ ⊤ ⊤ ←
⇐ ⎪ ⊤ ⊤ ⊥ ⊤
= ⎪ ⊤ ⊥ ⊥ ⊤
⧧ ⎪ ⊥ ⊤ ⊤ ⊥

⊤⊤⊤ ⊤⊤⊥ ⊤⊥⊤ ⊤⊥⊥ ⊥⊤⊤ ⊥⊤⊥ ⊥⊥⊤ ⊥⊥⊥

if then else fi ⎪ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥

/24 81

truth tables

⊤ ⊥

¬ ⎪ ⊥ ⊤

⊤⊤ ⊤⊥ ⊥⊤ ⊥⊥

∧ ⎪ ⊤ ⊥ ⊥ ⊥
∨ ⎪ ⊤ ⊤ ⊤ ⊥
⇒ ⎪ ⊤ ⊥ ⊤ ⊤
⇐ ⎪ ⊤ ⊤ ⊥ ⊤ ←
= ⎪ ⊤ ⊥ ⊥ ⊤
⧧ ⎪ ⊥ ⊤ ⊤ ⊥

⊤⊤⊤ ⊤⊤⊥ ⊤⊥⊤ ⊤⊥⊥ ⊥⊤⊤ ⊥⊤⊥ ⊥⊥⊤ ⊥⊥⊥

if then else fi ⎪ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥

/25 81

truth tables

⊤ ⊥

¬ ⎪ ⊥ ⊤

⊤⊤ ⊤⊥ ⊥⊤ ⊥⊥

∧ ⎪ ⊤ ⊥ ⊥ ⊥
∨ ⎪ ⊤ ⊤ ⊤ ⊥
⇒ ⎪ ⊤ ⊥ ⊤ ⊤
⇐ ⎪ ⊤ ⊤ ⊥ ⊤
= ⎪ ⊤ ⊥ ⊥ ⊤ ←
⧧ ⎪ ⊥ ⊤ ⊤ ⊥

⊤⊤⊤ ⊤⊤⊥ ⊤⊥⊤ ⊤⊥⊥ ⊥⊤⊤ ⊥⊤⊥ ⊥⊥⊤ ⊥⊥⊥

if then else fi ⎪ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥

/26 81

truth tables

⊤ ⊥

¬ ⎪ ⊥ ⊤

⊤⊤ ⊤⊥ ⊥⊤ ⊥⊥

∧ ⎪ ⊤ ⊥ ⊥ ⊥
∨ ⎪ ⊤ ⊤ ⊤ ⊥
⇒ ⎪ ⊤ ⊥ ⊤ ⊤
⇐ ⎪ ⊤ ⊤ ⊥ ⊤
= ⎪ ⊤ ⊥ ⊥ ⊤
⧧ ⎪ ⊥ ⊤ ⊤ ⊥ ←

⊤⊤⊤ ⊤⊤⊥ ⊤⊥⊤ ⊤⊥⊥ ⊥⊤⊤ ⊥⊤⊥ ⊥⊥⊤ ⊥⊥⊥

if then else fi ⎪ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥

/27 81

truth tables

⊤ ⊥

¬ ⎪ ⊥ ⊤

⊤⊤ ⊤⊥ ⊥⊤ ⊥⊥

∧ ⎪ ⊤ ⊥ ⊥ ⊥
∨ ⎪ ⊤ ⊤ ⊤ ⊥
⇒ ⎪ ⊤ ⊥ ⊤ ⊤
⇐ ⎪ ⊤ ⊤ ⊥ ⊤
= ⎪ ⊤ ⊥ ⊥ ⊤
⧧ ⎪ ⊥ ⊤ ⊤ ⊥

⊤⊤⊤ ⊤⊤⊥ ⊤⊥⊤ ⊤⊥⊥ ⊥⊤⊤ ⊥⊤⊥ ⊥⊥⊤ ⊥⊥⊥

if then else fi ⎪ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥ ←

/28 81

variables are for substitution (instantiation) 

/29 81

variables are for substitution (instantiation)

• add parentheses to maintain precedence

in x ∧ y replace x by ⊥ and y by ⊥∨⊤ result: ⊥ ∧ (⊥∨⊤) 

/30 81

variables are for substitution (instantiation)

• add parentheses to maintain precedence

in x ∧ y replace x by ⊥ and y by ⊥∨⊤ result: ⊥ ∧ (⊥∨⊤)

• every occurrence of a variable must be replaced by the same expression

in x ∧ x replace x by ⊥ result: ⊥ ∧ ⊥ 

/31 81

variables are for substitution (instantiation)

• add parentheses to maintain precedence

in x ∧ y replace x by ⊥ and y by ⊥∨⊤ result: ⊥ ∧ (⊥∨⊤)

• every occurrence of a variable must be replaced by the same expression

in x ∧ x replace x by ⊥ result: ⊥ ∧ ⊥

• different variables can be replaced by the same expression or different expressions

in x ∧ y replace x by ⊥ and y by ⊥ result: ⊥ ∧ ⊥ 

/32 81

variables are for substitution (instantiation)

• add parentheses to maintain precedence

in x ∧ y replace x by ⊥ and y by ⊥∨⊤ result: ⊥ ∧ (⊥∨⊤)

• every occurrence of a variable must be replaced by the same expression

in x ∧ x replace x by ⊥ result: ⊥ ∧ ⊥

• different variables can be replaced by the same expression or different expressions

in x ∧ y replace x by ⊥ and y by ⊥ result: ⊥ ∧ ⊥

in x ∧ y replace x by ⊤ and y by ⊥ result: ⊤ ∧ ⊥ 

/33 81

new binary expressions
(the grass is green)

(the sky is green)

(there is life elsewhere in the universe)

(intelligent messages are coming from space) 

/34 81

new binary expressions
(the grass is green)

(the sky is green)

(there is life elsewhere in the universe)

(intelligent messages are coming from space)

1 + 1 = 2

0 / 0 = 5 

/35 81

new binary expressions
(the grass is green)

(the sky is green)

(there is life elsewhere in the universe)

(intelligent messages are coming from space)

1 + 1 = 2

0 / 0 = 5

———————————————————————————

consistent: no binary expression is both a theorem and an antitheorem

(no overclassified expressions) 

/36 81

new binary expressions
(the grass is green)

(the sky is green)

(there is life elsewhere in the universe)

(intelligent messages are coming from space)

1 + 1 = 2

0 / 0 = 5

———————————————————————————

consistent: no binary expression is both a theorem and an antitheorem

(no overclassified expressions)

complete: every fully instantiated binary expression is either a theorem or an antitheorem

(no unclassified expressions) 
/37 81

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.

 If a binary expression is an antiaxiom, then it is an antitheorem.

/38 81

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.

 If a binary expression is an antiaxiom, then it is an antitheorem.

x+y = y+x is a mathematical expression

/39 81

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.

 If a binary expression is an antiaxiom, then it is an antitheorem.

x+y = y+x is a mathematical expression

represents a truth in an application such that

when you put quantities together, the total quantity does not depend

on the order in which you put them together

/40 81

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.

 If a binary expression is an antiaxiom, then it is an antitheorem.

x+y = y+x is a mathematical expression

represents a truth in an application such that

when you put quantities together, the total quantity does not depend

on the order in which you put them together

is an axiom

/41 81

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.

 If a binary expression is an antiaxiom, then it is an antitheorem.

x+y = y+x is a mathematical expression

represents a truth in an application such that

when you put quantities together, the total quantity does not depend

on the order in which you put them together

is an axiom

is a theorem

/42 81

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.

 If a binary expression is an antiaxiom, then it is an antitheorem.

x+y = y+x is a mathematical expression

represents a truth in an application such that

when you put quantities together, the total quantity does not depend

on the order in which you put them together

is an axiom

is a theorem

is equivalent to ⊤

/43 81

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.

 If a binary expression is an antiaxiom, then it is an antitheorem.

x+y = y+x is a mathematical expression

represents a truth in an application such that

when you put quantities together, the total quantity does not depend

on the order in which you put them together

is an axiom

is a theorem

is equivalent to ⊤

x+y = y+x is true (not really)

/44 81

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.

 If a binary expression is an antiaxiom, then it is an antitheorem.

/45 81

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.

 If a binary expression is an antiaxiom, then it is an antitheorem.

axiom: ⊤

antiaxiom: ⊥ 

/46 81

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.

 If a binary expression is an antiaxiom, then it is an antitheorem.

axiom: ⊤

antiaxiom: ⊥

axiom: (the grass is green)

antiaxiom: (the sky is green) 

/47 81

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.

 If a binary expression is an antiaxiom, then it is an antitheorem.

axiom: ⊤

antiaxiom: ⊥

axiom: (the grass is green)

antiaxiom: (the sky is green)

axiom: (intelligent messages are coming from space)

⇒ (there is life elsewhere in the universe) 

/48 81

Proof Rules

Axiom Rule If a binary expression is an axiom, then it is a theorem.

 If a binary expression is an antiaxiom, then it is an antitheorem.

axiom: ⊤

antiaxiom: ⊥

axiom: (the grass is green)

antiaxiom: (the sky is green)

axiom: (intelligent messages are coming from space)

⇒ (there is life elsewhere in the universe)

Evaluation Rule If all the binary subexpressions of a binary expression are classified,

 then it is classified according to the truth tables.

/49 81

Proof Rules

Completion Rule If a binary expression contains unclassified binary subexpressions,

and all ways of classifying them place it in the same class, then it is in that class. 

/50 81

Proof Rules

Completion Rule If a binary expression contains unclassified binary subexpressions,

and all ways of classifying them place it in the same class, then it is in that class.

theorem: (there is life elsewhere in the universe) ∨ ⊤ 

/51 81

Proof Rules

Completion Rule If a binary expression contains unclassified binary subexpressions,

and all ways of classifying them place it in the same class, then it is in that class.

theorem: (there is life elsewhere in the universe) ∨ ⊤

theorem: (there is life elsewhere in the universe)

∨ ¬(there is life elsewhere in the universe) 

/52 81

Proof Rules

Completion Rule If a binary expression contains unclassified binary subexpressions,

and all ways of classifying them place it in the same class, then it is in that class.

theorem: (there is life elsewhere in the universe) ∨ ⊤

theorem: (there is life elsewhere in the universe)

∨ ¬(there is life elsewhere in the universe)

antitheorem: (there is life elsewhere in the universe)

∧ ¬(there is life elsewhere in the universe)

/53 81

Proof Rules

Consistency Rule If a classified binary expression contains binary subexpressions, and

only one way of classifying them is consistent, then they are classified that way. 

/54 81

Proof Rules

Consistency Rule If a classified binary expression contains binary subexpressions, and

only one way of classifying them is consistent, then they are classified that way.

We are given that x and x⇒y are theorems. What is y ? 

/55 81

Proof Rules

Consistency Rule If a classified binary expression contains binary subexpressions, and

only one way of classifying them is consistent, then they are classified that way.

We are given that x and x⇒y are theorems. What is y ?

If y were an antitheorem, then by the Evaluation Rule, x⇒y would be an antitheorem.

That would be inconsistent. So y is a theorem. 

/56 81

Proof Rules

Consistency Rule If a classified binary expression contains binary subexpressions, and

only one way of classifying them is consistent, then they are classified that way.

We are given that x and x⇒y are theorems. What is y ?

If y were an antitheorem, then by the Evaluation Rule, x⇒y would be an antitheorem.

That would be inconsistent. So y is a theorem.

We are given that ¬x is a theorem. What is x ? 

/57 81

Proof Rules

Consistency Rule If a classified binary expression contains binary subexpressions, and

only one way of classifying them is consistent, then they are classified that way.

We are given that x and x⇒y are theorems. What is y ?

If y were an antitheorem, then by the Evaluation Rule, x⇒y would be an antitheorem.

That would be inconsistent. So y is a theorem.

We are given that ¬x is a theorem. What is x ?

If x were a theorem, then by the Evaluation Rule, ¬x would be an antitheorem.

That would be inconsistent. So x is an antitheorem.

/58 81

Proof Rules

Consistency Rule If a classified binary expression contains binary subexpressions, and

only one way of classifying them is consistent, then they are classified that way.

We are given that x and x⇒y are theorems. What is y ?

If y were an antitheorem, then by the Evaluation Rule, x⇒y would be an antitheorem.

That would be inconsistent. So y is a theorem.

We are given that ¬x is a theorem. What is x ?

If x were a theorem, then by the Evaluation Rule, ¬x would be an antitheorem.

That would be inconsistent. So x is an antitheorem.

No need to talk about antiaxioms and antitheorems.

/59 81

Proof Rules

Instance Rule If a binary expression is classified,

 then all its instances have that same classification. 

/60 81

Proof Rules

Instance Rule If a binary expression is classified,

 then all its instances have that same classification.

axiom: x = x 

/61 81

Proof Rules

Instance Rule If a binary expression is classified,

 then all its instances have that same classification.

axiom: x = x

theorem: x = x 

/62 81

Proof Rules

Instance Rule If a binary expression is classified,

 then all its instances have that same classification.

axiom: x = x

theorem: x = x

theorem: ⊤ = ⊥ ∨ ⊥ = ⊤ = ⊥ ∨ ⊥ 

/63 81

Proof Rules

Instance Rule If a binary expression is classified,

 then all its instances have that same classification.

axiom: x = x

theorem: x = x

theorem: ⊤ = ⊥ ∨ ⊥ = ⊤ = ⊥ ∨ ⊥

theorem: (intelligent messages are coming from space)

 = (intelligent messages are coming from space) 

/64 81

Proof Rules

Instance Rule If a binary expression is classified,

 then all its instances have that same classification.

axiom: x = x

theorem: x = x

theorem: ⊤ = ⊥ ∨ ⊥ = ⊤ = ⊥ ∨ ⊥

theorem: (intelligent messages are coming from space)

 = (intelligent messages are coming from space)

Classical Logic: all five rules

Constructive Logic: not Completion Rule

Evaluation Logic: neither Consistency Rule nor Completion Rule 

/65 81

Expression and Proof Format

a∧b ∨ c 

/66 81

Expression and Proof Format

a∧b ∨ c NOT a ∧ b∨c 

/67 81

Expression and Proof Format

a∧b ∨ c NOT a ∧ b∨c

(first part

∧ second part) 

/68 81

Expression and Proof Format

a∧b ∨ c NOT a ∧ b∨c

(first part

∧ second part)

C and Java convention

while (something) {

various lines

in the body

of the loop

} 
/69 81

Expression and Proof Format

a∧b ∨ c NOT a ∧ b∨c

(first part

∧ second part) 

/70 81

Expression and Proof Format

a∧b ∨ c NOT a ∧ b∨c

(first part

∧ second part)

first part

= second part 

/71 81

Expression and Proof Format

a∧b ∨ c NOT a ∧ b∨c

(first part

∧ second part)

first part

= second part

expression0

= expression1

= expression2

= expression3 

/72 81

Expression and Proof Format

a∧b ∨ c NOT a ∧ b∨c

(first part

∧ second part)

first part

= second part

expression0 expression0=expression1

= expression1 means ∧ expression1=expression2

= expression2 ∧ expression2=expression3

= expression3 

/73 81

Expression and Proof Format

a∧b ∨ c NOT a ∧ b∨c

(first part

∧ second part)

first part

= second part

expression0

= expression1

= expression2

= expression3 

/74 81

Expression and Proof Format

a∧b ∨ c NOT a ∧ b∨c

(first part

∧ second part)

first part

= second part

expression0 hint0

= expression1 hint1

= expression2 hint2

= expression3 

/75 81

Expression and Proof Format

Prove a ∧ b ⇒ c = a ⇒ (b ⇒ c)

/76 81

Expression and Proof Format

Prove a ∧ b ⇒ c = a ⇒ (b ⇒ c)

a ∧ b ⇒ c Material Implication

= ¬(a ∧ b) ∨ c Duality

= ¬a ∨ ¬b ∨ c Material Implication

= a ⇒ ¬b ∨ c Material Implication

= a ⇒ (b ⇒ c) 

/77 81

Expression and Proof Format

Prove a ∧ b ⇒ c = a ⇒ (b ⇒ c)

a ∧ b ⇒ c Material Implication

= ¬(a ∧ b) ∨ c Duality

= ¬a ∨ ¬b ∨ c Material Implication

= a ⇒ ¬b ∨ c Material Implication

= a ⇒ (b ⇒ c)

Material Implication: a ⇒ b = ¬a ∨ b

/78 81

Expression and Proof Format

Prove a ∧ b ⇒ c = a ⇒ (b ⇒ c)

a ∧ b ⇒ c Material Implication

= ¬(a ∧ b) ∨ c Duality

= ¬a ∨ ¬b ∨ c Material Implication

= a ⇒ ¬b ∨ c Material Implication

= a ⇒ (b ⇒ c)

Material Implication: a ⇒ b = ¬a ∨ b

Instance of Material Implication: a ∧ b ⇒ c = ¬(a ∧ b) ∨ c 

/79 81

Expression and Proof Format

Prove a ∧ b ⇒ c = a ⇒ (b ⇒ c)

a ∧ b ⇒ c Material Implication

= ¬(a ∧ b) ∨ c Duality

= ¬a ∨ ¬b ∨ c Material Implication

= a ⇒ ¬b ∨ c Material Implication

= a ⇒ (b ⇒ c) 

/80 81

Expression and Proof Format

Prove a ∧ b ⇒ c = a ⇒ (b ⇒ c)

a ∧ b ⇒ c Material Implication

= ¬(a ∧ b) ∨ c Duality

= ¬a ∨ ¬b ∨ c Material Implication

= a ⇒ ¬b ∨ c Material Implication

= a ⇒ (b ⇒ c)

(a ∧ b ⇒ c = a ⇒ (b ⇒ c)) Material Implication 3 times

= (¬(a ∧ b) ∨ c = ¬a ∨ (¬b ∨ c)) Duality

= (¬a ∨ ¬b ∨ c = ¬a ∨ ¬b ∨ c) Reflexivity of =

= ⊤

/81 81

