
2009-11-11 12:01 PMRetrospective: An Axiomatic Basis for Computer Programming | October 2009 | Communications of the ACM

Page 1 of 7file:///Users/hehner/Desktop/Retrospective:%20An%20Axiomatic%20Ba…ctober%202009%20%7C%20Communications%20of%20the%20ACM.webarchive

C.A.R. Hoare attending the NATO Software
Engineering Techniques Conference in 1969.
Credit: Robert M. McClure

VIEWPOINTS

Retrospective: An Axiomatic Basis for Computer Programming

C.A.R. Hoare revisits his past Communications article on the axiomatic approach to programming and uses it as a

touchstone for the future.

C.A.R. Hoare

Communications of the ACM
Vol. 52 No. 10, Pages 30-32
10.1145/1562764.1562779

This month marks the 40th anniversary of the publication

of the first article I wrote as an academic. I have been

invited to give my personal view of the advances that have

been made in the subject since then, and the further

advances that remain to be made. Which of them did I

expect, and which of them surprised me?

Retrospective (1969–1999)
My first job (1960–1968) was in the computer industry; and

my first major project was to lead a team that implemented

an early compiler for ALGOL 60. Our compiler was directly

structured on the syntax of the language, so elegantly and so

rigorously formalized as a context-free language. But the semantics of the language was even

more important, and that was left informal in the language definition. It occurred to me that

an elegant formalization might consist of a collection of axioms, similar to those introduced by

Euclid to formalize the science of land measurement. My hope was to find axioms that would

be strong enough to enable programmers to discharge their responsibility to write correct and

efficient programs. Yet I wanted them to be weak enough to permit a variety of efficient

implementation strategies, suited to the particular characteristics of the widely varying

hardware architectures prevalent at the time.

Home » Magazine Archive » 2009 » No. 10 » Retrospective: An Axiomatic Basis for Computer Programming » Full Text

a

http://cacm.acm.org/
http://cacm.acm.org/magazines
http://cacm.acm.org/magazines/2009
http://cacm.acm.org/magazines/2009/10
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming
http://cacm.acm.org/magazines/2009/10/42360-retrospective-an-axiomatic-basis-for-computer-programming/fulltext#FNA

2009-11-11 12:01 PMRetrospective: An Axiomatic Basis for Computer Programming | October 2009 | Communications of the ACM

Page 2 of 7file:///Users/hehner/Desktop/Retrospective:%20An%20Axiomatic%20Ba…ctober%202009%20%7C%20Communications%20of%20the%20ACM.webarchive

I expected that research into the axiomatic method would occupy me for my entire working

life; and I expected that its results would not find widespread practical application in industry

until after I reached retirement age. These expectations led me in 1968 to move from an

industrial to an academic career. And when I retired in 1999, both the positive and the

negative expectations had been entirely fulfilled.

The main attraction of the axiomatic method was its potential provision of an objective

criterion of the quality of a programming language, and the ease with which programmers

could use it. For this reason, I appealed to academic researchers engaged in programming

language design to help me in the research. The latest response comes from hardware

designers, who are using axioms in anger (and for the same reasons as given above) to define

the properties of modern multicore chips with weak memory consistency.

One thing I got spectacularly wrong. I could see that programs were getting larger, and I

thought that testing would be an increasingly ineffective way of removing errors from them. I

did not realize that the success of tests is that they test the programmer, not the program.

Rigorous testing regimes rapidly persuade error-prone programmers (like me) to remove

themselves from the profession. Failure in test immediately punishes any lapse in

programming concentration, and (just as important) the failure count enables implementers to

resist management pressure for premature delivery of unreliable code. The experience,

judgment, and intuition of programmers who have survived the rigors of testing are what

make programs of the present day useful, efficient, and (nearly) correct. Formal methods for

achieving correctness must support the intuitive judgment of programmers, not replace it.

My basic mistake was to set up proof in opposition to testing, where in fact both of them are

valuable and mutually supportive ways of accumulating evidence of the correctness and

serviceability of programs. As in other branches of engineering, it is the responsibility of the

individual software engineer to use all available and practicable methods, in a combination

adapted to the needs of a particular project, product, client, or environment. The best

contribution of the scientific researcher is to extend and improve the methods available to the

engineer, and to provide convincing evidence of their range of applicability. Any more direct

advocacy of personal research results actually excites resistance from the engineer.

Progress (1999–2009)
On retirement from University, I accepted a job offer from Microsoft Research in Cambridge

(England). I was surprised to discover that assertions, sprinkled more or less liberally in the

2009-11-11 12:01 PMRetrospective: An Axiomatic Basis for Computer Programming | October 2009 | Communications of the ACM

Page 3 of 7file:///Users/hehner/Desktop/Retrospective:%20An%20Axiomatic%20Ba…ctober%202009%20%7C%20Communications%20of%20the%20ACM.webarchive

I did not realize that the success
of tests is that they test the
programmer, not the program.

(England). I was surprised to discover that assertions, sprinkled more or less liberally in the

program text, were used in development practice, not to prove correctness of programs, but

rather to help detect and diagnose programming errors. They are evaluated at runtime during

overnight tests, and indicate the occurrence of any error as close as possible to the place in the

program where it actually occurred. The more expensive assertions were removed from

customer code before delivery. More recently, the use of assertions as contracts between one

module of program and another has been incorporated in Microsoft implementations of

standard programming languages. This is just one example of the use of formal methods in

debugging, long before it becomes possible to use them in proof of correctness.

In 1969, my proof rules for programs were devised to

extract easily from a well-asserted program the

mathematical 'verification conditions', the proof of

which is required to establish program correctness. I

expected that these conditions would be proved by the

reasoning methods of standard logic, on the basis of standard axioms and theories of discrete

mathematics. What has happened in recent years is exactly the opposite of this, and even more

interesting. New branches of applied discrete mathematics have been developed to formalize

the programming concepts that have been introduced since 1969 into standard programming

languages (for example, objects, classes, heaps, pointers). New forms of algebra have been

discovered for application to distributed, concurrent, and communicating processes. New

forms of modal logic and abstract domains, with carefully restricted expressive power, have

been invented to simplify human and mechanical reasoning about programs. They include the

dynamic logic of actions, temporal logic, linear logic, and separation logic. Some of these

theories are now being reused in the study of computational biology, genetics, and sociology.

Equally spectacular (and to me unexpected) progress has been made in the automation of

logical and mathematical proof. Part of this is due to Moore's Law. Since 1969, we have seen

steady exponential improvements in computer capacity, speed, and cost, from megabytes to

gigabytes, and from megahertz to gigahertz, and from megabucks to kilobucks. There has been

also at least a thousand-fold increase in the efficiency of algorithms for proof discovery and

counterexample (test case) generation. Crudely multiplying these factors, a trillion-fold

improvement has brought us over a tipping point, at which it has become easier (and certainly

more reliable) for a researcher in verification to use the available proof tools than not to do so.

There is a prospect that the activities of a scientific user community will give back to the tool-

builders a wealth of experience, together with realistic experimental and competition material,

2009-11-11 12:01 PMRetrospective: An Axiomatic Basis for Computer Programming | October 2009 | Communications of the ACM

Page 4 of 7file:///Users/hehner/Desktop/Retrospective:%20An%20Axiomatic%20Ba…ctober%202009%20%7C%20Communications%20of%20the%20ACM.webarchive

builders a wealth of experience, together with realistic experimental and competition material,

leading to yet further improvements of the tools.

For many years I used to speculate about the eventual way in which the results of research into

verification might reach practical application. A general belief was that some accident or series

of accidents involving loss of life, perhaps followed by an expensive suit for damages, would

persuade software managers to consider the merits of program verification.

This never happened. When a bug occurred, like the one that crashed the maiden flight of the

Ariane V spacecraft in 1996, the first response of the manager was to intensify the test regimes,

on the reasonable grounds that if the erroneous code had been exercised on test, it would have

been easily corrected before launch. And if the issue ever came to court, the defense of 'state-

of-the-art' practice would always prevail. It was clearly a mistake to try to frighten people into

changing their ways. Far more effective is the incentive of reduction in cost. A recent report

from the U.S. Department of Commerce has suggested that the cost of programming error to

the world economy is measured in tens of billions of dollars per year, most of it falling (in

small but frequent doses) on the users of software rather than on the producers.

The phenomenon that triggered interest in software verification from the software industry

was totally unpredicted and unpredictable. It was the attack of the hacker, leading to an

occasional shutdown of worldwide commercial activity, costing an estimated $4 billion on each

occasion. A hacker exploits vulnerabilities in code that no reasonable test strategy could ever

remove (perhaps by provoking race conditions, or even bringing dead code cunningly to life).

The only way to reach these vulnerabilities is by automatic analysis of the text of the program

itself. And it is much cheaper, whenever possible, to base the analysis on mathematical proof,

rather than to deal individually with a flood of false alarms. In the interests of security and

safety, other industries (automobile, electronics, aerospace) are also pioneering the use of

formal tools for programming. There is now ample scope for employment of formal methods

researchers in applied industrial research.

Prospective (2009–)
In 1969, I was afraid industrial research would dispose such vastly superior resources that the

academic researcher would be well advised to withdraw from competition and move to a new

area of research. But again, I was wrong. Pure academic research and applied industrial

research are complementary, and should be pursued concurrently and in collaboration. The

goal of industrial research is (and should always be) to pluck the 'low-hanging fruit'; that is, to

2009-11-11 12:01 PMRetrospective: An Axiomatic Basis for Computer Programming | October 2009 | Communications of the ACM

Page 5 of 7file:///Users/hehner/Desktop/Retrospective:%20An%20Axiomatic%20Ba…ctober%202009%20%7C%20Communications%20of%20the%20ACM.webarchive

The phenomenon that triggered
interest in software verification
from the software industry was
totally unpredicted and
unpredictable.

goal of industrial research is (and should always be) to pluck the 'low-hanging fruit'; that is, to

solve the easiest parts of the most prevalent problems, in the particular circumstances of here

and now. But the goal of the pure research scientist is exactly the opposite: it is to construct

the most general theories, covering the widest possible range of phenomena, and to seek

certainty of knowledge that will endure for future generations. It is to avoid the compromises

so essential to engineering, and to seek ideals like accuracy of measurement, purity of

materials, and correctness of programs, far beyond the current perceived needs of industry or

popularity in the market-place. For this reason, it is only scientific research that can prepare

mankind for the unknown unknowns of the forever uncertain future.

So I believe there is now a better scope than ever for

pure research in computer science. The research must

be motivated by curiosity about the fundamental

principles of computer programming, and the desire

to answer the basic questions common to all branches

of science: what does this program do; how does it

work; why does it work; and what is the evidence for believing the answers to all these

questions? We know in principle how to answer them. It is the specifications that describes

what a program does; it is assertions and other internal interface contracts between

component modules that explain how it works; it is programming language semantics that

explains why it works; and it is mathematical and logical proof, nowadays constructed and

checked by computer, that ensures mutual consistency of specifications, interfaces, programs,

and their implementations.

There are grounds for hope that progress in basic research will be much faster than in the early

days. I have already described the vastly broader theories that have been proposed to

understand the concepts of modern programming. I have welcomed the enormous increase in

the power of automated tools for proof. The remaining opportunity and obligation for the

scientist is to conduct convincing experiments, to check whether the tools, and the theories on

which they are based, are adequate to cover the vast range of programs, design patterns,

languages, and applications of today's computers. Such experiments will often be the rational

reengineering of existing realistic applications. Experience gained in the experiments is

expected to lead to revisions and improvements in the tools, and in the theories on which the

tools were based. Scientific rivalry between experimenters and between tool builders can

thereby lead to an exponential growth in the capabilities of the tools and their fitness to

purpose. The knowledge and understanding gained in worldwide long-term research will guide

2009-11-11 12:01 PMRetrospective: An Axiomatic Basis for Computer Programming | October 2009 | Communications of the ACM

Page 6 of 7file:///Users/hehner/Desktop/Retrospective:%20An%20Axiomatic%20Ba…ctober%202009%20%7C%20Communications%20of%20the%20ACM.webarchive

purpose. The knowledge and understanding gained in worldwide long-term research will guide

the evolution of sophisticated design automation tools for software, to match the design

automation tools routinely available to engineers of other disciplines.

The End
No exponential growth can continue forever. I hope progress in verification will not slow down

until our programming theories and tools are adequate for all existing applications of

computers, and for supporting the continuing stream of innovations that computers make

possible in all aspects of modern life. By that time, I hope the phenomenon of programming

error will be reduced to insignificance: computer programming will be recognized as the most

reliable of engineering disciplines, and computer programs will be considered the most

reliable components in any system that includes them.

Even then, verification will not be a panacea. Verification technology can only work against

errors that have been accurately specified, with as much accuracy and attention to detail as all

other aspects of the programming task. There will always be a limit at which the engineer

judges that the cost of such specification is greater than the benefit that could be obtained from

it; and that testing will be adequate for the purpose, and cheaper. Finally, verification cannot

protect against errors in the specification itself. All these limits can be freely acknowledged by

the scientist, with no reduction in enthusiasm for pushing back the limits as far as they will go.

Author

C.A.R. Hoare (thoare@microsoft.com) is a principal researcher at Microsoft Research in

Cambridge, U.K., and Emeritus Professor of Computing at Oxford University.

Footnotes

a. Hoare, C.A.R. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct.

1969), 576–580.

DOI: http://doi.acm.org/10.1145/1562764.1562779

Figures

Figure. C.A.R. Hoare attending the NATO Software Engineering Techniques

Conference in 1969.

http://delivery.acm.org/10.1145/1570000/1562779/mailto:thoare@microsoft.com

2009-11-11 12:01 PMRetrospective: An Axiomatic Basis for Computer Programming | October 2009 | Communications of the ACM

Page 7 of 7file:///Users/hehner/Desktop/Retrospective:%20An%20Axiomatic%20Ba…ctober%202009%20%7C%20Communications%20of%20the%20ACM.webarchive

Copyright held by author.

The Digital Library is published by the Association for Computing Machinery.

Copyright © 2009 ACM, Inc.

