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Abstract

Boolean algebra is simpler than number algebra, with applications in programming, circuit 
design, law, specifications, mathematical proof, and reasoning in any domain.  So why is number 
algebra taught in primary school and used routinely by scientists, engineers, economists, and the 
general public, while boolean algebra is not taught until university, and not routinely used by 
anyone?  A large part of the answer may be in the terminology and symbols used, and in the 
explanations of boolean algebra found in textbooks.  This paper points out some of the problems 
delaying the acceptance and use of boolean algebra, and suggests some solutions.

Introduction

This paper is about the symbols and notations of boolean algebra, and about the way the subject 
is explained.  It is about education, and about putting boolean algebra into general use and 
practice.  To make the scope clear, by “boolean algebra” I mean the algebra whose expressions 
are of type boolean.  I mean to include the expressions of propositional calculus and predicate 
calculus.  The expressions of this algebra are called “boolean expressions”.  Analogously, the 
expressions of number algebra are called “number expressions”.

Boolean algebra is the basic algebra for much of computer science.  Other applications include 
digital circuit design, law, reasoning about any subject, and any kind of specifications, as well as 
providing a foundation for all of mathematics.  Boolean algebra is inherently simpler than 
number algebra.  There are only two boolean values and a few boolean operators, and they can 
be explained by a small table.  There are infinitely many number values and number operators, 
and even the simplest, counting, is inductively defined.  So why is number algebra taught in 
primary school, and boolean algebra in university?  Why isn't boolean algebra better known, 
better accepted, and better used?

One reason may be that, although boolean algebra is just as useful as number algebra, it isn't as 
necessary.  Informal methods of reckoning quantity became intolerable several thousand years 
ago, but we still get along with informal methods of specification, design, and reasoning.  
Another reason may be just an accident of educational history, and still another may be our 
continuing mistreatment of boolean algebra.

Historical Perspective

To start to answer these questions, I'm going to look briefly at the history of number algebra.  
Long after the invention of numbers and arithmetic, quantitative reasoning was still a matter of 
trial and error, and still conducted in natural language.  If a man died leaving his 3 goats and 20 
chickens to be divided equally between his 2 sons, and it was agreed that a goat is worth 8 
chickens, the solution was determined by iterative approximations, probably using the goats and 
chickens themselves in the calculation.  The arithmetic needed for verification was well 
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understood long before the algebra needed to find a solution.

The advent of algebra provided a more effective way of finding solutions to such problems, but it 
was a difficult step up in abstraction.  The step from constants to variables is as large as the step 
from chickens to numbers.  In English 500 years ago, constants were called “nombers 
denominate” [concrete numbers], and variables were called “nombers abstracte”.  One of the 
simplest, most general laws, sometimes called “substitution of equals for equals”,

x=y  ⇒  f x = f y
seems to have been discovered a little at a time.  Here is one special case [20]:

“In the firste there appeareth 2 nombers, that is  14x + 15y   equalle to one nomber, whiche is  
71y .  But if you marke them well, you maie see one denomination, on bothe sides of the 
equation, which never ought to stand.  Wherfore abating [subtracting] the lesser, that is  15y  
out of bothe the nombers, there will remain  14x = 56y  that is, by reduction,  1x = 4y . 
Scholar.  I see, you abate  15y  from them bothe.  And then are thei equalle still, seyng thei 
wer equalle before.  According to the thirde common sentence, in the patthewaie:  If you abate 
even [equal] portions, from thynges that bee equalle, the partes that remain shall be equall also. 
Master.  You doe well remember the firste grounds of this arte.”

And then, a paragraph later, another special case:
“If you adde equalle portions, to thynges that bee equalle, what so amounteth of them shall be 
equalle.”

Each step in an abstract calculation was accompanied by a concrete justification.  For example, 
we have the Commutative Law [0]:

When the chekyns of two gentle menne are counted, we may count first the chekyns of the 
gentylman having fewer chekyns, and after the chekyns of the gentylman having the greater 
portion.  If the nomber of the greater portion be counted first, and then that of the lesser 
portion, the denomination so determined shall be the same. 

This version of the Commutative Law includes an unnecessary case analysis, and it has missed a 
case:  when the two gentlemen have the same number of chickens, it does not say whether the 
order matters.  The Associative Law [0]:

When thynges to be counted are divided in two partes, and lately are found moare thynges to be 
counted in the same generall quantitie, it matters not whether the thynges lately added be 
counted together with the lesser parte or with the greater parte, or that there are severalle partes 
and the thynges lately added be counted together with any one of them. 

As you can imagine, the distance from  2x + 3 = 3x + 2  to  x=1  was likely to be several pages.  
The reason for all the discussion in between formulas was that algebra was not yet fully trusted.  
Algebra replaces meaning with symbol manipulation;  the loss of meaning is not easy to accept.  
The author constantly had to reassure those readers who had not yet freed themselves from 
thinking about the objects represented by numbers and variables.  Those who were skilled in the 
art of informal reasoning about quantity were convinced that thinking about the objects helps to 
calculate correctly, because that is how they did it.  As with any technological advance, those 
who are most skilled in the old way are the most reluctant to see it replaced by the new.

Today, of course, we expect a quantitative calculation to be conducted entirely in algebra, 
without reference to thynges.  Although we justify each step in a calculation by reference to an 
algebraic law, we do not have to justify the laws continually.  We can go farther, faster, more 
succinctly, and with much greater certainty.  In a typical modern proof (see the first Appendix) 
we see lines like
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These lines were taken from a proof of Wedderburn's Theorem (a finite division ring is a 
commutative field) in [15] (the text used when I studied algebra).  Before we start to feel pleased 
with ourselves at the improvement, let me point out that there is another kind of calculation, a 
boolean calculation, occurring in the English text between the formulas.  In the example proof 
[15] we find the words “consequently”, “implying”, “there is/are”, “however”, “thus”, “hence”, 
“since”, “forces”, “if...then”, “in consequence of which”, “from which we get”, “whence”, 
“would imply”, “contrary to”, “so that”, “contradicting”;  all these words suggest boolean 
operators.  We also find bookkeeping sentences like “We first remark ...”, “We must now rule out 
the case ...”;  these suggest the structure of a boolean expression.  It will be quite a large 
expression, perhaps taking an entire page.  If written in the usual unformatted fashion of proofs 
in current algebra texts, it will be quite unreadable.  The same problem occurs with computer 
programs, which can be thousands of pages long;  to make them readable they must be carefully 
formatted, with indentation to indicate structure.  We will have to do likewise with proofs.

A formal proof is a boolean calculation using boolean algebra;  when we learn to use it well, it 
will enable us to go farther, faster, more succinctly, and with much greater certainty.  But there is 
a great resistance in the mathematical community to formal proof, especially from those who are 
most expert at informal proof.  They complain that formal proof loses meaning, replacing it with 
symbol manipulation.  The current state of boolean algebra, not as an object of study but as a tool 
for use, is much the same as number algebra was 5 centuries ago.

Boolean Calculation

Given an expression, it is often useful to find an equivalent but simpler expression.  For example, 
in number algebra

x×(z+1) – y×(z–1) – z×(x–y) distribute
= (x×z + x×1) – (y×z – y×1) – (z×x – z×y) unity and double negation
= x×z + x – y×z + y – z×x + z×y symmetry and associativity
= x + y + (x×z – x×z) + (y×z – y×z) zero and identity
= x + y

We might sometimes want to find an equivalent expression that isn't simpler;  to remove the 
directionality I'll say “calculation” rather than “simplification”.  We can use operators other than  
=  down the left side of the calculation;  we can even use a mixture of operators, as long as there 
is transitivity.  For example, the calculation (for real  x )

x×(x + 2) distribute
= x2 + 2×x add and subtract 1
= x2 + 2×x + 1 – 1 factor
= (x + 1)2 – 1 a square is nonnegative
≥ –1

tells us
x×(x + 2) ≥ –1

Boolean calculation is similar.  For example,
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(a⇒b) ∨ (b⇒a) replace implications
≡ ¬a ∨ b  ∨  ¬b ∨ a ∨  is symmetric
≡ a ∨ ¬a  ∨  b ∨ ¬b excluded middle, twice
≡ true ∨ true ∨  is idempotent
≡ true

And so  (a⇒b) ∨ (b⇒a)  has been simplified to  true , which is to say it has been proven.  Here 
is another example.

∃n· n + n2 = n3 instance
⇐ 0 + 02 = 03 arithmetic
≡ true

And so  (∃n· n + n2 = n3) ⇐ true , and so  ∃n· n + n2 = n3  is proven.

Solving simultaneous equations can also be done as a boolean calculation.  For example,
x + x×y + y = 5  ∧  x – x×y + y = 1 subtract and add  2×x×y  in first equation

≡ x – x×y + y + 2×x×y = 5  ∧  x – x×y + y = 1 use second equation to simplify first
≡ 1 + 2×x×y = 5  ∧  x – x×y + y = 1
≡ 2×x×y = 4  ∧  x – x×y + y = 1
≡ x×y = 2  ∧  x – x×y + y = 1 use first equation to simplify second
≡ x×y = 2  ∧  x – 2 + y = 1
≡ x×y = 2  ∧  x + y = 3
≡ x=1 ∧ y=2  ∨  x=2 ∧ y=1
⇐ x=1 ∧ y=2

These examples show that simplifying, proving, and solving are all the same:  they are all just 
calculation.

When an expression is too long to fit on one line, it must be nicely formatted for easy reading, 
and when a hint is too long to fit on the remainder of a line, it can be written on as many lines as 
it takes, but I do not consider formatting further here.  One point worth mentioning is that 
subcalculations (if boolean, they are called subproofs or lemmas) can save copying unchanged 
parts of a calculation through many lines.  These subcalculations can be done in another place 
and referenced, or they can be done in-place, nicely formatted, to provide a structured calculation 
(structured proof).  By far the best way to handle subcalculations is provided by window 
inference systems [21] [2], which open a new window for each subcalculation, keep track of its 
direction, and make its context available.  For example, in solving the simultaneous equations, I 
used the second equation to simplify the first, and then the first to simplify the second.

In this brief introduction to boolean calculation, I have not taken the time to present all the rules.  
For a complete presentation, the reader is referred to [14].  A research monograph that uses 
calculational proof is [7].  A textbook on discrete math that uses calculational proof is [10].  For 
further discussion of calculational proofs see [9] [17].

Traditional Terminology

Formal logic has developed a complicated terminology that its students are forced to learn.  
There are terms, which are said to have values.  There are formulas, also known as propositions 
or sentences, which are said not to have values, but instead to be true or false.  Operators (+, –) 
join terms, while connectives (∧, ∨) join formulas.  Some terms are boolean, and they have the 
value  true  or  false , but that's different from being true or false.  It is difficult to find a 
definition of predicate, but it seems that a boolean term like  x=y  stops being a boolean term and 
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mysteriously starts being a predicate when we admit the possibility of using quantifiers (∃, ∀).  
Does  x+y  stop being a number term if we admit the possibility of using summation and product 
(Σ, Π)?  There are at least three different equal signs:  =  for terms, and  ⇔  and  ≡  for formulas 
and predicates, with one of them carrying an implicit universal quantification.  We can even find 
a peculiar mixture in some textbooks, such as the following:

a+b = a  ∨  a+b = b
Here,  a  and  b  are boolean variables,  +  is a boolean operator (disjunction),  a+b  is a boolean 
term (having value  true  or  false ),  a+b = a  and  a+b = b  are formulas (so they are true or 
false), and finally  ∨  is a logical connective.

Fortunately, in the past few decades there has been a noticeable shift toward erasing the 
distinction between being true or false and having the value  true  or  false .  It is a shift toward 
the calculational style of proof.  But we have a long way to go yet, as I find whenever I ask my 
beginning students to prove something of the form  a⊕b  where  ⊕   is pronounced “exclusive 
or”.  They cannot even start because they expect something that looks grammatically like a 
sentence.  If I change it to either of the equivalent forms  (a⊕b ) ≡ true  or  a≢b  they are happy 
because they can read it as a sentence with a verb.  But  (a≢b ) ≡  true  confuses them again 
because it seems to have too many verbs.  If I ask them to prove something of the form  a∨b , 
they take an unwittingly constructivist interpretation, and suppose I want them to prove  a  or 
prove  b  because that is what  “do  a  or  b ” means in English.  The same lack of understanding 
can be found in many introductory programming texts where boolean expressions are not taught 
in their generality but as comparisons because comparisons have verbs.  We find

while flag=true do something od
but not the equivalent, simpler, more efficient

while flag do something od
because  flag  isn't the right part of speech to follow  while .  Our dependence on natural 
language for the understanding of boolean expressions is a serious impediment.

Traditional Notations

Arithmetic notations are reasonably standard throughout the world.  The expression
738 + 45 = 783

is recognized and understood by schoolchildren almost everywhere.  But there are no standard 
boolean notations.  Even the two boolean constants have no standard symbols.  Symbols in use 
include

true t T 1 0
false f F 0 1

Quite often the boolean constants are written as  1  and  0 , with  +  for disjunction, adjacency for 
conjunction, and perhaps  –  for negation.  With this notation, here are some laws.

x(y+z) = xy + xz
x + yz = (x+y)(x + z)
x + –x = 1
x(–x) = 0

The first law above coincides with number algebra, but the next three clash with number algebra.  
The overwhelming reaction of algebraists to notational criticisms is:  it doesn't matter which 
symbols are used;  just introduce them, and get on with it.  But to apply an algebra, one must 
recognize the patterns, matching laws to the expression at hand.  The laws have to be familiar.  It 
takes an extra moment to think which algebra I am using as I apply a law.  The logician R.L. 
Goodstein [8] chose to use  0  and  1  the other way around, which slows me down a little more.  
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A big change, like using  +  as a variable and  x  as an operator, would slow me down a lot.  I 
think it matters even to algebraists because they too have to recognize patterns.  To a larger 
public, the reuse of arithmetic symbols with different meanings is an insurmountable obstacle.  
And when we mix arithmetic and boolean operators in one expression, as we often do, it is 
impossible to disambiguate.

The most common notations for the two boolean constants found in programming languages and 
in programming textbooks seem to be  true  and  false .  I have two objections to these symbols.  
The first is that they are English-based and clumsy.  Number algebra could never have advanced 
to its present state if we had to write out words for numbers.

seven three eight + four five = seven eight three
is just too clumsy, and so is

true ∧ false ∨ true ≡ true
Clumsiness may seem minor, but it can be the difference between success and failure in a 
mathematical formalism.

My second, and more serious, objection is that the words  true  and  false  confuse the algebra 
with an application.  One of the primary applications of boolean algebra is to formalize 
reasoning, to determine the truth or falsity of some statements from the truth or falsity of others.  
In that application, we use one of the boolean constants to represent truth, and the other to 
represent falsity.  So for that application, it seems reasonable to call them  true  and  false .  The 
algebra arose from that application, and it is so much identified with it that many people cannot 
separate them;  they think the boolean values really are  true  and  false .  But of course boolean 
expressions are useful for describing anything that comes in two kinds.  We apply boolean 
algebra to circuits in which there are two voltages.  We sometimes say that there are 0s and 1s in 
a computer's memory, or that there are trues and falses.  Of course that's nonsense;  there are 
neither 0s and 1s nor trues and falses in there;  there are low and high voltages.  We need 
symbols that can represent truth values and voltages equally well.

Boolean expressions have other applications, and the notations we choose should be equally 
appropriate for all of them.  Computer programs are written to make computers work in some 
desired way.  Before writing a program, a programmer should know which ways are desirable 
and which are not.  That divides computer behavior into two kinds, and we can use boolean 
expressions to represent them.  A boolean expression used this way is called a specification.  We 
can specify anything, not just computer behavior, using boolean expressions.  For example, if 
you would like to buy a table, then tables are of two kinds:  those you find desirable and are 
willing to buy, and those you find undesirable and are not willing to buy.  So you can use a 
boolean expression as a table specification.  Acceptable and unacceptable human behavior is 
specified by laws, and boolean expressions have been proposed as a better way than legal 
language for writing laws [1].  They can be used to calculate the attractions and repulsions 
among a set of magnets.

For symbols that are independent of the application, I propose the lattice symbols  ⊤  and  ⊥ , 
pronounced “top” and “bottom”.  Since boolean algebra is the mother of all lattices, I think it is 
appropriate, not a misuse of those symbols.  They can equally well be used for true and false 
statements, for high and low voltages (power and ground), for satisfactory and unsatisfactory 
tables, for innocent and guilty behavior, or any other opposites.

For disjunction, the symbol  ∨   is fairly standard, coming from the Latin word “vel” for “or”.  
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For conjunction, the symbol is less standard, the two most common choices being  &  and  ∧ .  
We are even less settled on a symbol for implication.  Symbols in use include

→    ⇒   ∴   ⊃
The usual explanation says it means “if then”, followed by a discussion about the meaning of “if 
then”.  Apparently, people find it difficult to understand an implication whose antecedent is  
false ;  for example,  “If my mother had been a man, I'd be the king of France.” [19].  Such an 
implication is called “counter-factual”.  Some people are uneasy with the idea that  false  implies 
anything, so some researchers in Artificial Intelligence have proposed a new definition of 
implication.  The following truth table shows both the old and new definitions.

old new
a b a⇒b a⇒b

                                                                
true true true true
true false false false
false true true unknown
false false true unknown

where  unknown  is a third boolean value.  When the antecedent is  false , the result of the new 
kind of implication is  unknown .  This is argued to be more intuitive.  I believe this proposal 
betrays a serious misunderstanding of logic.  When someone makes a statement, they are saying 
that the statement is true.  Even if the statement is “if a then b ” and  a  is known to be false, 
nonetheless we are being told that “if a then b ” is true.  It is the consequent  b  that is unknown.  
And that is represented perfectly by the old implication:  there are two rows in which  a  is  false  
and  a⇒b  is  true ;  on one of these rows,  b  is  true , and on the other  b  is  false .

Debate about implication has been going on for a long time;  22 centuries ago, Callimachus, the 
librarian at Alexandria, said “Even the crows on the roof croak about what implications are 
sound.”[3] [18].  In case you think that confusion is past, or just for beginners, consider the 
explanation of implication in Contemporary Logic Design, 1994 [16]:

“As an example, let's look at the following logic statement:
IF the garage door is open
AND the car is running
THEN the car can be backed out of the garage

It states that the conditions — the garage is open and the car is running — must be true 
before the car can be backed out.  If either or both are false, then the car cannot be backed 
out.”

Even a Berkeley computer science and electrical engineering professor can get implication 
wrong.

Implication is best presented as an ordering.  If we are calling the boolean values “top” and 
“bottom”, we can say “lower than or equal to” for implication.  It is easy, even for primary 
school students, to accept that  ⊥  is lower than or equal to  ⊤ , and that  ⊥  is lower than or 
equal to  ⊥ .   With this new pronunciation and explanation, three other neglected boolean 
operators become familiar and usable;  they are “higher than or equal to”, “lower than”, and 
“higher than”.  For lack of a name and symbol, the last two operators have been treated like 
shameful secrets, and shunned.  If we are still calling the boolean values “true” and “false”, then 
we shall have to call implication “falser than or equal to”.  As we get into boolean expressions 
that use other types, ordering remains a good explanation:  x<4  is falser than or equal to  x<6 , as 
a sampling of evaluations illustrates (try  x = 3, 5, 7).  I have tried using the standard words 
“stronger” and “weaker”, saying  x<4  is stronger than  x<6 ;  but I find that some of my students 
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have an ethical objection to saying that falsity is stronger than truth.

That implication is the boolean ordering, with  ⊤  and  ⊥  at the extremes, is not appreciated by 
all who use boolean algebra.  In the specification language Z [24], boolean expressions are used 
as specifications.  Specification  A  refines specification  B  if all behavior satisfying  A  also 
satisfies  B .  Although increasing satisfaction is exactly the implication ordering, the designers of 
Z defined a different ordering for refinement where  ⊤  is not satisfied by all computations, only 
by terminating computations, and  ⊥  is satisfied by some computations, namely nonterminating 
computations.  They chose to embed a new lattice within boolean algebra, rather than to use the 
lattice that it provides.

Implication has often been defined as a “secondary” operator in terms of the “primary” operators 
negation and disjunction:

(a⇒b)  ≡  ¬a ∨ b
Proofs about implications proceed by getting rid of them in favor of the more familiar negation 
and disjunction, as I did earlier in an example.  This avoids the informal explanation, but it 
makes an unsupportable distinction between “primary” and “secondary” operators, and hides the 
fact that it is an ordering.  When we learn that implication is an ordering, proofs about 
implications become shorter and easier.

If we present implication as an ordering, as I prefer, then we face the problem of how to use this 
ordering in the formalization of natural language reasoning.  To what extent does the algebraic 
operator “lower than or equal to” correspond to the English word “implication”?  Philosophers 
and linguists are welcome to consider this question.  But we shouldn't let the complexities of this 
application of boolean algebra complicate the algebra, any more than we let the complexities of 
the banking industry complicate the definition of arithmetic.

Symmetry and Duality

In choosing infix symbols, there is a simple principle that really helps our ability to calculate:  we 
should choose symmetric symbols for symmetric operators, and asymmetric symbols for 
asymmetric operators, and choose the reverse of an asymmetric symbol for the reverse operator.  
The benefit is that a lot of laws become visual:  we can write an expression backwards and get an 
equivalent expression.  For example,  x + y < z  is equivalent to  z > y + x .  By this principle, the 
arithmetic symbols  +  ×  <  >  =  are well chosen but  –  and  ≠  are not.  The boolean symbols  ∧  
∨  ⇒  ⇐  ≡  ⊕  are well chosen, but  ≢  is not.

Duality can be put to use, just like symmetry, if we use vertically symmetric symbols for self-
dual operators, and vertically asymmetric symbols for non-self-dual operators with the vertical 
reverse for their duals.  The laws that become visual are:  to negate an expression, turn it upside 
down.  For example,  (⊤ ∧ –⊥) ∨ ⊥  is the negation of  (⊥ ∨ –⊤) ∧ ⊤  if you allow me to use the 
vertically symmetric symbol  –  for negation, which is self-dual.  There are two points that 
require attention when using this rule.  One is that parentheses may need to be added to maintain 
the precedence;  but if we give dual operators the same precedence, there's no problem.  The 
other point is that variables cannot be flipped, so we negate them instead (since flipping is 
equivalent to negation).  The well-known example is deMorgan's law:  to negate  a ∨ b , turn it 
upside down and negate the variables to get  –a ∧ –b .  By this principle, the symbols  ⊤  ⊥  –  ∧  
∨  are well chosen, but  ⇒  ⇐  ≡  ≢  ⊕  are not.  By choosing better symbols we can let the 
symbols do some of the work of calculation, moving it to the level of visual processing. 
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from Booleans to Numbers

Some boolean expressions are laws:  they have value  ⊤  no matter what values are assigned to 
the variables.  Some boolean expressions are unsatisfiable:  they have value  ⊥  no matter what 
values are assigned to the variables.  The remaining boolean expressions are in between, and 
“solving” means finding an assignment of values for the variables for which the boolean 
expression has value  ⊤ .  (Solving is not just for equations but for any kind of boolean 
expression.)  A lot of mathematics is concerned with solving.  And in particular, number algebra 
has developed by the desire to solve.  To caricature the development, we choose an unsatisfiable 
boolean expression and say “What a pity that it has no solutions.  Let's give it one.”.  This has 
resulted in an increasing sequence of domains, from naturals to integers to rationals to reals to 
complex numbers.  The boolean expression  x+1 = 0  is unsatisfiable in the natural numbers, but 
we give it a solution and thereby invent the integers.  Similarly we choose to give solutions to  
x×2 = 1 ,  x2 = 2 ,  x2 = –1 , and thereby progress to larger domains.  This progression is both 
historical and pedagogical.  At the same time as we gain solutions, we lose laws, since the laws 
and unsatisfiable expressions are each other's negations.  For example, when we gain a solution 
to  x2 = 2 , we lose the law  x2 ≠ 2 .

As the domain of an operator or function grows, we do not change its symbol;  addition is still 
denoted  +  as we go from naturals to complex numbers.  I will not argue whether the naturals are 
a subset of the complex numbers or just isomorphic to a subset;  for me the question has no 
meaning.  But I do argue that it is important to use the same notation for natural  1  and complex  
1  because they behave the same way, and for natural  +  and complex  +  because they behave 
the same way on their common domain.  To be more precise, all boolean expressions over the 
naturals retain the same solutions over the complex numbers, and all laws of complex arithmetic 
that can be interpreted over the naturals are laws of natural arithmetic.  The reason we must use 
the same symbols is so that we do not have to relearn all the solutions and laws as we enlarge or 
shrink the domain.  And indeed, it is standard mathematical practice to use the same symbols.

For exactly the same good reasons that we have a unified treatment of number algebras, we must 
now unify boolean and number algebras.  The question whether boolean is a different type from 
number is no more relevant than the question whether natural and integer are different types.  
What's important is that solutions and laws are learned once, in a unified system, not twice in 
conflicting systems.  And that matters both to primary school students who must struggle to learn 
what will be useful to them, and to professional mathematicians who must solve and apply laws.  
Historically, number algebra did not grow from boolean algebra;  but pedagogically it can do so.  
As already argued, the use of  0  1  +  ×  for  ⊥  ⊤  ∨   ∧  doesn't work.  To find an association 
between booleans and numbers that works for unification, we must use a number system 
extended with an infinite number.  Such a system is useful for many purposes;  for example, it is 
used in [13] to prove things about the execution time of programs (some execution times are 
infinite).  For a list of axioms of this arithmetic, please see [13] [14].  The association that works 
is as follows.
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boolean number
top ⊤ ∞ infinity

bottom ⊥ –∞ minus infinity
negation ¬ – negation

conjunction ∧ ↓ minimum
disjunction ∨ ↑ maximum
implication ⇒ ≤ order
equivalence ≡ = equality
exclusive or ⊕ ≠ inequality

With this association, all number laws employing only these operators correspond to boolean 
laws.  For example,

boolean law number law
⊤ ⊕ ⊥ ∞ ≠ –∞
a ≡ ¬¬a x = – –x
a ∨ ⊤  ≡  ⊤ x ↑ ∞  =  ∞
a ∧ ⊥  ≡  ⊥ x ↓ –∞  =  –∞
a ∨ ⊥  ≡  a x ↑ –∞  =  x
a ∧ ⊤  ≡  a x ↓ ∞  =  x
a ⇒ ⊤ x ≤ ∞
⊥ ⇒ a –∞ ≤ x
a ∨ (b ∧ c)  ≡  (a∨b) ∧ (a∨c) x ↑ (y ↓ z)  =  (x↑y) ↓ (x↑z)
a ∧ (b ∨ c)  ≡  (a∧b) ∨ (a∧c) x ↓ (y ↑ z)  =  (x↓y) ↑ (x↓z)
a ∨ b  ≡  ¬(¬a ∧ ¬b) x ↑ y  =  –(–x ↓ –y)
a ∧ b  ≡  ¬(¬a ∨ ¬b) x ↓ y  =  –(–x ↑ –y)

There are boolean laws that do not correspond to number laws, just as there are integer laws that 
are not real laws.  That's another way of saying that there are unsatisfiable boolean expressions 
that correspond to satisfiable number expressions.  We will use this for our unified development.

Unified Algebra

Here is my proposal for the symbols of a unified algebra.
unified

top ⊤ infinity
bottom ⊥ minus infinity

negation – negation
conjunction ↓ minimum
disjunction ↑ maximum

“nand” ⤈ negation of minimum
“nor” ⤉ negation of maximum

implication ≤ order
reverse implication ≥ reverse order

strict implication < strict order
strict reverse implication > strict reverse order

equivalence = equality
exclusive or ⧧ inequality

The symbols  –  ≤  ≥  <  >  =  are world-wide standards, used by school children in all countries, 
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so I dare not suggest any change to them.  The symbol  ≠  for inequality is the next best known, 
but I have dared to stand up the slash so that all symmetric operators have symmetric symbols 
and all asymmetric operators have asymmetric symbols.  (Although it was not a consideration,  ⧧  
also looks more like  ⊕ .)  Duality has been sacrificed to standards;  the pair  ≤  <  are duals, so 
they ought to be vertical reflections of each other;  similarly the pair  ≥  > , and also  =  ⧧ ;  
addition and subtraction are self-dual, and happily  +  and  –  are vertically symmetric;  
multiplication is not self-dual, but  ×  is unfortunately vertically symmetric.

Having unified the symbols, I suppose we should also unify the terminology.  I vote for the 
number terminology in the right column, except that I prefer to call  ⊤  and  ⊥  “top” and 
“bottom”.

The association between booleans and numbers suggested here allows the greatest number of 
boolean laws to be generalized to all numbers.  For example, if  a ,  b , and  c  are boolean, then it 
is usual to define  if a then b else c fi  by the law (in standard boolean notation):

if a then b else c fi  ≡  (a ∧ b) ∨ (¬a ∧ c)
If  a  remains boolean but  b  and  c  are numbers, the if-expression on the left is still sensible 
(the Algol if), and this is still a law.  In the unified notation it is

if a then b else c fi  =  (a ↓ b) ↑ (–a ↓ c)

The next examples, written in boolean notation, are the laws
(a ∧ b  ⇒  c)   ≡   (a ⇒ c) ∨ (b ⇒ c)
(a ∨ b  ⇒  c)   ≡   (a ⇒ c) ∧ (b ⇒ c)

A common error is to use conjunction twice, or disjunction twice.  The boolean reading “ a  and  
b  implies  c  if and only if  a  implies  c  or  b  implies  c ” sounds no more reasonable than “ a  
and  b  implies  c  if and only if  a  implies  c  and  b  implies  c ”.  In unified notation,

(a ↓ b  ≤  c)   =   (a ≤ c) ↑ (b ≤ c)
(a ↑ b  ≤  c)   =   (a ≤ c) ↓ (b ≤ c)

it is obvious that the minimum of  a  and  b  is less than or equal to  c  when at least one of  a  or  
b  is less than or equal to  c , and the maximum of  a  and  b  is less than or equal to  c  when both  
a  and  b  are less than or equal to  c .  They are laws for all numbers, not just the booleans.

The arithmetic expression  x–y  varies directly with  x  and inversely with  y .  Thus if we 
increase  x , we increase  x–y , and if we decrease  y  we increase  x–y .  We calculate:

x – y increase  x  to  x+1  and so increase the whole expression
≤ (x+1) – y decrease  y  to  y–1  and so increase the whole expression
≤ (x+1) – (y–1)

Similarly the boolean expression  x ≥ y  varies directly with  x  and inversely with  y  (no matter 
whether  x  and  y  are numbers and  ≥  is number comparison, or  x  and  y  are boolean and  ≥  is 
reverse implication, or  x  and  y  are a mixture of number and boolean).  We calculate as follows:

x ≥ y increase  x  to  x+1  and so increase the whole expression
≤ (x+1) ≥ y decrease  y  to  y–1  and so increase the whole expression
≤ (x+1) ≥ (y–1)

It is exactly the same calculation.  By unifying number algebra with boolean algebra we carry 
our ability to calculate over from numbers to booleans. 
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Unified Development

Suppose we start with boolean algebra in the unified notation, with the terminology “top”, 
“bottom”, “minimum”, “maximum”, “less than”, and so on.  Now we say: what a pity that  x=–x  
has no solution;  let's give it one.  The new solution is denoted  0 .  While gaining a solution to 
some boolean expressions, we have lost some laws such as the law of the excluded middle    
x ↑ –x .

Now we have an algebra of three values:  ⊤ ,  0 ,  ⊥ .  In one application they can be used to 
represent “yes”, “maybe”, and “no”;  in another they can be used to represent “large”, “medium”, 
and “small”.  This algebra has 27 one-operand operators, one of which is  – , defined as

x ⎪ ⊤ 0 ⊥
                                         
–x ⎪ ⊥ 0 ⊤

It has 19683 two-operand operators, four of which are:

xy ⎪ ⊤⊤ ⊤0 ⊤⊥ 0⊤ 00 0⊥ ⊥⊤ ⊥0 ⊥⊥
                                                                                              
x=y ⎪ ⊤ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥ ⊤
x≤y ⎪ ⊤ ⊥ ⊥ ⊤ ⊤ ⊥ ⊤ ⊤ ⊤
x«y ⎪ ⊤ 0 ⊥ ⊤ 0 0 0 0 0
x⊕y ⎪ ⊥ ⊤ 0 ⊤ 0 ⊥ 0 ⊥ ⊤

Whether  ≤  or  «  or another operator represents implication in the presence of uncertainty can 
be debated, but the algebra is not affected by the debate.  The operator  ⊕   is modular (or 
circular) addition, and the other operators of modular arithmetic can be given similarly.

We might continue our development with a four-valued algebra and five-valued algebra, but at 
this point I recommend filling in the space between  ⊤  and  0 , and between  0  and  ⊥ , with all 
the integers.  And then we progress to the rationals, the reals, and the complex numbers as usual.

The argument in favor of this unification of boolean algebra and number algebra is just as strong 
as the argument in favor of using the same notations for the different number algebras.  But the 
latter is familiar, and so it seems right, while the former is unfamiliar, and for that reason alone it 
may seem wrong.  Ultimately, the benefits will outweigh the unfamiliarity.  For example, the data 
structure known as AND-OR trees and the algorithm that uses them become the same as the data 
structure and algorithm known as minimax methods;  they should not have to be learned twice.

A different unification of boolean algebra and number algebra that aims at the same goal (using 
the same calculations for booleans and numbers), but emphasizes traditional modular arithmetic 
along the way, can be found in [5], a provocative work of grand scope.
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from Informal to Formal

Many mathematical notations began their life as abbreviations for some words.  For example,  =  
was introduced in [20] to mean “is equal to” (see the second Appendix):

“And to avoide the tediouse repetition of these woordes “is equalle to” I will sette as I doe 
often in woorke use, a paire of paralleles or Gemowe [twin] lines of one lengthe, thus:  = , 
because noe 2 thynges, can be moare equalle.”

Later,  =  became associated with some algebraic properties, namely reflexivity, symmetry, 
transitivity, and substitutivity.  Today, it is defined by those properties, not as an abbreviation for 
some words.  Someone might say that Alice and Bob are equal tennis players because they have 
played each other 10 times, and each has won 5 matches.  They might similarly say that Bob and 
Carol are equal tennis players because they too have played each other 10 times, and each has 
won 5 matches.  But this kind of equality is not transitive.  As it happens, Alice and Carol are 
unequal tennis players:  they have played each other 10 times, and Alice has won 8 matches.  
Because of the lack of transitivity, no mathematician today would use  =  for tennis equality.

In the notation commonly used for small sets, such as  {1, 3, 7} , the comma was introduced as 
just punctuation, not as a mathematical operator.  As soon as the notation is introduced, we must 
say that the order in which elements are written is irrelevant so that  {1, 2} = {2, 1} ;  the way to 
say that formally is  A,B = B,A  (comma is commutative).  We must also say that repetitions of 
elements are irrelevant so that  {3, 3} = {3} ;  the way to say that formally is  A,A = A  (comma is 
idempotent).  And we should say that comma is associative  A,(B,C) = (A,B),C  so that 
parentheses are unnecessary.  Evidently the comma can be seen as a mathematical operator with 
algebraic properties that aggregates elements into a structure that is simpler, more primitive, than 
sets;  let us call them bunches.  Even the curly braces can be seen as an operator that applies to a 
bunch and makes a set;  its inverse  ~  applies to a set and makes a bunch:  ~{1,2} = 1,2 .

When a child first learns about sets, there is often an initial hurdle:  that a set with one element is 
not the same as the element.  It would be easier to present a set as packaging:  a package with an 
apple in it is obviously not the same as the apple.  Just as  {1}  and  1  differ, so  {1,2}  and  1,2  
differ.  Bunch theory tells us about aggregation;  set theory tells us about packaging.  The two are 
independent.

Apart from being cute, are bunches useful?  The subject of functional programming has suffered 
from an inability to express nondeterminism conveniently.  To say something about a value, but 
not pin it down completely, one can express the set of possible values.  Unfortunately, sets do not 
reduce properly to the deterministic case;  in this context it is again a problem that a set 
containing one element is not equal to the element.  What is wanted is bunches.  One can always 
regard a bunch as a “nondeterministic value”.  Bunches can also be used as a “type theory” with 
the advantage that it is unnecessary to duplicate the operators of the value space at the type level 
because the two are unified.  And finally, the easiest way to present sets is via bunches.  For 
details see [13] [14].  Formalization of the lowly comma leads to a beautiful and useful algebra.

We have just seen two examples of formalization, one from the past and one from the future.  
Now here's an example of a formalization gone astray:  functions defined as sets of ordered pairs.  
This way of defining functions is part of the interesting demonstration that all of mathematics 
can be based on sets.  The demonstration requires us to make a set-model of functions, and 
numbers, and everything else.  For example, the natural numbers can be equated to sets, with no 
inconsistency, as follows:
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0 = ∅         (the empty set)
n+1 = n∪{n}

So, for example,  3 = {∅, {∅}, {∅, {∅}}} .  Few people would say that  3  really is the set  
{∅, {∅}, {∅, {∅}}} ;  the set-model of natural numbers was constructed by John von Neumann 
just to serve this one demonstration.  Numbers are best formalized, not by building a set-model, 
but by an algebra showing how they participate in arithmetic operations.  Similarly, functions are 
best formalized by showing the laws of application and function composition (in general, set 
union and intersection are not useful ways of combining functions).  But the set-model of 
functions has somehow taken root in the current mathematical culture;  many people (and 
textbooks) say that a function really is a set of ordered pairs.  A useful formalization is not one 
that answers the question “what is it?”, but one that answers the question “how do we use it?”.

I write a function, or local scope, according to the following example:
〈n: nat· n+1〉

This is essentially a “lambda-expression”[6], although Church did not use angle brackets.  He 
borrowed a “hat” notation from Whitehead and Russell, but for typesetting convenience moved 
the hat down in front;  the most similar available character in the typesetter's tray was  λ ;  thus 
the lambda calculus was born [22].  Following van de Snepscheut [23], I use angle brackets to 
delimit the scope of the variable.  Next, I want to get rid of the idea that all possible variables 
(infinitely many of them) already “exist”, and that the function notation “binds” a variable, and 
any variable that is not bound remains “free”.  I prefer the programmer's terminology of “local” 
and “nonlocal” variables.  Variables do not automatically “exist”;  they are introduced (rather 
than bound) with a limited scope by the function notation.

Two notations that have not yet made the transition from informal beginning to formal, 
calculational tool are the quantifiers  ∀   and  ∃  .  For most mathematicians today they remain 
abbreviations for the words “for all” and “there exists”, and their meaning is just whatever can be 
understood from those words.  The word “all” sounds clear and unambiguous, but there is debate 
as to whether so-called “undefined” range elements, or other “nonstandard” elements, are 
included.  Existence is even more contentious, as can be seen from the debate between classical 
and constructive mathematicians.  Only a formal definition, equivalent to an automated theorem 
prover, is clear and unambiguous.  Only a formal definition gives us calculation.

Quantifiers

There are several commonly used notations that introduce a local (bound, dummy) variable.  For 
examples,

 ∞                               b
Σ f(x) ∫ f(x)dx ∀x: D· P(x) {f(x) | x∈D}           x=0                            a

The introduction of the local variable and its domain are exactly the job of the function notation, 
so all expressions requiring a local variable can be uniformly expressed as an operator applied to 
a function.  If the body of a function is a number expression, then we can apply  +  to obtain the 
sum of the function results.  For example,

+〈n: nat· 1/2n〉
There is no syntactic ambiguity caused by this use of  + , so no need to employ another symbol  
Σ  for addition.  We can apply any associative symmetric operator, such as
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×〈n: nat· 1/2n〉
↓〈n: nat· n>5〉
↑〈n: nat· n>5〉

The minimum operator  ↓   replaces “for all”, and the maximum operator  ↑   replaces “there 
exists”.  By applying  =  and  ⧧  to functions we obtain the two independent parity operators.  Set 
comprehension and integrals can be treated this same way.

If function  f  has domain  D , then  f   =   〈x: D· f x〉 , so quantifications traditionally written

Σ  f(x) ∀x: D· P(x)           x: D

which we can now write as
+〈x: D· f x〉 ↓〈x: D· P x〉

can be written even more succinctly as
+f ↓P

Using adjacency for composition, deMorgan's laws
¬(∀x: D· P x)   ≡   (∃x: D· ¬P x) ¬(∃x: D· P x)   ≡   (∀x: D· ¬P x)

become
–↓P  =  ↑–P –↑P  =  ↓–P

The Specialization and Generalization laws say that if  y  is an element of  D ,
(∀x: D· P x)   ⇒   P y P y   ⇒   (∃x: D· P x)

They now become
↓P  ≤  P y P y  ≤  ↑P

which say that the minimum item is less than or equal to any item, and any item is less than or 
equal to the maximum item.  These laws hold for all numbers, not just for the booleans.

Given a function  f , we can subtract  y  from each function value, and then find the minimum, or 
we can save a lot of subtractions by finding the minimum function value and then subtracting  y  
from that.

↓〈x· f x – y〉 factor out  – y
= ↓〈x· f x〉 – y
= ↓f – y

The same calculation can be performed if  –  is replaced by  ≥ .
↓〈x· f x ≥ y〉 factor out  ≥ y

= ↓〈x· f x〉 ≥ y
= ↓f ≥ y

The traditional reading of the top line is:  for all  x ,  f  of  x  is at least  y .  But the middle line is 
read:  the minimum function value is at least  y .  It is the same  ↓  operator on both lines, but 
traditionally it is pronounced “for all” on one line and “minimum” on the other.  Or maybe  f x  
and  y  are both boolean, and  ≥  is reverse implication, in which case the top line would 
traditionally be read:  for all  x , ( f  of  x  is implied by  y );  and the middle line would 
traditionally be read:  (for all  x ,  f  of  x )  is implied by  y .  No matter whether  f  is a numeric 
or boolean function, no matter whether  ≥  is a numeric or boolean comparison, the law is the 
same.

If we factor from the other side of the  –  sign, we have to change minimum to maximum:
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↓〈x· y – f x〉 factor out  y –
= y – ↑〈x· f x〉
= y – ↑f

Once again replacing  –  with  ≥ , we have the same calculation.
↓〈x· y ≥ f x〉 factor out  y ≥

= y ≥ ↑〈x· f x〉
= y ≥ ↑f

This has several traditional readings depending on what's boolean and what's numeric.  But it is 
just one law.  Unified algebra gives us many other factoring/distribution laws just like these (see 
[14]).

The goal is to create an algebra that's easy to learn and easy to use.  That goal is not always 
consistent with traditional mathematical terminology and symbology.  The reader is cautioned 
against matching the algebra directly against their own familiar terms and symbols.  Although I 
have been using the words “minimum” and “maximum” for  ↓   and  ↑  , the words “greatest 
lower bound” and “least upper bound”, or “infimum” and “supremum”, may be more traditional 
in some contexts.  For example,

↓〈n: nat· 1/n〉  =  0
Even more caution must be used with the words “all” and “exists”.  Intuition about existence in 
mathematics (like intuition about anything else) depends on what you have learned.  We tend to 
believe that what we have learned is true.  But mathematical truth is constructed, and we must be 
open to the possibility of constructing it differently.  Unlearning can be more difficult than 
learning.

Quantifier Examples

Is  (∃x· P x) ⇒ (∀y· Q y)  equivalent to  ∀x· ∀y· (P x ⇒ Q y) ?  Even experienced logicians don't 
find it obvious.  To see if they are equivalent, those who reason informally say things like 
“suppose some  x  has property  P ”, and “suppose all  y  have property  Q ”.  They are led into 
case analyses by treating  ∀   and  ∃   as abbreviations for “for all” and “there exists” (as they 
originally were).  Of the few who reason formally, most don't know many laws;  perhaps they 
start by getting rid of the implications in favor of negation and disjunction, then use deMorgan's 
laws.  Let me rewrite the question in the new notations.

(↑P ≤ ↓Q)  =  ↓〈x· ↓〈y· P x ≤ Q y〉〉
We might read the left side as saying that the maximum  P  is less than or equal to the minimum  
Q  , and we might read the right side as saying that all  P  are less than or equal to all  Q .  
Informal readings can be misleading, and we should never attach our understanding to an 
informal reading, but sometimes we can get inspiration from it.  In this case, the reading sounds 
reasonable enough to suggest we might prove it, and not just for booleans, but for all numbers.  
Leaving the non-null domains implicit, here's the two-step proof:

↓〈x· ↓〈y· P x ≤ Q y〉〉 factor out  P x ≤
= ↓〈x· P x ≤ ↓Q〉 factor out  ≤ ↓Q
= ↑P ≤ ↓Q

Let  L  be a nonempty list (a function whose domain is an initial segment of the naturals).  +L  is 
its sum, and  ↑L  is its maximum;  let  #L  be its length.  We can say that the average item in the 
list is less than or equal to the maximum item as follows (leaving the domain implicit).
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+L/#L  ≤  ↑L now apply  >1  to both sides of the inequality
≤ (+L/#L > 1) ≤ (↑L > 1) multiply by  #L ;  distribute  >1
= (+L > #L) ≤ ↑〈i· L i > 1〉

The bottom line is the “pigeon-hole principle”;  it says that if the total number of things is greater 
than the number of places to put them, then some place has more than one thing in it.  Notice 
what has happened:  we read  ↑  as “maximum” on the top line, and as “some” on the bottom 
line;  we read  ≤  as “less than or equal to” on the top line, and as “if then” on the bottom line.

Here is a further illustration of the benefits of unified algebra.  Let  f  be a function from the 
naturals to the reals.  If  f  is nondecreasing, then  f 0  is its minimum.  Traditionally, this might 
be written (leaving the domain implicit) as

(∀n· f n ≤ f(n+1))  ⇒  (f 0 = MIN {f n | 0≤n<∞})
Rewriting this in the new notation, and weakening it to say that  f 0  is less than or equal to the 
minimum, we get

↓〈n· f n ≤ f(n+1)〉  ≤  (f 0 ≤ ↓f)
Now we apply the portation law, which says that for boolean  a  and any  b  and  c ,

(a ≤ (b ≤ c))  =  (a↓b ≤ c)
to obtain

f 0 ↓ ↓〈n· f n ≤ f(n+1)〉  ≤  ↓f
If  f  happens to have a boolean range, this is induction, more traditionally written

f 0 ∧ (∀n· f n ⇒ f(n+1))  ⇒  (∀n· f n)
Thus we see induction as a special case of a more general law saying that the first item in a 
nondecreasing sequence is its minimum.

Probability

The seminal work [4] by Boole on boolean algebra refers to both logic and probability.  The 
standard theory of probability assigns  0  to an event that cannot happen,  1/2  to an event that is 
equally likely to happen or not happen, and  1  to an event that is certain to happen.  In a set of 
events in which exactly one event must happen, the probabilities sum to  1 .  The integral of a 
probability distribution must be  1 .

Perhaps there is another way to develop probability theory based on unified algebra.  Perhaps an 
event that cannot happen has probability  ⊥ , an event that is equally likely to happen or not 
happen has probability  0 , and an event that is certain to happen has probability  ⊤ .  In a set of 
events in which exactly one event must happen, the average probability is  0 .  The integral of a 
probability distribution must be  0 .  Perhaps the new probability space is related to the logarithm 
of the old space;  essentially, probabilities are replaced by information content.  My hope is that 
the complicated formulas for distributions in the standard theory can be simplified by 
transforming the space of probabilities.

Metalogic

In the study of logic, at or near the beginning, logicians present the symbol  ⊢  to represent 
theoremhood.  I ask you to put yourself in the place of a beginning student.  This symbol is 
applied to a boolean expression just like the boolean operators;  but we know all the boolean 
operators and this isn't one of them.  It sometimes has a left operand as well as a right operand, 
and then the explanation makes it seem just like implication.  To say that it is a “meta-operator” 
just labels it, and doesn't explain it.  Saying that it applies to the form, rather than the meaning, is 
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confusing too, since the entire point of the algebra is to enable us to work with the form and 
ignore the meaning.  The distinction between metanotations and the object notations is not easily 
seen.

To make things worse, there are different levels of meta-operators.  Proof rules are sometimes 
presented using a horizontal line, which is yet another level of implication.  Consider, for 
example, the Modus Ponens proof rule, which uses all three kinds of implication:

A ⊢ x ,  B ⊢ x⇒y
                                    A, B  ⊢ y

Rewriting comma as conjunction, and turnstile and line as implication, we get a tautology:
(A≤x) ↓ (B≤(x≤y))  ≤  (A↓B ≤ y)

Rewriting any proof rule this way gives a tautology (if  ⊢  has nothing to its left, use  ⊤ ).  
Rewriting any tautology whose main connective is implication gives a valid proof rule.  It is hard 
to see the difference between the meta-operators and the object-level operators because there is 
no formal difference!  The proof rules are used to explain how to use the boolean expressions;  
natural language is used to explain how to use the proof rules.  For beginners (and others) it 
would be better to skip the meta-notations altogether and just use natural language to explain 
how to use the boolean expressions.

At a more advanced level, when we want a formalism to study formalisms, we will need an 
operator that applies to the form of an expression.  For that purpose, we do not need any new 
kind or level of operator.  Rather, we need to do exactly what Gödel did when he encoded 
expressions, but we can use a better encoding.  We need to do exactly what programmers do:  
distinguish program from data.  One person's program may be a compiler writer's data, but when 
it is data, it is a character string.  The character string  “a ↑  –a”  can be used as a code for the 
expression  a ↑  –a .  We apply  ⊢  to character strings so that  ⊢s  is a theorem when the boolean 
expression represented by string  s  is a theorem.

We have a name, “theorem”, for a boolean expression that can be simplified to  ⊤ , and an 
operator,  ⊢ , whose purpose is to identify theorems.  Strangely, logicians have not introduced a 
name, say “antitheorem”, for a boolean expression that can be simplified to  ⊥ , and no operator 
such as  ⊣ , whose purpose is to identify antitheorems.  Perhaps that's because “antitheorem” just 
means “negation of a theorem” in those logics having negation and an appropriate proof rule.  
But we bother to name both booleans, even though one is just the negation of the other.

I propose that logicians can improve metalogic by taking another lesson from programming.  
Instead of  ⊢  and  ⊣ , we need only one operator to serve both purposes.  It is called an 
interpreter.  I want   s  to be a theorem if and only if  s  represents a theorem, and an antitheorem 
if and only if  s  represents an antitheorem.  It is related to  ⊢  and  ⊣  by the two implications

⊢s   ≤    s   ≤   – ⊣s
In fact, if we have defined  ⊢  and  ⊣ , those implications define   .  But I want     to replace  ⊢  
and  ⊣  so I shall instead define it by showing how it applies to every form of boolean 
expression.  Here is the beginning of its definition.

 “⊤”  =  ⊤
 “⊥”  =  ⊥
 (“–” s)  =  –  s
 (s “↓” t)  =   s ↓  t
 (s “↑” t)  =   s ↑  t

And so on.    For example,
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 “–⊤ ↓ ⊥”  =  –⊤ ↓ ⊥  =  ⊥
In a vague sense    acts as the inverse of quotation marks; it “unquotes” its operand.  That is 
what an interpreter does:  it turns passive data into active program.  It is a familiar fact to 
programmers that we can write an interpreter for a language in that same language, and that is 
just what I am doing here.  Interpreting (unquoting) is exactly what logicians call Tarskian 
semantics.  In summary, an interpreter is a better version of  ⊢ , and strings make metalevel 
operators unnecessary.

Using   , the famous Gödel incompleteness proof is just 3 lines.  Suppose that every boolean 
expression is either a theorem or an antitheorem (a complete logic), and define  Q  by

Q  =  “–  Q”
Then

 Q replace  Q  with its equal
=  “–  Q”   unquotes
= –  Q

which proves a boolean expression equal to its negation, showing the logic to be inconsistent.  A 
logic in which we can define an interpreter, and in which we can replace an expression with its 
equal, must be inconsistent or incomplete.  We choose consistency, and we choose to allow the 
replacement of an expression with its equal, so we are forced to give up the ability to define a 
complete interpreter;  in particular,    cannot unquote  “–  Q” .  For further details of this 
version of Gödel's incompleteness theorem, see [12].

You cannot learn a programming language by reading an interpreter for it written in that same 
language.  And you cannot learn logic, or a logic, by reading an interpreter for it written in logic.  
Not only is it inscrutable to a novice, but also it may be subject to more than one interpretation.  
Logic is better presented as algebra [11].  We don't present number algebra with the aid of a 
metaoperator that applies to number expressions and results in their values, and we should not 
present boolean algebra that way.  I think boolean algebra should be presented with a little 
natural language and a lot of laws, because laws don't use any metanotations.

Terms of Honor

My final comment concerns mathematical terminology intended to honor mathematicians.  In 
some parts of mathematics it is standard:  Lie algebra, Stone algebra, Cartesian product, Jordan 
decomposition, Cayley transform, Hilbert space, Banach space, Hausdorff space, Borel measure, 
Lebesgue integration, Fredholm index, Wedderburn's Theorem, and so on.  It is well known that 
the person so honored is sometimes the wrong person;  often it is only one of many who equally 
deserve to have their names attached to the idea.  I suspect that sometimes the intention is not so 
much to honor a person as to use the person's prestige to lend respectability to an idea.  Even 
when the intention is to honor, the effect is to obscure and make the mathematics forbidding and 
inaccessible.  It may be argued that this is good, keeping the uninitiated from thinking they 
understand when they don't, but I reject that argument as elitist.  I know what nand and nor are, 
but I forget which is the Scheffer stroke and which the Peirce arrow.  To say that an operator is 
symmetric or commutative is much more descriptive and understandable than calling it Abelian.  
DeMorgan's laws would be better named duality laws.  We who are used to the terms forget what 
a barrier they pose to beginners.
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The term “boolean algebra” honors George Boole.  (It is popularly thought that the word 
“algebra” honors someone, but it comes from an Arabic word meaning “the reintegration and 
reunion of broken parts”.  In any case, the word is now standard, known by people everywhere.)  
The best way to honor George Boole is to make the algebra that he created [4] a well known and 
well used tool, and to do that we might have to remove his name from it, and give it a more 
descriptive and accessible name, like “binary algebra”.

Conclusions

Logic has been well studied and is now well understood, but it is not well used.  Programmers 
learn that logic is a foundation of programming, but they don't often use it to program.  
Mathematicians study about logic, but they don't often use it in their proofs.  Logic is a tool, like 
a knife.  People have looked at it from every angle;  they've described how it works at great 
length;  now it's time to pick it up and use it.  To use logic well, one must learn it early, and 
practice a lot.  Fancy versions of logic, such as modal logic and metalogic, can be left to 
university study, but there is a simple basic algebra that can be taught early and used widely.

Number algebra is used by scientists and engineers everywhere.  It is used by economists and 
architects.  It is taught first to 6-year olds, without a metanotation, concretely as addition and 
subtraction of numbers.  Then variables and equations are introduced, and always the 
applications are emphasized.  As a result of that early and long education, scientists and 
engineers and mathematicians are comfortable with it.  Boolean algebra can be equally useful if 
it is taught the same way.  At present, it is not in a good state for presentation to a wide audience.  
We need to simplify the terminology, get rid of the metanotations, adopt the view that proof is 
calculation, choose some good symbols, detach it from its dominant application in which the 
boolean values represent true and false statements, and explain it as algebra.

There is a small advantage to choosing uniquely boolean symbols:  we can give them a 
precedence after the arithmetic operators, which reduces the need for parentheses.  On the other 
hand, there is a large advantage to uniting boolean and number symbols in the way I have 
suggested:  the laws and solutions are familiar and can be interpreted either as booleans or 
numbers.  In addition, by placing booleans in the same context as numbers, we move quickly 
away from debates about the meanings of operators.  The fact that the booleans can be embedded 
in the extended integers just as smoothly as the integers are embedded in the rationals seems a 
compelling reason to do so.

Quantifiers can be simplified, made uniform, and generalized by treating them as operators on 
functions.  We should stop speaking about “existence”, and speak instead about the maximum of 
a function.  Similarly, we should stop speaking about “all”, and speak instead about the minimum 
of a function.  We should stop trying to say what functions and other mathematical ideas are, and 
say instead how to write them and use them.

An interpreter serves the same purpose as the metalevel theoremhood operator with the added 
advantage that it gives antitheoremhood as well as theoremhood.  And by applying it to strings, 
we don't need to introduce a separate metalevel of operators.  Metalogic is an advanced topic, not 
a good introduction to boolean algebra for those who are new to the subject.

This paper has not presented a detailed proposal for a change to our primary and secondary 
mathematics curriculum, but it has presented the case for making a change, and several 
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suggestions.  The main suggestion is to unify boolean algebra with number algebra so that we 
can begin with the simplest algebra and move smoothly to the more complicated algebras, all 
using the same notations and in the same calculational framework.
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Appendix

Wedderburn's Theorem:  a finite division ring is a commutative field (verbatim from [15])

Proof: Let D be a finite division ring and let Z be its center.  By induction we may assume that 
any division ring having fewer elements than D is a commutative field.

We first remark that if a,b∈D are such that bta=abt but ba≠ab then bt∈Z. For, consider 
N(bt) = {x∈D | btx=xbt}. N(bt) is a subdivision ring of D; if it were not D, by our induction 
hypothesis, it would be commutative. However, both a and b are in N(bt) and these do not 
commute; consequently, N(bt) is not commutative so must be all of D. Thus bt∈Z.

Every nonzero element in D has finite order, so some positive power of it falls in Z. Given 
w∈D let the order of w relative to Z be the smallest positive integer m(w) such that wm(w)∈Z. 
Pick an element a in D but not in Z having minimal possible order relative to Z, and let this order 
be r. We claim that r is a prime number for if r=pq with 1<p<r then ap is not in Z. Yet 
(ap)q=ar∈Z, implying that ap has an order relative to Z smaller than that of a.

By the corollary to Lemma 7.9 there is an x∈D such that xax–1=ai≠a; thus                       
x2ax–2=x(xax–1)x–1=xaix–1=(xax–1)i=(ai)i=ai2. Similarly, we get xr–1ax–(r–1)=ai(r–1). However, r is 
a prime number thus by the little Fermat theorem (corollary to Theorem 2.a), ir–1=1+ur, hence 
ai(r–1)=a1+ur=aaur=λa where λ=aur∈Z. Thus xr–1a=λazxr–1. Since x∉Z, by the minimal nature of 
r, xr–1 cannot be in Z. By the remark of the earlier paragraph since xa≠ax, xr–1a≠axr–1 and so 
λ≠1. Let b=xr–1; thus bab–1=λa; consequently, λrar=(bab–1)r=barb–1=ar since ar∈Z. This relation 
forces λr=1.

We claim that if y∈D then whenever yr=1, then y=λi for some i, for in the field Z(y) there are 
at most r roots of the polynomial urr–1; the elements 1, λ, λ2, ..., λr–1 in Z are all distinct since λ 
is of the prime order r and they already account for r roots of ur–1 in Z(y), in consequence of 
which y=λi.

Since λr=1, br=λrbr=(λb)r=(a–1ba)r=a–1bra from which we get abr=bra. Since a commutes 
with br but does not commute with b, by the remark made earlier, br must be in Z. By Theorem 
7.b the multiplicative group of nonzero elements of Z is cyclic; let γ∈Z be a generator. Thus 
ar=γj, br=γk; if j=sr then ar=γsr; whence (a/γs)r=1; this would imply that a/γs=λi, leading to a∈Z, 
contrary to a∉Z. Hence, r does not divide j; similarly r does not divide k. Let a1=ak and b1=bj; a 
direct computation from ba=λab leads to a1b1=µb1a1 where µ=λ–jk∈Z. Since the prime number r 
which is the order of λ does not divide j or k, λjk≠1 whence µ≠1. Note that µr=1.

Let us see where we are. We have produced two elements a1, b1 such that:
(1) a1

r=b1
r=α∈Z.

(2) a1b1=µb1a1 with µ≠1 in Z.
(3) µr=1.

We compute (a1
–1b1)r; (a1

–1b1)2=a1
–1b1a1

–1b1=a1
–1(b1a1

–1)b1=a1
–1(µa1

–1b1)b1=µa1
–2b1

2.  If 
we compute (a1

–1b1)3 we find it equal to µ1+2a1
–3b1

3. Continuing we obtain                              
(a1

–1b1)r=µ1+2+...+(r–1)a1
–rb1

r=µ1+2+...+(r–1)=µr(r–1)/2. If r is an odd prime, since µr=1, we get    
µr(r–1)/2=1, whence (a1

–1b1)r=1. Being a solution of yr=1, a1
–1b1=λi so that b1=λia1; but then 

µb1a1=a1b1=b1a1, contradicting µ≠1. Thus if r is an odd prime number, the theorem is proved.
We must now rule out the case r=2. In that special situation we have two elements a1,b1∈D 

such that a1
2=b1

2=α∈Z, a1b1=µb1a1 where µ2=1 and µ≠1. Thus µ=–1 and a1b1=–b1a1≠b1a1; in 
consequence, the characteristic of D is  not 2. By Lemma 7.7 we can find elements ζ,η∈Z such 
that 1+ζ2–αη2=0. Consider (a1+ζb1+ηa1b1)2; on computing this out we find that 
(a1+ζb1+ηa1b1)2= α(1+ζ2–αη2)=0. Being in a division ring this yields that a1+ζb1+ηa1b1=0; 
thus 0≠2a1

2=a1(a1+ζb1+ηa1b1)+(a1+ζb1+ηa1b1)a1=0. This contradiction finishes the proof and 
Wedderburn's theorem is established. 



2003-12-1 from Boolean Algebra to Unified Algebra 23

Appendix

Four pages from R.Recorde: the Whetstone of Witte, London 1557, reprinted by Da Capo Press 
Amsterdam 1969. 
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