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A Novel Connectionist System for Unconstrained
Handwriting Recognition

Alex Graves, Marcus Liwicki, Santiago Fernández
Roman Bertolami, Horst Bunke, Jürgen Schmidhuber

Abstract—Recognising lines of unconstrained handwritten text
is a challenging task. The difficulty of segmenting cursive
or overlapping characters, combined with the need to exploit
surrounding context, has led to low recognition rates for even the
best current recognisers. Most recent progress in the field has
been made either through improved preprocessing, or through
advances in language modelling. Relatively little work has been
done on the basic recognition algorithms. Indeed, most systems
rely on the same hidden Markov models that have been used
for decades in speech and handwriting recognition, despite their
well-known shortcomings. This paper proposes an alternative
approach based on a novel type of recurrent neural network,
specifically designed for sequence labelling tasks where the
data is hard to segment and contains long range, bidirectional
interdependencies. In experiments on two large unconstrained
handwriting databases, our approach achieves word recognition
accuracies of 79.7% on online data and 74.1% on offline
data, significantly outperforming a state-of-the-art HMM-based
system. In addition, we demonstrate the network’s robustness to
lexicon size, measure the individual influence of its hidden layers,
and analyse its use of context. Lastly we provide an in depth
discussion of the differences between the network and HMMs,
suggesting reasons for the network’s superior performance.

Index Terms—Handwriting recognition, online handwriting,
offline handwriting, connectionist temporal classification, bidi-
rectional long short-term memory, recurrent neural networks,
hidden Markov model

I. INTRODUCTION

HANDWRITING recognition is traditionally divided into
online and offline recognition. In online recognition a

time series of coordinates, representing the movement of the
pen-tip, is captured, while in the offline case only an image of
the text is available. Because of the greater ease of extracting
relevant features, online recognition generally yields better re-
sults [1]. Another important distinction is between recognising
isolated characters or words, and recognising whole lines of
text. Unsurprisingly, the latter is substantially harder, and the
excellent results that have been obtained for digit and character
recognition [2], [3] have never been matched for complete
lines. Lastly, handwriting recognition can be split into cases
where the writing style is constrained in some way—for
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example, only hand printed characters are allowed—and the
more challenging scenario where it is unconstrained. Despite
more than 30 years of handwriting recognition research [2],
[3], [4], [5], developing a reliable, general-purpose system for
unconstrained text line recognition remains an open problem.

A well known test bed for isolated handwritten character
recognition is the UNIPEN database [6]. Systems that have
been found to perform well on UNIPEN include: a writer-
independent approach based on hidden Markov models [7]; a
hybrid technique called cluster generative statistical dynamic
time warping [8], which combines dynamic time warping
with HMMs and embeds clustering and statistical sequence
modelling in a single feature space; and a support vector
machine with a novel Gaussian dynamic time warping ker-
nel [9]. Typical error rates on UNIPEN range from 3% for digit
recognition, to about 10% for lower case character recognition.

Similar techniques can be used to classify isolated words,
and this has given good results for small vocabularies (for
example a writer dependent word error rate of about 4.5% for
32 words [10]). However an obvious drawback of whole word
classification is that it does not scale to large vocabularies.

For large vocabulary recognition tasks, such as those con-
sidered in this paper, the only feasible approach is to recognise
individual characters and map them onto complete words using
a dictionary. Naively, this could be done by presegmenting
words into characters and classifying each segment. However,
segmentation is difficult for cursive or unconstrained text,
unless the words have already been recognised. This creates
a circular dependency between segmentation and recognition
that is sometimes referred to as Sayre’s paradox [11].

One solution to Sayre’s paradox is to simply ignore it, and
carry out segmentation before recognition. For example [3]
describes techniques for character segmentation, based on un-
supervised learning and data-driven methods. Other strategies
first segment the text into basic strokes, rather than characters.
The stroke boundaries may be defined in various ways, such
as the minima of the velocity, the minima of the y-coordinates,
or the points of maximum curvature. For example, one online
approach first segments the data at the minima of the y-
coordinates, then applies self-organising maps [12]. Another,
offline, approach uses the minima of the vertical histogram
for an initial estimation of the character boundaries and then
applies various heuristics to improve the segmentation [13].

A more promising approach to Sayre’s paradox is to
segment and recognise at the same time. Hidden Markov
models (HMMs) are able to do this, which is one reason for
their popularity in unconstrained handwriting recognition [14],
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[15], [16], [17], [18], [19]. The idea of applying HMMs
to handwriting recognition was originally motivated by their
success in speech recognition [20], where a similar conflict
exists between recognition and segmentation. Over the years,
numerous refinements of the basic HMM approach have been
proposed, such as the writer independent system considered
in [7], which combines point oriented and stroke oriented input
features.

However, HMMs have several well-known drawbacks. One
of these is that they assume the probability of each observation
depends only on the current state, which makes contextual ef-
fects difficult to model. Another is that HMMs are generative,
while discriminative models generally give better performance
in labelling and classification tasks.

Recurrent neural networks (RNNs) do not suffer from these
limitations, and would therefore seem a promising alterna-
tive to HMMs. However the application of RNNs alone to
handwriting recognition have so far been limited to isolated
character recognition (e.g. [21]). The main reason for this is
that traditional neural network objective functions require a
separate training signal for every point in the input sequence,
which in turn requires presegmented data.

A more successful use of neural networks for handwriting
recognition has been to combine them with HMMs in the so-
called hybrid approach [22], [23]. A variety of network archi-
tectures have been tried for hybrid handwriting recognition,
including multilayer perceptrons [24], [25], time delay neural
networks [18], [26], [27], and RNNs [28], [29], [30]. However,
although hybrid models alleviate the difficulty of introducing
context to HMMs, they still suffer from many of the drawbacks
of HMMs, and they do not realise the full potential of RNNs
for sequence modelling.

This paper proposes an alternative approach, in which a
single RNN is trained directly for sequence labelling. The
network uses the connectionist temporal classification (CTC)
output layer [31], [32], first applied to speech recognition.
CTC uses the network to map directly from the complete input
sequence to the sequence of output labels, obviating the need
for presegmented data. We extend the original formulation of
CTC by combining it with a dictionary and language model to
obtain word recognition scores that can be compared directly
with other systems. Although CTC can be used with any type
of RNN, best results are given by networks able to incorpo-
rate as much context as possible. For this reason we chose
the bidirectional Long Short-Term Memory (BLSTM; [33])
architecture, which provides access to long range context along
both input directions.

In experiments on large online and offline handwriting
databases, our approach significantly outperforms a state-of-
the-art HMM-based system on unconstrained text line recog-
nition. Furthermore, the network retains its advantage over a
wide range of dictionary sizes.

The paper is organised as follows. Sections II and III
describe the preprocessing and feature extraction methods for
the online and offline data respectively. Section IV introduces
the novel RNN-based recogniser. Section V describes the
databases and presents the experimental analysis and results.
Section VI discusses the differences between the new system

Fig. 1. Illustration of the recording

Fig. 2. Examples of handwritten text acquired from a whiteboard

and HMMs, and suggests reasons for the network’s superior
performance. Our conclusions are presented in Section VII.

II. ONLINE DATA PREPARATION

The online data used in our experiments were recorded from
a whiteboard using the eBeam interface1 [34]. As illustrated
in Figure 1, the interface consists of a normal pen in a
special casing, which sends infrared signals to a triangular
receiver mounted in one of the corners of the whiteboard. The
acquisition interface outputs a sequence of (x, y)-coordinates
representing the location of the tip of the pen together with
a time stamp for each location. The coordinates are only
recorded during the periods when the pen-tip is in continuous
contact with the whiteboard. We refer to these periods as
strokes. After some standard steps to correct for missing and
noisy points [35], the data was stored in xml-format, along
with the frame rate, which varied from 30 to 70 frames per
second.

A. Normalisation

The preprocessing begins with data normalisation. This is
an important step in handwriting recognition because writing
styles differ greatly with respect to the skew, slant, height and
width of the characters.

Since the subjects stand rather than sit, and their arms do
not rest on a table, handwriting rendered on a whiteboard

1eBeam System by Luidia, Inc. - www.e-Beam.com
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Fig. 3. Processing the text line. Top: text line split into individual parts with
estimated skew in the middle of the text line; bottom: text line after skew
normalisation. Note that baseline and corpus line detection (described below)
give an improved final estimate of the skew.

Fig. 4. Slant correction; grey lines indicate the estimated slant angle

is different from that produced with a pen on a writing
tablet. In particular, it has been observed that the baseline
on a whiteboard cannot usually be approximated by a simple
straight line. Furthermore, the size and width of the characters
become smaller the more the pen moves to the right. Examples
of both effects can be seen in Figure 2. Consequently, online
handwriting gathered from a whiteboard requires some special
preprocessing steps.

Since the text lines on a whiteboard usually have no uniform
skew, they are split into smaller parts and the rest of the
preprocessing is done for each part separately. To accomplish
the splitting, all gaps within a line are determined first. The
text is split at a gap if it is wider than the median gap width,
and if the size of both parts resulting from the split is larger
than some predefined threshold. An example of the splitting
process is shown in Figure 3 with the resulting parts indicated
by lines below the text.

Next the parts are corrected with respect to their skew and
slant. A linear regression is performed through all the points,
and the orientation of the text line is corrected according to the
regression parameters (see Figure 3). For slant normalisation,
we compute the histogram over all angles enclosed by the
lines connecting two successive points of the trajectory and
the horizontal line [26]. The histogram ranges from −90 ◦ to
90 ◦ with a step size of 2 ◦. We weight the histogram values
with a Gaussian whose mean is at the vertical angle and whose
variance is chosen empirically. This is beneficial because some
words are not properly corrected if a single long straight line
is drawn in the horizontal direction, which results in a large
histogram value. We also smooth each histogram entry γi
using its nearest neighbours, γ̄i = (γi−1 + 2γi + γi+1) /4,
because in some cases the correct slant is at the border of
two angle intervals and a single peak at another interval may
be slightly higher. This single peak will become smaller after
smoothing. Figure 4 shows a text line before and after slant
correction.

Delayed strokes, such as the crossing of a ‘t’ or the dot

of an ‘i’, are a well known problem in online handwriting
recognition, because the order in which they are written varies
between different writers. For this reason, delayed strokes
(identified as strokes above already written parts, followed by
a pen-movement to the right [26]) are removed. Note that some
i-dots may be missed by this procedure. However, this usually
occurs only if there was no pen-movement to the left, meaning
that the writing order is not disrupted. A special hat-feature
is used to indicate to the recogniser that a delayed stroke was
removed.

To correct for variations in writing speed, the input se-
quences are transformed so that the points are equally spaced.
The optimal value for this distance is found empirically.

The next step is the computation of the baseline and the
corpus line, which are then used to normalise the size of the
text. The baseline corresponds to the original line on which the
text was written, i.e. it passes through the bottom of the char-
acters. The corpus line goes through the top of the lower case
letters. To obtain these lines two linear regressions through the
minima and maxima are computed. After removing outliers the
regression is repeated twice, resulting in the estimated baseline
(minima) and corpus line (maxima). Figure 5 illustrates the
estimated baseline and the corpus line of part of the example
shown in Figure 3. The baseline is subtracted from all y-
coordinates and the heights of the three resulting areas are
normalised.

Fig. 5. Baseline and corpus line of an example part of a text line

The final preprocessing step is to normalise the width of the
characters. This is done by scaling the text horizontally with a
fraction of the number of strokes crossing the horizontal line
between the baseline and the corpus line. This preprocessing
step is needed because the x-coordinates of the points are
taken as a feature.

B. Feature Extraction

The input to the recogniser consists of 25 features for
each (x, y)-coordinate recorded by the acquisition system.
These features can be divided into two classes. The first class
consists of features extracted for each point by considering its
neighbours in the time series. The second class is based on the
spatial information given by the offline matrix representation.

For point (x, y), the features in the first class are as follows:
• A feature indicating whether the pen-tip is touching the

board or not
• The hat-feature indicating whether a delayed stroke was

removed at y
• The velocity computed before resampling
• The x-coordinate after high-pass filtering, i.e. after sub-

tracting a moving average from the true horizontal posi-
tion
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• The y-coordinate after normalisation.
• The cosine and sine of the angle between the line segment

starting at the point and the x-axis (writing direction)
• The cosine and sine of the angle between the lines to the

previous and the next point (curvature)

Fig. 6. Vicinity features of the point (x(t), y(t)). The three previous and
three next points are considered in the example shown in this figure.

• vicinity aspect: this feature is equal to the aspect of the
trajectory (see Figure 6):

∆y(t)−∆x(t)
∆y(t) + ∆x(t)

• The cosine and sine of the angle α of the straight line
from the first to the last vicinity point (see Figure 6)

• The length of the trajectory in the vicinity divided by
max(∆x(t),∆y(t))

• The average squared distance d2 of each point in the
vicinity to the straight line from the first to the last
vicinity point

The features in the second class, illustrated in Figure 7,
are computed using a two-dimensional matrix B = bi,j
representing the offline version of the data. For each position
bi,j the number of points on the trajectory of the strokes is
stored, providing a low-resolution image of the handwritten
data. The following features are used:
• The number of points above the corpus line (ascenders)

and below the baseline (descenders) in the vicinity of the
current point

• The number of black points in each region of the context
map (the two-dimensional vicinity of the current point is
transformed to a 3× 3 map with width and height set to
the height of the corpus)

Fig. 7. Offline matrix features. The large white dot marks the considered
point. The other online points are marked with smaller dots. The strokes have
been widened for ease of visualisation.

Fig. 8. Preprocessing of an image of handwritten text, showing the original
image (top), and the normalised image (bottom).

III. OFFLINE DATA PREPARATION

The offline data used in our experiments consists of
greyscale images scanned from handwritten forms, with a
scanning resolution of 300 dpi and a greyscale bit depth of
8. The following procedure was carried out to extract the text
lines from the images. First, the image was rotated to account
for the overall skew of the document, and the handwritten
part was extracted from the form. Then a histogram of the
horizontal black/white transitions was calculated, and the text
was split at the local minima to give a series of horizontal
lines. Any stroke crossing the boundaries between two lines
was assigned to the line containing their centre of gravity. With
this method almost all text lines were extracted correctly.2

Once the line images were extracted, the next stage was to
normalise the text with respect to writing skew and slant, and
character size.

A. Normalisation

Unlike the online data, the normalisations for the offline data
are applied to entire text lines at once. First of all the image is
rotated to account for the line skew. Then the mean slant of the
text is estimated, and a shearing transformation is applied to
the image to bring the handwriting to an upright position. Next
the baseline and the corpus line are normalised. Normalisation
of the baseline means that the body of the text line (the
part which is located between the upper and lower baselines),
the ascender part (located above the upper baseline), and the
descender part (below the lower baseline) are each scaled to
a predefined height. Finally the image is scaled horizontally
so that the mean character width is approximately equal to a
predefined size. Figure 8 illustrates the offline preprocessing.

B. Feature Extraction

To extract the feature vectors from the normalised images, a
sliding window approach is used. The width of the window is
one pixel, and nine geometrical features are computed at each
window position. Each text line image is therefore converted
to a sequence of 9-dimensional vectors. The nine features are
as follows:
• The mean grey value of the pixels
• The centre of gravity of the pixels
• The second order vertical moment of the centre of gravity
• The positions of the uppermost and lowermost black

pixels
• The rate of change of these positions (with respect to the

neighbouring windows)

2Only about 1 % of the text lines contain errors. These have been corrected
manually in previous work [36].
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• The number of black-white transitions between the up-
permost and lowermost pixels

• The proportion of black pixels between the uppermost
and lowermost pixels

For a more detailed description of the offline features,
see [17].

IV. NEURAL NETWORK RECOGNISER

A. Recurrent Neural Networks

Recurrent neural networks (RNNs) are a connectionist
model containing a self-connected hidden layer. One benefit
of the recurrent connection is that a ‘memory’ of previous
inputs remains in the network’s internal state, allowing it to
make use of past context. Context plays an important role in
handwriting recognition, as illustrated in Figure 9. Another
important advantage of recurrency is that the rate of change
of the internal state can be finely modulated by the recurrent
weights, which builds in robustness to localised distortions of
the input data.

Fig. 9. Importance of context in handwriting recognition. The word ‘defence’
is clearly legible, but the letter ‘n’ in isolation is ambiguous.

B. Long Short-Term Memory (LSTM)

Unfortunately, the range of contextual information that stan-
dard RNNs can access is in practice quite limited. The problem
is that the influence of a given input on the hidden layer,
and therefore on the network output, either decays or blows
up exponentially as it cycles around the network’s recurrent
connections. This shortcoming (referred to in the literature as
the vanishing gradient problem [37], [38]) makes it hard for an
RNN to bridge gaps of more than about 10 time steps between
relevant input and target events [37]. The vanishing gradient
problem is illustrated schematically in Figure 10.

Long Short-Term Memory (LSTM) [39], [40] is an RNN
architecture specifically designed to address the vanishing gra-
dient problem. An LSTM hidden layer consists of recurrently
connected subnets, called memory blocks. Each block contains
a set of internal units, or cells, whose activation is controlled
by three multiplicative gates: the input gate, forget gate and
output gate. Figure 11 provides a detailed illustration of an
LSTM memory block with a single cell.

The effect of the gates is to allow the cells to store and
access information over long periods of time. For example, as
long as the input gate remains closed (i.e. has an activation
close to 0), the activation of the cell will not be overwritten
by the new inputs arriving in the network. Similarly, the cell
activation is only available to the rest of the network when

Fig. 10. Illustration of the vanishing gradient problem. The diagram
represents a recurrent network unrolled in time. The units are shaded according
to how sensitive they are to the input at time 1 (where black is high and white
is low). As can be seen, the influence of the first input decays exponentially
over time.

NET OUTPUT

FORGET GATE

NET INPUT

INPUT GATE

OUTPUT GATE

CELL

1.0

g

h

Fig. 11. LSTM memory block with one cell. The cell has a recurrent
connection with fixed weight 1.0. The three gates collect input from the rest
of the network, and control the cell via multiplicative units (small circles). The
input and output gates scale the input and output of the cell, while the forget
gate scales the recurrent connection of the cell. The cell squashing functions
(g and h) are applied at the indicated places. The internal connections from
the cell to the gates are known as peephole weights.

the output gate is open, and the cell’s recurrent connection is
switched on and off by the forget gate.

Figure 12 illustrates how an LSTM block maintains gradient
information over time. Note that the dependency is ‘carried’
by the memory cell as long as the forget gate is open and the
input gate is closed, and that the output dependency can be
switched on and off by the output gate, without affecting the
hidden cell.

C. Bidirectional Recurrent Neural Networks

For many tasks it is useful to have access to future as well
as past context. In handwriting recognition, for example, the
identification of a given letter is helped by knowing the letters
both to the right and left of it.
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Fig. 12. Preservation of gradient information by LSTM. The diagram
represents a network unrolled in time with a single hidden LSTM memory
block. The input, forget, and output gate activations are respectively displayed
below, to the left and above the memory block. As in Figure 10, the shading of
the units corresponds to their sensitivity to the input at time 1. For simplicity,
the gates are either entirely open (‘O’) or entirely closed (‘—’).

Bidirectional recurrent neural networks (BRNNs) [41], [42]
are able to access context in both directions along the input
sequence. BRNNs contain two separate hidden layers, one of
which processes the input sequence forwards, while the other
processes it backwards. Both hidden layers are connected to
the same output layer, providing it with access to the past and
future context of every point in the sequence. BRNNs have
outperformed standard RNNs in several sequence learning
tasks, notably protein structure prediction [43] and speech
processing [41], [44].

Combining BRNNs and LSTM gives bidirectional LSTM
(BLSTM). BLSTM has previously outperformed other net-
work architectures, including standard LSTM, BRNNs and
HMM-RNN hybrids, on phoneme recognition [33], [45].

D. Connectionist Temporal Classification (CTC)

Traditional RNN objective functions require a presegmented
input sequence with a separate target for every segment.
This has limited the applicability of RNNs in domains such
as cursive handwriting recognition, where segmentation is
difficult to determine. Moreover, because the outputs of such
an RNN are a series of independent, local classifications, some
form of post processing is required to transform them into the
desired label sequence.

Connectionist temporal classification (CTC) [31] is an RNN
output layer specifically designed for sequence labelling tasks.
It does not require the data to be presegmented, and it directly
outputs a probability distribution over label sequences. CTC
has been shown to outperform both HMMs and RNN-HMM
hybrids on a phoneme recognition task [31]. CTC can be used
for any RNN architecture, though as we will discuss in a
moment, it is better suited to some than others.

A CTC output layer contains as many units as there are
labels in the task, plus an additional ‘blank’ or ‘no label’
unit. The output activations are normalised using the softmax
function [46] so that they sum to 1 and are each in the range
(0, 1):

ytk =
ea

t
k∑

k′ e
at

k′
, (1)

where atk is the unsquashed activation of output unit k at time
t, and ytk is the final output of the same unit.

The normalised outputs are used to estimate the conditional
probabilities of observing label (or blank) k at time t in the
input sequence x, i.e. ytk = p(k, t|x) (from now on we will
use a bold font to denote sequences). Note that each output
is conditioned on the entire input sequence. For this reason,
CTC is best used in conjunction with an architecture capable
of incorporating long range context in both input directions.
One such architecture is bidirectional LSTM, as described in
the previous section.

The conditional probability p(π|x) of observing a particular
path π through the lattice of label observations is found by
multiplying together the label and blank probabilities at every
time step:

p(π|x) =
T∏
t=1

p(πt, t|x) =
T∏
t=1

ytπt
, (2)

where πt is the label observed at time t along path π.
Paths are mapped onto label sequences by an operator B that

removes first the repeated labels, then the blanks. For example,
both B(a,−, a, b,−) and B(−, a, a,−,−, a, b, b) yield the
labelling (a,a,b). Since the paths are mutually exclusive, the
conditional probability of some labelling l is the sum of the
probabilities of all the paths mappend onto it by B:

p(l|x) =
∑

π∈B−1(l)

p(π|x) (3)

The above step is what allows the network to be trained
with unsegmented data. The intuition is that, because we don’t
know where the labels within a particular transcription will
occur, we sum over all the places where they could occur.

In general, a large number of paths will correspond to
the same label sequence, so a naive calculation of (3) is
unfeasible. However, it can be efficiently evaluated using
a graph-based algorithm, similar to the forward-backward
algorithm for HMMs [20].

E. CTC Forward Backward Algorithm

To allow for blanks in the output paths, we consider modi-
fied label sequences l′, with blanks added to the beginning and
the end of l, and inserted between every pair of consecutive
labels. The length of l′ is therefore 2|l|+ 1. In calculating the
probabilities of prefixes of l′ we allow all transitions between
blank and non-blank labels, and also those between any pair
of distinct non-blank labels.

For a labelling l, define the forward variable αts as the
summed probability of all paths whose length t prefixes are
mapped by B onto the length s/2 prefix of l, i.e.

αts =
∑
π:

B(π1:t)=l1:s/2

t∏
t′=1

yt
′

πt′
, (4)

where, for some sequence s, sa:b is the subsequence
(sa, sa+1, ..., sb−1, sb), and s/2 is rounded down to an integer
value. As we will see, αts can be calculated recursively.
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Allowing all paths to start with either a blank (b) or the first
symbol in l (l1), we get the following rules for initialisation:

α1
1 = y1

b

α1
2 = y1

l1

α1
s = 0, ∀s > 2

and recursion:

αts = ytl′s

{∑s
i=s−1 α

t−1
i if l′s = b or l′s−2 = l′s∑s

i=s−2 α
t−1
i otherwise

Note that αts = 0 ∀s < |l′| − 2(T − t) − 1, because these
variables correspond to states for which there are not enough
time-steps left to complete the sequence.

The backward variables βts are defined as the summed
probability of all paths whose suffixes starting at t map onto
the suffix of l starting at label s/2:

βts =
∑
π:

B(πt:T )=ls/2:|l|

T∏
t′=t+1

yt
′

πt′
(5)

The rules for initialisation and recursion of the backward
variables are as follows

βT|l′| = 1

βT|l′|−1 = 1

βTs = 0, ∀s < |l′| − 1

βts =

{∑s+1
i=s β

t+1
i yt+1

l′i
if l′s = b or l′s+2 = l′s∑s+2

i=s β
t+1
i yt+1

l′i
otherwise

Note that βts = 0 ∀s > 2t, because these variables correspond
to unreachable states.

Finally, the label sequence probability is given by the sum
of the products of the forward and backward variables at any
time:

p(l|x) =
|l′|∑
s=1

αtsβ
t
s. (6)

F. CTC Objective Function

The CTC objective function is defined as the negative
log probability of the network correctly labelling the entire
training set. Let S be a training set, consisting of pairs of
input and target sequences (x, z). Then the objective function
O can be expressed as

O = −
∑

(x,z)∈S

ln p(z|x). (7)

The network can be trained with gradient descent by first
differentiating O with respect to the outputs, then using
backpropagation through time [47] to find the derivatives with
respect to the network weights.

Noting that the same label (or blank) may be repeated
several times for a single labelling l, we define the set of
positions where label k occurs as lab(l, k) = {s : l′s = k},

which may be empty. We then set l = z and differentiate (6)
with respect to the network outputs to obtain

∂p(z|x)
∂ytk

=
1
ytk

∑
s∈lab(z,k)

αtsβ
t
s (8)

Substituting this into (7) gives

∂O

∂ytk
= − 1

p(z|x)ytk

∑
s∈lab(z,k)

αtsβ
t
s. (9)

To backpropagate the gradient through the output layer, we
need the objective function derivatives with respect to the
outputs atk before the activation function is applied. For the
softmax function

∂ytk′

∂atk
= ytk′δkk′ − ytk′ytk, (10)

and therefore

∂O

∂utk
= ytk −

1
p(z|x)

∑
s∈lab(z,k)

αtsβ
t
s (11)

G. CTC Decoding

Once the network is trained, we would ideally transcribe
some unknown input sequence x by choosing the labelling l∗

with the highest conditional probability:

l∗ = arg max
l
p(l|x). (12)

Using the terminology of HMMs, we refer to the task of find-
ing this labelling as decoding. Unfortunately, we do not know
of a tractable decoding algorithm that is guaranteed to give
optimal results. However a simple and effective approximation
is given by assuming that the most probable path corresponds
to the most probable labelling:

l∗ ≈ B
(

arg max
π

p(π|x)
)

(13)

This is trivial to compute, since the most probable path is just
the concatenation of the most active outputs at every time-step.

For some tasks we want to constrain the output labellings
according to a grammar. For example, in continuous speech
and handwriting recognition, the final transcriptions are usu-
ally required to form sequences of dictionary words. In addi-
tion it is common practice to use a language model to weight
the probabilities of particular sequences of words.

We can express these constraints by altering the label
sequence probabilities in (12) to be conditioned on some
probabilistic grammar G, as well as the input sequence x:

l∗ = arg max
l
p(l|x, G) (14)

Note that absolute requirements, for example that l contains
only dictionary words, can be incorporated by setting the
probability of all sequences that fail to meet them to 0.
Applying the basic rules of probability, we obtain

p(l|x, G) =
p(l|x)p(l|G)p(x)
p(x|G)p(l)

(15)
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where we have used the fact that x is conditionally indepen-
dent of G given l. If we assume that x is independent of G,
(15) reduces to

p(l|x, G) =
p(l|x)p(l|G)

p(l)
(16)

Note that this assumption is in general false, since both the
input sequences and the grammar depend on the underlying
generator of the data, for example the language being spoken.
However it is a reasonable first approximation, and is partic-
ularly justifiable in cases where the grammar is created using
data other than that from which x was drawn (as is common
practice in speech and handwriting recognition, where separate
textual corpora are used to generate language models).

If we further assume that, prior to any knowledge about the
input or the grammar, all label sequences are equally probable,
(14) reduces to

l∗ = arg max
l
p(l|x)p(l|G) (17)

Note that, since the number of possible label sequences is
finite (because both L and |l| are finite), assigning equal prior
probabilities does not lead to an improper prior.

H. CTC Token Passing Algorithm

We now describe an algorithm, based on the token passing
algorithm for HMMs [48], that allows us to find an approxi-
mate solution to (17) for a simple grammar.

Let G consist of a dictionary D containing W words, and
a set of W 2 bigrams p(w|ŵ) that define the probability of
making a transition from word ŵ to word w. The probability of
any label sequence that does not form a sequence of dictionary
words is 0.

For each word w, define the modified word w′ as w with
blanks added at the beginning and end and between each pair
of labels. Therefore |w′| = 2|w| + 1. Define a token tok =
(s, h) to be a pair consisting of a real valued score s and
a history h of previously visited words. In fact, each token
corresponds to a particular path through the network outputs,
and the token score is the log probability of that path. The
transition probabilities are used when a token is passed from
the last character in one word to the first character in another.
The output word sequence is then given by the history of the
highest scoring end-of-word token at the final time step.

At every time step t of the length T output sequence, each
character c of each modified word w′ holds a single token
tok(w, c, t). This is the highest scoring token reaching that
segment at that time. In addition we define the input token
tok(w, 0, t) to be the highest scoring token arriving at word w
at time t, and the output token tok(w,−1, t) to be the highest
scoring token leaving word w at time t.

Pseudocode is provided in Algorithm 1.
The CTC token passing algorithm has a worst case com-

plexity of O(TW 2), since line 15 requires a potential search
through all W words. However, because the output tokens
tok(w,−1, T ) are sorted in order of score, the search can be
terminated when a token is reached whose score is less than
the current best score with the transition included. The typical

1: Initialisation:
2: for all words w ∈ D do
3: tok(w, 1, 1) = (ln y1

b , (w))
4: tok(w, 2, 1) = (ln y1

w1
, (w))

5: if |w| = 1 then
6: tok(w,−1, 1) = tok(w, 2, 1)
7: else
8: tok(w,−1, 1) = (−∞, ())
9: tok(w, c, 1) = (−∞, ()) for all other l

10:
11: Algorithm:
12: for t = 2 to T do
13: sort output tokens tok(w,−1, t− 1) by rising score
14: for all words w ∈ D do
15: w∗ = arg maxŵ[tok(ŵ,−1, t− 1).s+ ln p(w|ŵ)]
16: tok(w, 0, t).s = tok(w∗,−1, t− 1).s+ ln p(w|w∗)
17: tok(w, 0, t).h = tok(w∗,−1, t− 1).h+ w
18: for c = 1 to |w′| do
19: P = {tok(w, c, t− 1), tok(w, c− 1, t− 1)}
20: if w′c 6= blank and c > 2 and w′c−2 6= w′c then
21: add tok(w, c− 2, t− 1) to P
22: tok(w, c, t) = token in P with highest score
23: tok(w, c, t).s += ln ytw′c
24: R = {tok(w, |w′|, t), tok(w, |w′| − 1, t)}
25: tok(w,−1, t) = token in R with highest score
26:
27: Termination:
28: w∗ = arg maxw tok(w,−1, T ).s
29: output tok(w∗,−1, T ).h

Algorithm 1: CTC Token Passing Algorithm

complexity is therefore considerably lower, with a lower bound
of O(TWlogW ) to account for the sort. If no bigrams are
used, lines 15-17 can be replaced by a simple search for the
highest scoring output token, and the complexity reduces to
O(TW ).

V. EXPERIMENTS AND RESULTS

The aim of our experiments was to evaluate the complete
RNN handwriting recognition system, illustrated in Figure 13,
on both online and offline handwriting. In particular we wanted
to see how it compared to a state-of-the-art HMM-based
system. The online and offline databases used were the IAM-
OnDB and the IAM-DB respectively. Note that these do not
correspond to the same handwriting samples: the IAM-OnDB
was acquired from a whiteboard (see Section II), while the
IAM-DB consists of scanned images of handwritten forms (see
Section III).

To make the comparisons fair, the same online and offline
preprocessing was used for both the HMM and RNN systems.
In addition, the same dictionaries and language models were
used for the two systems—see Section V-B for further details.
As well as the main comparisons, extra experiments were
carried out on the online database to determine the effect of
varying the dictionary size, and of disabling the forward and
backward hidden layers in the RNN.
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Fig. 13. The complete RNN handwriting recognition system. First the online
or offline handwriting data is preprocessed with the techniques described in
Sections II and III. The resulting sequence of feature vectors is scanned in
opposite directions by the forwards and backwards BLSTM hidden layers.
The BLSTM layers feed forward to the CTC output layer, which produces
a probability distribution over character transcriptions. This distribution is
passed to the dictionary and language model, using the token passing
algorithm, to obtain the final word sequence.

For all the experiments, the task was to transcribe the text
lines in the test set using the words in the dictionary. The basic
performance measure was the word accuracy

acc = 100 ∗
(

1− insertions + substitutions + deletions
total length of test set transcriptions

)
where the number of word insertions, substitutions and dele-
tions is summed over the whole test set. For the RNN system,
we also recorded the character accuracy, defined as above
except with characters instead of words.

A. Data Sets

For the online experiments we used the IAM-OnDB,
a database acquired from a ‘smart’ whiteboard [49]. The
database was divided into four disjoint sets, as defined by
the IAM-OnDB-t2 benchmark task: a training set containing
5,364 lines; a first validation set containing 1,438 lines; a
second validation set containing 1,518 lines which can be
used, for example, to optimise a language model; and a test
set containing 3,859 lines. After preprocessing, the input data
consisted of 25 inputs per time step.

For the offline experiments we used the IAM-DB, a database
acquired from scanned images of handwritten forms [36].

The IAM-DB consists of 13,040 fully transcribed handwritten
lines, containing 86,272 instances of 11,050 distinct words.
The division into datasets was defined by the benchmark ‘large
writer independent text line recognition task’3. The training
set contains 6,161 lines from 283 writers, the validation set
contains 920 lines from 56 writers, and the test set contains
2,781 lines from 161 writers. After preprocessing, the input
data consisted of 9 inputs per time step.

Both databases were created using texts from the Lancaster-
Oslo/Bergen (LOB) corpus [50] as prompts. Note however that
the online and offline prompts were not the same.

Both the online and offline transcriptions contain 81 sep-
arate characters, including all lower case and capital letters
as well as various other special characters, e.g., punctuation
marks, digits, a character for garbage symbols, and a character
for the space. Note that for the RNN systems, only 80 of these
were used, since the garbage symbol is not required for CTC.

B. Language Model and Dictionaries

Dictionaries were used for all the experiments where word
accuracy was recorded. All dictionaries were derived from
three different text corpora, the LOB (excluding the data
used as prompts), the Brown corpus [52], and the Wellington
corpus [53]. The ‘standard’ dictionary we used for our main
results consisted of the 20,000 most frequently occurring
words in the three corpora. The figure 20,000 was chosen
because it had been previously shown to give best results
for HMMs [51]. Note that this dictionary was ‘open’, in
the sense that it did not contain all the words in either
the online or offline test set. To analyse the dependency of
the recognition scores on the lexicon, we carried out extra
experiments on the online data using open dictionaries with
between 5,000 and 30,000 words (also chosen from the most
common words in LOB). In addition, we tested both systems
with two dictionaries that were ‘closed’ with respect to the
online data (i.e. that contained every word in the online test
set).

The bigram language model, used for some of the experi-
ments, was based on the same corpora as the language model.
It was then optimised for the online and offline experiments
separately, using data from the validation sets. Note that, for
the RNN system, the effect of the language model is to di-
rectly multiply the existing word sequence probabilities by the
combined transition probabilities given by the bigrams. This
contrasts with HMMs, where the language model weighting
factor must be found empirically because HMMs are known
to underestimate acoustic scores [54].

C. HMM Parameters

The HMM system used for the online and offline ex-
periments was similar to that described in [35]. One linear
HMM was used for each character. For the online data every
character model contained eight states, while for the offline

3Both databases are available for public download, along with the corre-
sponding task definitions
http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
http://www.iam.unibe.ch/fki/databases/iam-on-line-handwriting-database

http://www.iam.unibe.ch/fki/databases/iam-handwriting-database
http://www.iam.unibe.ch/fki/databases/iam-on-line-handwriting-database
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data, the number of states was chosen individually for each
character [51]. The observation probabilities were modelled
by mixtures of diagonal Gaussians. 32 Gaussians were used
for online data and 12 for the offline data. In both cases the
number of Gaussians was optimised by incrementally splitting
the Gaussian component with the highest weight. The language
model weighting factor and the word insertion penalty were
determined empirically on the validation set.

D. RNN Parameters

The RNN had a bidirectional Long Short-Term Memory
(BLSTM) architecture with a connectionist temporal clas-
sification (CTC) output layer (see Section IV for details).
The forward and backward hidden layers each contained
100 LSTM memory blocks. Each memory block contains a
memory cell, an input gate, an output gate, a forget gate and
three peephole connections. Hyperbolic tangent was used for
the block input and output activation functions, and the gate
activation function was the logistic sigmoid. The CTC output
layer had 81 nodes (one for each character occurring in the
training set, and one extra for ‘blank’). The size of the input
layer was determined by the data: for the online data there
were 25 inputs, for the offline data there were 9. Otherwise
the network was identical for the two tasks. The input layer
was fully connected to both hidden layers, and these were
fully connected to themselves and to the output layer. This
gave 117,681 weights for the online data and 105,082 weights
for the online data.

The network weights were initialised with a Gaussian distri-
bution of mean 0 and standard deviation 0.1. The network was
trained using online gradient descent with a learning rate of
0.0001 and a momentum of 0.9. The error rate was recorded
every 5 epochs on the validation set and training was stopped
when performance had ceased to improve on the validation
set for 50 epochs. Because of the random initialisation, all
RNN experiments were repeated four times, and the results
are stated as the mean ± the standard error.

E. Main Results

As can be seen from Tables I and II, the RNN substantially
outperformed the HMM on both databases. To put these results
in perspective, the Microsoft tablet PC handwriting recog-
niser [55] gave a word accuracy score of 71.32% on the online
test set. This result is not directly comparable to our own, since
the Microsoft system was trained on a different training set,
and uses considerably more sophisticated language modelling
than the systems we implemented. However, it suggests that
our recogniser is competitive with the best commercial systems
for unconstrained handwriting.

System Word Accuracy Char. Accuracy
HMM 65.0% —
CTC 79.7 ± 0.3% 88.5 ± 0.05%

TABLE I
MAIN RESULT FOR ONLINE DATA

System Word Accuracy Char. Accuracy
HMM 64.5% —
RNN 74.1 ± 0.8% 81.8 ± 0.6%

TABLE II
MAIN RESULT FOR OFFLINE DATA

F. Influence of Dictionary Size

We carried out two sets of experiments on the online
database to gauge the effect of varying the dictionary size.
In one we generated open dictionaries with between 5,000
and 30,000 words by taking the n most common words in the
LOB, Brown and Wellington corpora. In the other, we took a
closed dictionary containing the 5,597 words in the online test
set, and measured the change in performance when this was
padded to 20,000 words. Note that the language model was
not used for the RNN results in the section, which would be
substantially higher otherwise (for example, the accuracy for
the 20,000 word open lexicon was 79.7% with the language
model and 74.0% without).

The results for the first set of experiments are shown in
Table III and plotted in Figure 14. In all cases the RNN system
significantly outperforms the HMM system, despite the lack of
language model. Both RNN and HMM performance increased
with size (and test set coverage) up to 25,000 words. Note
however that the RNN is less affected by the dictionary size,
and that for the 30,000 word dictionary, performance continues
to increase for the RNN but drops for the HMM. The tendency
of HMMs to lose accuracy for very large handwriting lexicons
has been previously observed [51].

Dictionary Size Coverage(%) RNN(%) HMM(%)
5,000 86.1 66.2 ± 0.4 47.7
10,000 90.7 70.3 ± 0.4 54.8
15,000 92.9 72.5 ± 0.3 60.6
20,000 94.4 74.0 ± 0.3 63.7
25,000 95.1 74.6 ± 0.3 65.0
30,000 95.7 75.0 ± 0.3 61.5

TABLE III
ONLINE WORD ACCURACY WITH OPEN DICTIONARIES

The results of the second set of experiments are shown in
Table IV. Unsurprisingly, the closed dictionary containing only
the test set words gave the best results for both systems. The
scores with the 20,000 word closed dictionary were somewhat
lower in both cases, due to the increased perplexity, but still
better than any recorded with open dictionaries.

Dictionary Size RNN(%) HMM(%)
5,597 85.3 ± 0.3 70.1
20,000 81.5 ± 0.4 68.8

TABLE IV
ONLINE WORD ACCURACY WITH CLOSED DICTIONARIES

In summary the RNN retained its advantage over the HMM
regardless of the dictionary used. Moreover, the differences
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Fig. 14. HMM and RNN word accuracy plotted against dictionary size (left) and test set coverage (right)

tended to be larger when the dictionary had higher perplexity.
We believe this is because the RNN is better at recognising
characters, and is therefore less dependent on a dictionary or
language model to constrain its outputs.

G. Influence of RNN Hidden Layers

To test the relative importance of the forward and backward
hidden layers, we evaluated the RNN system on the online
database with each of the hidden layers disabled in turn. We
give the character error rate only, since this is the clearest
indicator of network performance. The results are displayed
in Table V. It is interesting to note that significantly higher
accuracy was achieved with a reverse layer only than with
a forward layer only (all differences are significant using a
standard z-test with α < 0.001). This suggests that the right-
to-left dependencies are more important to the network than
the left-to-right ones.

Architecture Character Accuracy Training Iterations
Forward Only 81.3 ± 0.3% 182.5 ± 24.3
Reverse Only 85.8 ± 0.3% 228.8 ± 51.7
Bidirectional 88.5 ± 0.05% 41.25 ± 2.6

TABLE V
ONLINE CHARACTER ACCURACY WITH DIFFERENT RNN HIDDEN LAYERS

H. Learning Curve

Figure 15 shows the decrease in training and validation
error over time for a typical RNN training run on the online
database.

I. Use of Context by the RNN

We have previously asserted that the BLSTM architecture
is able to access long-range, bidirectional context. Evidence
of this can be found by analysing the partial derivatives of
the network outputs at a particular time t in a sequence with
respect to the inputs at all times t′. We refer to the matrix
of these derivatives as the sequential Jacobian. The larger
the values of the sequential Jacobian for some t, t′, the more
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Fig. 15. RNN character error rate during training. The performance ceased to
improve on the validation set after 45 passes through the training set (marked
with ‘best network‘)

sensitive the network output at time t is to the input at time
t′.

Figure 16 plots the sequential Jacobian for a single output
during the transcription of a line from the online database.
As can be seen, the network output is sensitive to information
from about the first 120 time steps of the sequence, which
corresponds roughly to the length of the first word. Moreover,
this area of sensitivity extends in both directions from the point
where the prediction is made.

VI. DISCUSSION

Our experiments reveal a substantial gap in performance
between the HMM and RNN systems, with a relative error
reduction of over 40% in some cases. In what follows, we
discuss the differences between the two systems, and suggest
reasons for the RNN’s superiority.

Firstly, standard HMMs are generative, while an RNN
trained with a discriminative objective function (such as CTC)
is discriminative. That is, HMMs attempts to model the
conditional probability of the input data given the internal
state sequence, then use this to find the most probable label
sequence, while the RNN directly models the probability
of the label sequence given the inputs. The advantages of
the generative approach include the possibility of adding
extra models to an already trained system, and being able
to generate synthetic data. However, for discriminative tasks,
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Fig. 16. Sequential Jacobian for a sequence from the IAM-OnDB. The
Jacobian is evaluated for the output corresponding to the label ‘l’ at the time
step when ‘l’ is emitted (indicated by the vertical dotted line).

determining the input distribution is unnecessary. Additionally,
for tasks such as handwriting recognition where the prior data
distribution is hard to determine, generative approaches can
only provide unnormalised likelihoods for the label sequences.
Discriminative approaches, on the other hand, yield normalised
label probabilities, which can be used to assess prediction
confidence, or to combine the outputs of several classifiers. In
most cases, discriminative methods achieve better performance
than generative methods on classification tasks.

A second difference is that RNNs provide more flexible
models of the input features than the mixtures of diagonal
Gaussians used in standard HMMs. Gaussian’s with diagonal
covariance matrices are limited to modelling distributions over
independent variables. This assumes that the input features are
decorrelated, which can be difficult to ensure for real world
tasks such as handwriting recognition. RNNs, on the other
hand, do not assume that the features come from a particular
distribution, or that they are independent, and can model non-
linear relationships among features. However, it should be
noted that RNNs typically perform better using input features
with simpler relationships.

A third difference is that the internal states of a standard
HMM are discrete and univariate. This means that for an
HMM with n states, only O(logn) bits of information about
the past observation sequence are carried by the internal state.
RNNs, on the other hand, have a continuous, multivariate
internal state (the hidden layer) whose information capacity
grows linearly with its size.

A fourth difference is that HMMs are constrained to seg-
ment the input into a sequence of states or units. This is often
problematic for continuous input sequences, since the precise
boundary between units can be ambiguous. A further problem

with segmentation is that, at least with standard Markovian
transition probabilities, the probability of remaining in a
particular state decreases exponentially with time. Exponential
decay is in general a poor model of state duration, and various
measures have been suggested to alleviate this [56]. However,
an RNN trained with CTC does not need to segment the input
sequence, and therefore avoids both of these problems.

A final, and perhaps most crucial, difference is that unlike
RNNs, HMMs assume that the probability of each observation
depends only on the current state. One consequence of this
is that data consisting of continuous trajectories (such as
the sequence of pen coordinates for online handwriting, and
the sequence of window positions in offline handwriting) are
difficult to model with standard HMMs, since each observation
is heavily dependent on those around it. Similarly, data with
long-range contextual dependencies is troublesome, because
individual sequence elements are influenced by the elements
surrounding them. The latter problem can be mitigated by
adding extra models to account for each sequence element
in all different contexts (e.g., using triphones instead of
phonemes for speech recognition). However, increasing the
number of models exponentially increases the number of
parameters that must be inferred which, in turn, increases the
amount of data required to reliably train the system. For RNNs
on the other hand, modelling continuous trajectories is natural,
since their own hidden state is itself a continuous trajectory.
Furthermore, the range of contextual information accessible to
an RNN is limited only by the choice of architecture, and in
the case of BLSTM can in principle extend to the entire input
sequence.

In summary, the observed difference in performance be-
tween RNNs and HMM in unconstrained handwriting recogni-
tion can be explained by the fact that, as researchers approach
handwriting recognition tasks of increasing complexity, the
assumptions HMMs are based on lose validity. For example,
unconstrained handwriting or spontaneous speech are more
dynamic and show more marked context effects than hand-
printed scripts or read speech.

VII. CONCLUSIONS

We have introduced a novel approach for recognising un-
constrained handwritten text, using a recurrent neural network.
The key features of the network are the bidirectional Long
Short-Term Memory architecture, which provides access to
long range, bidirectional contextual information, and the con-
nectionist temporal classification output layer, which allows
the network to be trained on unsegmented sequence data. In
experiments on online and offline handwriting data, the new
approach outperformed a state-of-the-art HMM-based system,
and also proved more robust to changes in dictionary size.
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