
Framewise Phoneme Classification with
Bidirectional LSTM and Other Neural Network

Architectures
Alex Graves∗ and Jürgen Schmidhuber∗†

IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland∗
TU Munich, Boltzmannstr. 3, 85748 Garching, Munich, Germany†

{alex,juergen}@idsia.ch

Abstract— In this paper, we present bidirectional Long Short
Term Memory (LSTM) networks, and a modified, full gradient
version of the LSTM learning algorithm. We evaluate bidirec-
tional LSTM (BLSTM) and several other network architectures
on the benchmark task of framewise phoneme classification,
using the TIMIT database. Our main findings are that bidirec-
tional networks outperform unidirectional ones, and that LSTM
is much faster and also more accurate than both standard
Recurrent Neural Nets (RNNs) and time-windowed Multilayer
Perceptrons (MLPs). Our results support the view that contextual
information is crucial to speech processing, and suggest that
BLSTM is an effective architecture with which to exploit it. 1

I. INTRODUCTION

For neural networks, there are two main ways of incor-
porating context into sequence processing tasks: collect the
inputs into overlapping time-windows, and treat the task as
spatial; or use recurrent connections to model the flow of
time directly. Using time-windows has two major drawbacks:
firstly the optimal window size is task dependent (too small
and the net will neglect important information, too large and it
will overfit on the training data), and secondly the network is
unable to adapt to shifted or timewarped sequences. However,
standard RNNs (by which we mean RNNs containing hidden
layers of recurrently connected neurons) have limitations of
their own. Firstly, since they process inputs in temporal order,
their outputs tend to be mostly based on previous context (there
are ways to introduce future context, such as adding a delay
between the outputs and the targets; but these do not usually
make full use of backwards dependencies). Secondly they are
known to have difficulty learning time-dependencies more than
a few timesteps long (Hochreiter et al., 2001). An elegant
solution to the first problem is provided by bidirectional
networks (Section II). For the second problem, an alternative
RNN architecture, LSTM, has been shown to be capable of
learning long time-dependencies (Section III).

Our experiments concentrate on framewise phoneme clas-
sification (i.e. mapping a sequence of speech frames to a
sequence of phoneme labels associated with those frames).
This task is both a first step towards full speech recognition

1An abbreviated version of some portions of this article appeared in (Graves
and Schmidhuber, 2005), as part of the IJCNN 2005 conference proceedings,
published under the IEEE copyright.

(Robinson, 1994; Bourlard and Morgan, 1994), and a chal-
lenging benchmark in sequence processing. In particular, it
requires the effective use of contextual information.

The contents of the rest of this paper are as follows: in
Section II we discuss bidirectional networks, and answer a
possible objection to their use in causal tasks; in Section III
we describe the Long Short Term Memory (LSTM) network
architecture, and our modification to its error gradient cal-
culation; in Section IV we describe the experimental data
and how we used it in our experiments; in Section V we
give an overview of the various network architectures; in
Section VI we describe how we trained (and retrained) them;
in Section VII we present and discuss the experimental results,
and in Section VIII we make concluding remarks. Appendix
A contains the pseudocode for training LSTM networks with
a full gradient calculation, and Appendix B is an outline of
bidirectional training with RNNs.

II. BIDIRECTIONAL RECURRENT NEURAL NETS

The basic idea of bidirectional recurrent neural nets
(BRNNs) (Schuster and Paliwal, 1997; Baldi et al., 1999) is
to present each training sequence forwards and backwards to
two separate recurrent nets, both of which are connected to
the same output layer. (In some cases a third network is used
in place of the output layer, but here we have used the simpler
model). This means that for every point in a given sequence,
the BRNN has complete, sequential information about all
points before and after it. Also, because the net is free to use as
much or as little of this context as necessary, there is no need
to find a (task-dependent) time-window or target delay size. In
Appendix B we give an outline of the bidirectional algorithm,
and Figure 1 illustrates how the forwards and reverse subnets
combine to classify phonemes. BRNNs have given improved
results in sequence learning tasks, notably protein structure
prediction (PSP) (Baldi et al., 2001; Chen and Chaudhari,
2004) and speech processing (Schuster, 1999; Fukada et al.,
1999).

A. Bidirectional Networks and Online Causal Tasks

In a spatial task like PSP, it is clear that any distinction
between input directions should be discarded. But for temporal
problems like speech recognition, relying on knowledge of the

future seems at first sight to violate causality — at least if the
task is online. How can we base our understanding of what
we’ve heard on something that hasn’t been said yet? However,
human listeners do exactly that. Sounds, words, and even
whole sentences that at first mean nothing are found to make
sense in the light of future context. What we must remember is
the distinction between tasks that are truly online — requiring
an output after every input — and those where outputs are only
needed at the end of some input segment. For the first class
of problems BRNNs are useless, since meaningful outputs are
only available after the net has run backwards. But the point is
that speech recognition, along with most other ‘online’ causal
tasks, is in the second class: an output at the end of every
segment (e.g. sentence) is fine. Therefore, we see no objection
to using BRNNs to gain improved performance on speech
recognition tasks. On a more practical note, given the relative
speed of activating neural nets, the delay incurred by running
an already trained net backwards as well as forwards is small.

In general, the BRNNs examined here make the following
assumptions about their input data: that it can be divided into
finitely long segments, and that the effect of each of these on
the others is negligible. For speech corpora like TIMIT, made
up of separately recorded utterances, this is clearly the case.
For real speech, the worst it can do is neglect contextual effects
that extend across segment boundaries — e.g. the ends of
sentences or dialogue turns. Moreover, such long term effects
are routinely neglected by current speech recognition systems.

III. LSTM

The Long Short Term Memory architecture (Hochreiter and
Schmidhuber, 1997; Gers et al., 2002) was motivated by an
analysis of error flow in existing RNNs (Hochreiter et al.,
2001), which found that long time lags were inaccessible
to existing architectures, because backpropagated error either
blows up or decays exponentially.

An LSTM layer consists of a set of recurrently connected
blocks, known as memory blocks. These blocks can be thought
of as a differentiable version of the memory chips in a
digital computer. Each one contains one or more recurrently
connected memory cells and three multiplicative units — the
input, output and forget gates — that provide continuous
analogues of write, read and reset operations for the cells.
More precisely, the input to the cells is multiplied by the
activation of the input gate, the output to the net is multiplied
by that of the output gate, and the previous cell values are
multiplied by the forget gate. The net can only interact with
the cells via the gates.

Recently, we have concentrated on applying LSTM to real
world sequence processing problems. In particular, we have
studied isolated word recognition (Graves et al., 2004b; Graves
et al., 2004a) and continuous speech recognition (Eck et al.,
2003; Beringer, 2004b).

A. LSTM Gradient Calculation

The original LSTM training algorithm (Gers et al., 2002)
used an error gradient calculated with a combination of

Reverse Net Only

Forward Net Only

sil sil f ay vsil w ah n ow

Bidirectional Output

Target

one oh five

sil

Fig. 1. A bidirectional LSTM net classifying the utterance ”one oh five”
from the Numbers95 corpus. The different lines represent the activations
(or targets) of different output nodes. The bidirectional output combines the
predictions of the forward and reverse subnets; it closely matches the target,
indicating accurate classification. To see how the subnets work together, their
contributions to the output are plotted separately (“Forward Net Only” and
“Reverse Net Only”). As we might expect, the forward net is more accurate.
However there are places where its substitutions (‘w’), insertions (at the start
of ‘ow’) and deletions (‘f’) are corrected by the reverse net. In addition, both
are needed to accurately locate phoneme boundaries, with the reverse net
tending to find the starts and the forward net tending to find the ends (‘ay’ is
a good example of this).

Real Time Recurrent Learning (RTRL)(Robinson and Fallside,
1987) and Back Propagation Through Time (BPTT)(Williams
and Zipser, 1995). The backpropagation was truncated after
one timestep, because it was felt that long time dependencies
would be dealt with by the memory blocks, and not by the
(vanishing) flow of backpropagated error gradient. Partly to
check this assumption, and partly to ease the implementation
of Bidirectional LSTM, we calculated the full error gradient
for the LSTM architecture. See Appendix A for the revised
pseudocode. For both bidirectional and unidirectional nets, we
found that using the full gradient gave slightly higher perfor-

mance than the original algorithm. It had the added benefit
of making LSTM directly comparable to other RNNs, since
it could now be trained with standard BPTT. Also, since the
full gradient can be checked numerically, its implementation
was easier to debug.

IV. EXPERIMENTAL DATA

The data for our experiments came from the TIMIT corpus
(Garofolo et al., 1993) of prompted utterances, collected by
Texas Instruments. The utterances were chosen to be phoneti-
cally rich, and the speakers represent a wide variety of Amer-
ican dialects. The audio data is divided into sentences, each
of which is accompanied by a complete phonetic transcript.

We preprocessed the audio data into 12 Mel-Frequency Cep-
strum Coefficients (MFCC’s) from 26 filter-bank channels. We
also extracted the log-energy and the first order derivatives of
it and the other coefficients, giving a vector of 26 coefficients
per frame. The frame size was 10 ms and the input window
was 25 ms.

For consistency with the literature, we used the complete
set of 61 phonemes provided in the transcriptions for classi-
fication. In full speech recognition, it is common practice to
use a reduced set of phonemes (Robinson, 1991), by merging
those with similar sounds, and not separating closures from
stops.

A. Training and Testing Sets

The standard TIMIT corpus comes partitioned into training
and test sets, containing 3696 and 1344 utterances respectively.
In total there were 1,124,823 frames in the training set, and
410,920 in the test set. No speakers or sentences exist in
both the training and test sets. We used 184 of the training
set utterances (chosen randomly, but kept constant for all
experiments) as a validation set and trained on the rest. All
results for the training and test sets were recorded at the point
of lowest cross-entropy error on the validation set.

V. NETWORK ARCHITECTURES

We used the following five neural network architectures in
our experiments (henceforth referred to by the abbreviations
in brackets):
• Bidirectional LSTM, with two hidden LSTM layers

(forwards and backwards), both containing 93 one-cell
memory blocks of one cell each (BLSTM)

• Unidirectional LSTM, with one hidden LSTM layer, con-
taining 140 one cell memory blocks, trained backwards
with no target delay, and forwards with delays from 0 to
10 frames (LSTM)

• Bidirectional RNN with two hidden layers containing 185
sigmoidal units each (BRNN)

• Unidirectional RNN with one hidden layers containing
275 sigmoidal units, trained with target delays from 0 to
10 frames (RNN)

• MLP with one hidden layer containing 250 sigmoidal
units, and symmetrical time-windows from 0 to 10 frames
(MLP)

All nets contained an input layer of size 26 (one for each
MFCC coefficient), and an output layer of size 61 (one for
each phoneme). The input layers were fully connected to the
hidden layers and the hidden layers were fully connected to
the output layers. For the recurrent nets, the hidden layers were
also fully connected to themselves. The LSTM blocks had the
following activation functions: logistic sigmoids in the range
[−2, 2] for the input and output squashing functions of the cell,
and in the range [0, 1] for the gates. The non-LSTM nets had
logistic sigmoid activations in the range [0, 1] in the hidden
layers. All units were biased.

None of our experiments with more complex network
topologies (e.g. multiple hidden layers, several LSTM cells
per block, direct connections between input and output layers)
led to improved results.

A. Computational Complexity

The hidden layer sizes were chosen to ensure that all
networks had roughly the same number of weights W (≈
100, 000). However, for the MLPs the network grew with
the time-window size, and W varied between 22,061 and
152,061. For all networks, the computational complexity was
dominated by the O(W) feedforward and feedback operations.
This means that the bidirectional nets and the LSTM nets did
not take significantly more time to train per epoch than the
unidirectional or RNN or (equivalently sized) MLP nets.

B. Range of Context

Only the bidirectional nets had access to the complete
context of the frame being classified (i.e. the whole input
sequence). For MLPs, the amount of context depended on the
size of the time-window. The results for the MLP with no time-
window (presented only with the current frame) give a baseline
for performance without context information. However, some
context is implicitly present in the window averaging and first-
derivatives of the preprocessor.

Similarly, for unidirectional LSTM and RNN, the amount
of future context depended on the size of target delay. The
results with no target delay (trained forwards or backwards)
give a baseline for performance with context in one direction
only.

C. Output Layers

For the output layers, we used the cross entropy error
function and the softmax activation function, as is standard
for 1 of K classification (Bishop, 1995). The softmax function
ensures that the network outputs are all between zero and
one, and that they sum to one on every timestep. This means
they can be interpreted as the posterior probabilities of the
phonemes at a given frame, given all the inputs up to the
current one (with unidirectional nets) or all the inputs in the
whole sequence (with bidirectional nets).

Several alternative error functions have been studied for
this task (Chen and Jamieson, 1996). One modification in
particular has been shown to have a positive effect on full
speech recognition. This is to weight the error according to the

MLP 10 Frame Time-Window

windowaat

silowddclnixwahdxaeq

Targets

BLSTM

BLSTM Duration Weighted Error

BRNN

Fig. 2. The best exemplars of each architecture classifying the excerpt
”at a window” from an utterance in the TIMIT database. In general, the
networks found the vowels more difficult (here, ”ix” is confused with ”ih”,
”ah” with ”ax” and ”axr”, and ”ae” with ”eh”), than the consonants (e.g.
”w” and ”n”), which in English are more distinct . For BLSTM, the net with
duration weighted error tends to do better on short phones, (e.g. the closure
and stop ”dcl” and ”d”), and worse on longer ones (”ow”), as expected. Note
the more jagged trajectories for the MLP net (e.g. for ”q” and ”ow”); this is
presumably because they have no recurrency to smooth the outputs.

duration of the current phoneme, ensuring that short phonemes
are as significant to the training as longer ones. However, we
recorded a slightly lower framewise classification score with
BLSTM trained with this error function (see Section VII-D).

VI. NETWORK TRAINING

For all architectures, we calculated the full error gradient
using online BPTT (BPTT truncated to the lengths of the
utterances), and trained the weights using gradient descent
with momentum. We kept the same training parameters for
all experiments: initial weights randomised in the range

[−0.1, 0.1], a learning rate of 10−5 and a momentum of 0.9.
At the end of each utterance, weight updates were carried out
and network activations were reset to 0.

Keeping the training algorithm and parameters constant
allowed us to concentrate on the effect of varying the archi-
tecture. However it is possible that different training methods
would be better suited to different networks.

A. Retraining

For the experiments with varied time-windows or target
delays, we iteratively retrained the networks instead of starting
again from scratch. For example, for LSTM with a target delay
of 2, we first trained with delay 0, then took the best net and
retrained it (without resetting the weights) with delay 1, then
retrained again with delay 2. To find the best networks, we
retrained the LSTM nets for 5 epochs at each iteration, the
RNN nets for 10, and the MLPs for 20. It is possible that
longer retraining times would have given improved results.
For the retrained MLPs, we had to add extra (randomised)
weights from the input layers, since the input size grew with
the time-window.

Although primarily a means to reduce training time, we
have also found that retraining improves final performance
(Graves et al., 2005; Beringer, 2004a). Indeed, the best result
in this paper was achieved by retraining (on the BLSTM
net trained with a weighted error function, then retrained
with normal cross-entropy error). The benefits presumably
come from escaping the local minima that gradient descent
algorithms tend to get caught in.

TABLE I
FRAMEWISE PHONEME CLASSIFICATION ON THE TIMIT DATABASE:

BIDIRECTIONAL LSTM

Network Training Set Score Test Set Score Epochs
BLSTM (1) 77.0% 69.7% 20
BLSTM (2) 77.9% 70.1% 21
BLSTM (3) 77.3% 69.9% 20
BLSTM (4) 77.8% 69.8% 22
BLSTM (5) 77.1% 69.4% 19
BLSTM (6) 77.8% 69.8% 21
BLSTM (7) 76.7% 69.9% 18

mean 77.4% 69.8% 20.1
standard deviation 0.5% 0.2% 1.3

VII. RESULTS

Table I contains the outcomes of 7, randomly initialised,
training runs with BLSTM. For the rest of the paper, we use
their mean as the result for BLSTM. The standard deviation
in the test set scores (0.2%) gives an indication of significant
difference in network performance.

The last three entries in Table II come from the papers
indicated (note that Robinson did not quote framewise clas-
sification scores; the result for his network was recorded by
Schuster, using the original software). The rest are from our
own experiments. For the MLP, RNN and LSTM nets we
give the best results, and those achieved with least contextual

TABLE II
FRAMEWISE PHONEME CLASSIFICATION ON THE TIMIT DATABASE:

MAIN RESULTS

Network Training Set Test Set Epochs
BLSTM (retrained) 78.6% 70.2% 17

BLSTM 77.4% 69.8% 20.1
BRNN 76.0% 69.0% 170

BLSTM (Weighted Error) 75.7% 68.9% 15
LSTM (5 frame delay) 77.6% 66.0% 34
RNN (3 frame delay) 71.0% 65.2% 139

LSTM (backwards, 0 frame delay) 71.1% 64.7% 15
LSTM (0 frame delay) 70.9% 64.6% 15
RNN (0 frame delay) 69.9% 64.5% 120

MLP (10 frame time-window) 67.6% 63.1% 990
MLP (no time-window) 53.6% 51.4% 835

RNN (Chen and Jamieson, 1996) 69.9% 74.2% -
RNN (Robinson, 1994; Schuster, 1999) 70.6% 65.3% -

BRNN (Schuster, 1999) 72.1% 65.1% -

information (i.e. with no target delay / time-window). The
number of epochs includes both training and retraining.

There are some differences between the results quoted in
this paper and in our previous work (Graves and Schmidhuber,
2005). The most significant of these is the improved score we
achieved here with the bidirectional RNN (69.0% instead of
64.7%). Previously we had stopped the BRNN after 65 epochs,
when it appeared to have converged; here, however, we let it
run for 225 epochs (10 times as long as LSTM), and kept
the best net on the validation set, after 170 epochs. As can
be seen from Figure 4 the learning curves for the non LSTM
networks are very slow, and contain several sections where the
error temporarily increases, making it difficult to know when
training should be stopped.

The results for the unidirectional LSTM and RNN nets are
also better here; this is probably due to our use of larger
networks, and the fact that we retrained between different
target delays. Again it should be noted that at the moment
we do not have an optimal method for choosing retraining
times.

A. Comparison Between LSTM and Other Architectures

The most obvious difference between LSTM and the RNN
and MLP nets was the training time (see Figure 4). In
particular, BRNN took more than 8 times as long to converge
as BLSTM, despite having more or less equal computational
complexity per time-step (see Section V-A). There was a
similar time increase between the unidirectional LSTM and
RNN nets, and the MLPs were slower still (990 epochs for
the best MLP result).

The training time of 17 epochs for our most accurate
network (retrained BLSTM) is remarkably fast, needing just
a few hours on an ordinary desktop computer. Elsewhere we
have seen figures of between 40 and 120 epochs quoted for
RNN convergence on this task, usually with more advanced
training algorithms than the one used here.

A possible explanation of why RNNs took longer to train
than LSTM on this task is that they require more fine-tuning
of their weights to make use of the contextual information,

since their error signals tend to decay after a few timesteps.
A detailed analysis of the evolution of the weights would be
required to check this.

As well as being faster, the LSTM nets were also slightly
more accurate. Although the final difference in score between
BLSTM and BRNN on this task is small (0.8%) the results in
Table I suggest that it is significant. The fact that the difference
is not larger could mean that long time dependencies (more
than 10 timesteps or so) are not very helpful to this task.

It is interesting to note how much more prone to overfitting
LSTM was than standard RNNs. For LSTM, after only 15-20
epochs the performance on the validation and test sets would
begin to fall, while that on the training set would continue to
rise (the highest score we recorded on the training set with
BLSTM was 86.4%, and still improving). With the RNNs on
the other hand, we never observed a large drop in test set score.
This suggests a difference in the way the two architectures
learn. Given that in the TIMIT corpus no speakers or sentences
are shared by the training and test sets, it is possible that
LSTM’s overfitting was partly caused by its better adaptation
to long range regularities (such as phoneme ordering within
words, or speaker specific pronunciations) than normal RNNs.
If this is true, we would expect a greater distinction between
the two architectures on tasks with more training data.

B. Comparison with Previous Work

Overall BLSTM outperformed any neural network we found
in the literature on this task, apart from the RNN used by
Chen and Jamieson. Their result (which we were unable to
approach with standard RNNs) is surprising as they quote a
substantially higher score on the test set than the training set:
all other methods reported here were better on the training
than the test set, as expected.

In general, it is difficult to compare with previous work
on this task, owing to the many variations in training data
(different preprocessing, different subsets of the TIMIT cor-
pus, different target representations) and experimental method
(different learning algorithms, error functions, network sizes
etc). This is why we reimplemented all the architectures
ourselves.

C. Effect of Increased Context

As is clear from Figure 3 networks with access to more
contextual information tended to get better results. In partic-
ular, the bidirectional networks were substantially better than
the unidirectional ones. For the unidirectional nets, note that
LSTM benefits more from longer target delays than RNNs; this
could be due to LSTM’s greater facility with long timelags,
allowing it to make use of the extra context without suffering
as much from having to remember previous inputs.

Interestingly, LSTM with no time delay returns almost
identical results whether trained forwards or backwards. This
suggests that the context in both directions is equally im-
portant. However, with bidirectional nets, the forward subnet
usually dominates the outputs (see Figure 1).

 50

 52

 54

 56

 58

 60

 62

 64

 66

 68

 70

 72

 0 2 4 6 8 10

%
 F

ra
m

es
 C

or
re

ct
ly

 C
la

ss
ifi

ed

Target Delay / Window Size

Framewise Phoneme Classification Scores

BLSTM Retrained
BLSTM
BRNN

BLSTM Weighted Error
LSTM
RNN
MLP

Fig. 3. Framewise phoneme classification results for all networks on the
TIMIT test set. The number of frames of introduced context (time-window
size for MLPs, target delay size for unidirectional LSTM and RNNs) is plotted
along the x axis. Therefore the results for the bidirectional nets (clustered
around 70%) are plotted at x=0.

For the MLPs, performance increased with time-window
size, and it appears that even larger windows would have been
desirable. However, with fully connected networks, the number
of weights required for such large input layers makes training
prohibitively slow.

D. Weighted Error

The experiment with a weighted error function gave slightly
inferior framewise performance for BLSTM (68.9%, compared
to 69.7%). However, the purpose of this weighting is to
improve overall phoneme recognition, rather than framewise
classification (see Section V-C). As a measure of its success,
if we assume a perfect knowledge of the test set segmentation
(which in real-life situations we cannot), and integrate the net-
work outputs over each phoneme, then BLSTM with weighted
errors gives a phoneme correctness of 74.4%, compared to
71.2% with normal errors.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have compared bidirectional LSTM to other
neural network architectures on the task of framewise phoneme
classification. We have found that bidirectional networks are
significantly more effective than unidirectional ones, and that
LSTM is much faster to train than standard RNNs and MLPs,
and also slightly more accurate. We conclude that bidirectional
LSTM is an architecture well suited to this and other speech
processing tasks, where context is vitally important.

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0 50 100 150 200 250 300 350 400

%
 F

ra
m

es
 C

or
re

ct
ly

 C
la

ss
ifi

ed

Training Epochs

Learning Curves for Three Architectures

BLSTM training set
BLSTM test set

BRNN training set
BRNN test set

MLP training set
MLP test set

Fig. 4. Learning curves for BLSTM, BRNN and MLP with no time-window.
For all experiments, LSTM was much faster to converge than either the RNN
or MLP architectures.

In the future we would like to apply BLSTM to full speech
recognition, for example as part of a hybrid RNN / Hidden
Markov Model system.

APPENDIX A: PSEUDOCODE FOR FULL GRADIENT LSTM

The following pseudocode details the forward pass, back-
ward pass, and weight updates of an extended LSTM layer in
a multi-layer net. The error gradient is calculated with online
BPTT (i.e. BPTT truncated to the lengths of input sequences,
with weight updates after every sequence). As is standard with
BPTT, the network is unfolded over time, so that connections
arriving at layers are viewed as coming from the previous
timestep. We have tried to make it clear which equations are
LSTM specific, and which are part of the standard BPTT
algorithm. Note that for the LSTM equations, the order of
execution is important.

Notation
The input sequence over which the training takes place is

labelled S and it runs from time τ0 to τ1. xk(τ) refers to the
network input to unit k at time τ , and yk(τ) to its activation.
Unless stated otherwise, all network inputs, activations and
partial derivatives are evaluated at time τ — e.g. yc ≡ yc(τ).
E(τ) refers to the (scalar) output error of the net at time τ .
The training target for output unit k at time τ is denoted tk(τ).
N is the set of all units in the network, including input and
bias units, that can be connected to other units. Note that this
includes LSTM cell outputs, but not LSTM gates or internal
states (whose activations are only visible within their own
memory blocks). Wij is the weight from unit j to unit i.

The LSTM equations are given for a single memory block
only. The generalisation to multiple blocks is trivial: simply
repeat the calculations for each block, in any order. Within
each block, we use the suffixes ι, φ and ω to refer to the
input gate, forget gate and output gate respectively. The suffix
c refers to an element of the set of cells C. sc is the state value
of cell c — i.e. its value after the input and forget gates have
been applied. f is the squashing function of the gates, and
g and h are respectively the cell input and output squashing
functions.

Forward Pass
• Reset all activations to 0.
• Running forwards from time τ0 to time τ1, feed in the

inputs and update the activations. Store all hidden layer
and output activations at every timestep.

• For each LSTM block, the activations are updated as
follows:

Input Gates:

xι =
∑

j∈N

wιjyj(τ − 1) +
∑

c∈C

wιcsc(τ − 1)

yι = f(xι)

Forget Gates:

xφ =
∑

j∈N

wφjyj(τ − 1) +
∑

c∈C

wφcsc(τ − 1)

yφ = f(xφ)

Cells:

∀c ∈ C, xc =
∑

j∈N

wcjyj(τ − 1)

sc = yφsc(τ − 1) + yιg(xc)

Output Gates:

xω =
∑

j∈N

wωjyj(τ − 1) +
∑

c∈C

wωcsc(τ)

yω = f(xω)

Cell Outputs:

∀c ∈ C, yc = yωh(sc)

Backward Pass
• Reset all partial derivatives to 0.
• Starting at time τ1, propagate the output errors backwards

through the unfolded net, using the standard BPTT equa-
tions for a softmax output layer and the cross-entropy
error function:

define δk(τ) =
∂E(τ)
∂xk

δk(τ) = yk(τ)− tk(τ) k ∈ output units

• For each LSTM block the δ’s are calculated as follows:

Cell Outputs:

∀c ∈ C, define εc =
∑

j∈N

wjcδj(τ + 1)

Output Gates:

δω = f ′(xω)
∑

c∈C

εch(sc)

States:
∂E

∂sc
(τ) = εcyωh′(sc) +

∂E

∂sc
(τ + 1)yφ(τ + 1)

+δι(τ + 1)wιc + δφ(τ + 1)wφc + δωwωc

Cells:

∀c ∈ C, δc = yιg
′(xc)

∂E

∂sc

Forget Gates:

δφ = f ′(xφ)
∑

c∈C

∂E

∂sc
sc(τ − 1)

Input Gates:

δι = f ′(xι)
∑

c∈C

∂E

∂sc
g(xc)

• Using the standard BPTT equation, accumulate the δ’s
to get the partial derivatives of the cumulative sequence
error:

define Etotal(S) =
τ1∑

τ=τ0

E(τ)

define 5ij (S) =
∂Etotal(S)

∂wij

=⇒ 5ij(S) =
τ1∑

τ=τ0+1

δi(τ)yj(τ − 1)

Update Weights
• After the presentation of sequence S, with learning rate α

and momentum m, update all weights with the standard
equation for gradient descent with momentum:

∆wij(S) = −α5ij (S) + m∆wij(S − 1)

APPENDIX B: ALGORITHM OUTLINE FOR BIDIRECTIONAL
RECURRENT NEURAL NETWORKS

We quote the following method for training bidirectional
recurrent nets with BPTT (Schuster, 1999). As above, training
takes place over an input sequence running from time τ0 to
τ1. All network activations and errors are reset to 0 at τ0 and
τ1.

Forward Pass Feed all input data for the sequence into the
BRNN and determine all predicted outputs.
• Do forward pass just for forward states (from time τ0 to

τ1) and backward states (from time τ1 to τ0).
• Do forward pass for output layer.

Backward Pass Calculate the error function derivative for
the sequence used in the forward pass.
• Do backward pass for output neurons.
• Do backward pass just for forward states (from time τ1

to τ0) and backward states (from time τ0 to τ1).
Update Weights

ACKNOWLEDGMENTS

The authors would like to thank Nicole Beringer for her
expert advice on linguistics and speech recognition. This
work was supported by the SNF under grant number 200020-
100249.

REFERENCES

Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., and Soda,
G. (2001). Bidirectional dynamics for protein secondary
structure prediction. Lecture Notes in Computer Science,
1828:80–104.

Baldi, P., Brunak, S., Frasconi, P., Soda, G., and Pollastri,
G. (1999). Exploiting the past and the future in protein
secondary structure prediction. BIOINF: Bioinformatics,
15.

Beringer, N. (2004a). Human language acquisition in a
machine learning task. Proc. ICSLP.

Beringer, N. (2004b). Human language acquisition methods
in a machine learning task. In Proceedings of the 8th In-
ternational Conference on Spoken Language Processing,
pages 2233–2236.

Bishop, C. (1995). Neural Networks for Pattern Recognition.
Oxford University Press, Inc.

Bourlard, H. and Morgan, N. (1994). Connnectionist Speech
Recognition: A Hybrid Approach. Kluwer Academic
Publishers.

Chen, J. and Chaudhari, N. S. (2004). Capturing long-
term dependencies for protein secondary structure pre-
diction. In Yin, F., Wang, J., and Guo, C., editors,
Advances in Neural Networks - ISNN 2004, International
Symposiumon Neural Networks, Part II, volume 3174
of Lecture Notes in Computer Science, pages 494–500,
Dalian, China. Springer.

Chen, R. and Jamieson, L. (1996). Experiments on the
implementation of recurrent neural networks for speech
phone recognition. In Proceedings of the Thirtieth Annual
Asilomar Conference on Signals, Systems and Computers,
pages 779–782.

Eck, D., Graves, A., and Schmidhuber, J. (2003). A new
approach to continuous speech recognition using LSTM
recurrent neural networks. Technical Report IDSIA-14-
03, IDSIA, www.idsia.ch/techrep.html.

Fukada, T., Schuster, M., and Sagisaka, Y. (1999). Phoneme
boundary estimation using bidirectional recurrent neural
networks and its applications. Systems and Computers in
Japan, 30(4):20–30.

Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G.,
Pallett, D. S., , and Dahlgren, N. L. (1993). Darpa timit
acoustic phonetic continuous speech corpus cdrom.

Gers, F., Schraudolph, N., and Schmidhuber, J. (2002). Learn-
ing precise timing with LSTM recurrent networks. Jour-
nal of Machine Learning Research, 3:115–143.

Graves, A., Beringer, N., and Schmidhuber, J. (2004a). A
comparison between spiking and differentiable recurrent
neural networks on spoken digit recognition. In The
23rd IASTED International Conference on modelling,
identification, and control, Grindelwald.

Graves, A., Beringer, N., and Schmidhuber, J. (2005). Rapid
retraining on speech data with lstm recurrent networks.
Technical Report IDSIA-09-05, IDSIA, www.idsia.ch/-
techrep.html.

Graves, A., Eck, D., Beringer, N., and Schmidhuber, J.
(2004b). Biologically plausible speech recognition with
lstm neural nets. In First International Workshop on Bi-
ologically Inspired Approaches to Advanced Information
Technology, Lausanne.

Graves, A. and Schmidhuber, J. (2005). Framewise phoneme
classification with bidirectional lstm networks. In Pro-
ceedings of the 2005 International Joint Conference on
Neural Networks, Montreal, Canada.

Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J.
(2001). Gradient flow in recurrent nets: the difficulty
of learning long-term dependencies. In Kremer, S. C.
and Kolen, J. F., editors, A Field Guide to Dynamical
Recurrent Neural Networks. IEEE Press.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term
Memory. Neural Computation, 9(8):1735–1780.

Robinson, A. J. (1991). Several improvements to a recurrent
error propagation network phone recognition system.
Technical Report CUED/F-INFENG/TR82, University of
Cambridge.

Robinson, A. J. (1994). An application of recurrent nets
to phone probability estimation. IEEE Transactions on
Neural Networks, 5(2):298–305.

Robinson, A. J. and Fallside, F. (1987). The utility driven
dynamic error propagation network. Technical Re-
port CUED/F-INFENG/TR.1, Cambridge University En-
gineering Department.

Schuster, M. (1999). On supervised learning from sequential
data with applications for speech recognition. PhD thesis,
Nara Institute of Science and Technolog, Kyoto, Japan.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent
neural networks. IEEE Transactions on Signal Process-
ing, 45:2673–2681.

Williams, R. J. and Zipser, D. (1995). Gradient-based learning
algorithms for recurrent networks and their computational
complexity. In Chauvin, Y. and Rumelhart, D. E.,
editors, Back-propagation: Theory, Architectures and Ap-
plications, pages 433–486. Lawrence Erlbaum Publishers,
Hillsdale, N.J.

	Introduction
	Bidirectional Recurrent Neural Nets
	Bidirectional Networks and Online Causal Tasks

	LSTM
	LSTM Gradient Calculation

	Experimental Data
	Training and Testing Sets

	Network Architectures
	Computational Complexity
	Range of Context
	Output Layers

	Network Training
	Retraining

	Results
	Comparison Between LSTM and Other Architectures
	Comparison with Previous Work
	Effect of Increased Context
	Weighted Error

	Conclusion and Future Work
	Appendix A: Pseudocode for Full Gradient LSTM
	Appendix B: Algorithm Outline for Bidirectional Recurrent Neural Networks

