
Chapter 1

Bounded and Ordered Satisfiability: Connecting Recognition
with Lambek-style Calculi to Classical Satisfiability Testing

MICHAIL FLOURIS, LAP CHI LAU, TSUYOSHI MORIOKA, PERIKLIS A. PAPAKONSTANTINOU,
GERALD PENN

1.1 Introduction

It is well known that the Lambek Grammars are weakly equivalent to the Context-Free Grammars (CFGs,
Pentus 1993, 1997), and that testing string membership with a CFG is in

�
(Earley 1970). Nevertheless,

Pentus (2003) has recently proven that sequent derivability in the Lambek Calculus with product is NP-
complete. The complexity of the corresponding problem for the product-free fragment remains unknown.
This fragment is significant, given the at best limited apparent motivation for products in linguistic appli-
cations of the calculus. In this paper, when we mention the Lambek Calculus (LC) or Lambek Grammars
(LG), we are referring to the product-free fragment.

Pentus (1997) has presented an algorithm that transforms a product-free Lambek Grammar to a weakly
equivalent CFG, but the transformed grammar is exponentially larger in the worst case. Since the grammar
is considered a part of the instance for the decision problem of string membership, this does not resolve
the open complexity problem for the product-free calculus.

This paper studies the connection between the LG string membership problem and the SAT problem,
which was the first problem shown to be NP-complete (Cook 1971). Much of the previous work on pars-
ing with Lambek grammars has derived its inspiration from recognition algorithms for rewriting systems
(Hepple 1992), string algebras (Morrill 1996) or graph theory (Moot and Puite 1999; Penn 2002), but
fundamentally, LC is a logical framework, like the classical propositional logic upon which SAT is based.
The crucial difference is the sensitivity to resources and order that LC incorporates. What we argue here
is: (1) that a sense of order can be imposed on classical SAT using the polarity that propositional variables
already possess (unlike LC), (2) that the corresponding ordered SAT problem is still NP-complete, (3) that
this new version of SAT leads to a new and simpler proof of the NP-completeness of the product-free Lam-
bek Calculus with permutation (LP) by an implementation of “locks” and “keys” somewhat reminiscent of
the proposed modal extensions of categorial logics (Kurtonina and Moortgat 1996), (4) that the problem
can be further restricted bounded-distance SAT in order to fit into LC, but (5) that bounded-distance SAT

1

Proceedings of Mathematics of Language 8 2003
R. T. Oehrle & J. Rogers (editors).
Chapter 1, Copyright c

�
2003, Michail Flouris, Lap Chi Lau, Tsuyoshi Morioka, Periklis A. Papakonstantinou,

Gerald Penn.

Bounded and Ordered Satisfiability: Michail Flouris, Lap Chi Lau, Tsuyoshi Morioka, Periklis A. Papakonstantinou,GeraldPenn/2

can be solved in polynomial time. In addition, (6) we also prove the first non-trivial hardness result for
LC that we are aware of, namely that it is LOGCFL-hard. LOGCFL consists of all languages log-space
reducible to a context-free language. We shall use LC and LP to refer both to the respective calculi and to
the respective decision problems that determine membership in the set of encodings of pairs ��������� , where
� is a Lambek Grammar over an alphabet 	 , and ��
�	� is a string.

1.2 An NP-complete variation of SAT

Our ordered variation of 3-SAT can be stated as follows:

NFPO-SAT

INSTANCE: Let � be a set of variables and ����������������������� ��!#" a sequence of clauses, where $%�'&($*),+ ,
such that (1) each variable �-
.� occurs at most once as a negative literal, (2) if /0�-
-��& there exist no13254

where �6
7�98 , and (3) every clause which contains a negative literal cannot contain any positive
literal. Let a formula :;�=< &?>@��A%A%A ! ��& .
QUESTION: Is : satisfiable ?

NFPO stands for “Negative First Positive the Others”, that is: (a) the clauses are ordered such that the
first occurrence of a variable is either negative or positive and all the subsequent occurrences are positive,
and (b) every clause contains either all positive or all negative variables. Hence, in this variation we can
refer to positive and negative clauses, with the obvious meaning.

Theorem 1.2.1. NFPO-SAT is NP-complete.

Proof. The problem is in B �
for the same reason that SAT is in NP. We reduce 3-SAT to NFPO-SAT:

Let :C�D��&E�F�����G��! be a 3-SAT instance. For each variable � :

1. Let � occur negatively in one or more clauses.

2. Introduce H such that:

:'I#�D:-JK�LHNMO/0����� i.e.,

: I �D:PJP��/0H�QR/0���SJK�LHTQU�S�

3. Rename the negative occurrences of � by H .

4. Iteratively change each variable, using : I instead of : , apart from the newly introduced variable.

Finally, order the clauses of : I by placing all clauses with negative literals before all clauses with only
positive literals.

Given a fixed truth assignment, V , for which VW��:X���DY , let V I be an extended truth assignment for : I
such that V I �LHZ�'�[/9VW�L��� . Then V I ��: I �'�\Y . Hence, : I is satisfiable iff : is satisfiable. It is also obvious
that the reduction works in quadratic time w.r.t. the input length. Note that the reduction works also in
logarithmic space.

3 � Mathematics of Language 8, 2003

It will also be useful for us to consider a version of NFPO-SAT with an additional condition:

BD-NFPO-SAT (Bounded-Distance NFPO-SAT)
INSTANCE: Let � be a set of � variables and �P�5����������� � ��������� " a sequence of clauses where $%�'&($);+
such that (1) each variable �
[� occurs at most once as a negative literal, (2) if /0�
 ��& there exist
no

1C2 4
where �D
 �98 , (3) every clause which contains a negative literal cannot contain any positive

literal, and (4) there exists �������
	����� such that, for each variable ��
�� , if
4

is minimum with respect
to the occurrence of � in �'& , and

1
is the maximum

1
such that �7
;� 8 , then

1�� 4)�� . Let a formula
:�� < &?>@��A%A%A ! � & .
QUESTION: Is : satisfiable ?

This version is not NP-complete. In fact, we can prove that the BD-SAT
RB���� �
, where NL stands

for the class of languages decided by nondeterministic log-space Turing Machines.

Non-deterministic log space algorithm for BD-NFPO-SAT

(i) Guess values for the variables of the � clauses.
(ii) If the subformula is not satisfied reject
(iii) Keep the � last assignments and make a guess for the next clause
(iv) If the clause cannot be satisfied, or if consistency is lost with the previous assignment reject, otherwise
add the new guessed values and repeat (iii) (intuitively: slide the � window by one clause to the right).

Bounded distance satisfiability problems are also of independent interest. We state the following the-
orem without any proof. In Section 1.6, we prove a stronger result for the hardness of LC.

Theorem 1.2.2. BD-NFPO-SAT is complete for NL.

The reduction of BD-NFPO-SAT to LC trivially implies:

Corollary 1.2.3. BD-NFPO-SAT is hard for NL.

1.3 Reducing SAT to LP

We will follow the Natural Deduction presentation of the Lambek Calculus. We will use the following
deduction quite often, which is valid with or without the rule of permutation:

Lemma 1.3.1. Let � ��� and � categories of the Lambek Calculus. The following deductions can be
derived using only elimination and introduction rules:

����� ��� �
��� � � ����� �����

����� � ����� �����-� � �������
����� (1.3.1)

That LP is NP-complete is already known, both as a corollary of a more general result for multiplicative
Linear Logic (Kanovitch 1991, 1992; Lincoln et al. 1990), or directly (Doerre 1996; Florencio 2002). In
addition, not all � �

grammars are weakly equivalent to CFGs. We sketch two different proofs for the
NP-completeness of LP, both by reducing NFPO-SAT to LP. The order of presentation of the proofs is such
that we successively make more use of the ordering constraints imposed by NFPO-SAT.

Bounded and Ordered Satisfiability: Michail Flouris, Lap Chi Lau, Tsuyoshi Morioka, Periklis A. Papakonstantinou,GeraldPenn/4

Proof 1. It is well known (Lincoln et al. 1990) that � �
,B �
. Assume that we have a formula : in

(NFPO-)CNF form. For each variable �S& occurring positively in : we introduce a basic category � & , and
for each variable occurring negatively, we introduce a new category ��N& . We also have a special basic
category � . Assume that we have � clauses � &E� 4 ��� � � � � ��� and � variables � &E� 4 ��� � � � � � � . We
construct the following string �D�	� � � � � � �
� � � � � I � � � � I � � � �(� ! � I! , where � & ��� & and � I& are distinct symbols
of an alphabet 	 . We construct the mapping � (Lexicon) for each symbol of the alphabet as follows: for
each variable � & occurring positively in the clause � 8 we add to the set �9���(8�� the elements ��� ������� �� &E� ��N&
and �N& ��N& , and for each � & occurring negatively in � 8 we add the elements ��� ����� � ����N&E� ����N& and ��N& ����N& .
Also, for all �T) 4) � , �9�L� &��F���9�L� I& �F�����N&E����N&�� . This algorithm is trivially polynomial time.

The substring �T� �����W� � ����� of � , corresponds to the selection of a single literal from each clause
that witnesses that clause’s truth. In the first clause � 8 for which a variable � & is selected, this corresponds
to choosing for � 8 the category ��� ������� �� & � �� & , and every other selection for the same variable in a later
clause corresponds to choosing � & ��N& . For any � , if a variable is selected in � clauses then, by lemma
1.3.1, we can still derive two categories for this substring: ��� ����� � �� &E� ��N& and (after some deductions)
�N& ��N& which altogether result in ��� ������� �� & � ��N& .

The substring � � � �W� � I � � � �(�*! � I! enforces the consistency of the selected variables. If a variable
� & has been selected together with its negation /0�W& then after doing several deductions we have both
��� ������� �� & � �� & and ��� ������� ���� & � ���� & , but the � & � I& component of the substring � � can only deduce either
��� ������� �� & � �� & or (exclusively) ��� ������� ���� & � ���� & to ����� . So to derive ����� , we can select either � & or
its negation but not both. Thus, the LP grammar constructed has ����� as its distinguished category. Hence,
if there is a deduction to ����� the formula is satisfiable.

It is easy to see that if the formula is satisfied, then we can select the categories to derive ����� in a
fairly simple way: choose the ��� ������� �� & � ��N& or � & ��N& if � & is true and ��� ������� ����N&E� ����N& or ��N& ����N& if
/ �*& is true from the corresponding clauses.

Remark 1.3.1. In this reduction, we did not take into account the constraints imposed by the NFPO-SAT

and hence the same reduction holds for the unconstrained version of SAT.

Remark 1.3.2. Notice that we could have also ordered the literals in each clause, and replace each � &
by a substring � &��%� � &�� � � � ��� &�� � where k is the number of variables in � & . Then we need extra basic
categories � &�� because now each � &�� corresponds to a literal in clause � & . If � is the first literal,
we would have: �9��� &��%��� �!� � &��%� ��� �� ��� &�� � ��� &�� �"S� ��� � � ��� &�� �G� �������� �� ��� &�� � ��� &�� �"S� ��� � � ��� &�� �#� , and
�9��� &�� �����$� � &�� � ��� &��%�&%� �� ��� &�� � ��� &�� �"S� ��� � � ��� &�� ' � � &��%�&%��������� �� ��� &�� � ��� &�� �("S� ��� � � ��� &�� '#� , and so on.
From among the variables of each clause, one emerges as functor in this part of any successful derivation.
This variable is the witness selected to attest to the clause’s truth. The same procedure takes place to select
one literal from every clause, and the rest of the proof can proceed as previously described.

In the next section, we present a proof that takes into account the sense of ordering inherent to NFPO-
SAT. Note that there is no need to do this when reducing to LP, since LP does not have any ordering
constraints. It will be useful, however, when it comes to considering LC.

5 � Mathematics of Language 8, 2003

1.4 Enforcing restrictions with locks

We now employ the familiar notion of locks and keys. The notion of locks will be especially useful in LC
deductions, where permutation is missing. We introduce the idea only by an example here: ��/0��� Q � ��Q
� '��SJK�L�W�0QU� � Q � ' � .

The notion of a lock prevents us from selecting both a variable and its negation. Thus, if /0� � is selected
from the first clause then it imposes a lock, � � , which is a special basic category. In the next clause, the
only literals that can unlock this lock should be every other variable apart from ��� . For this example and
the corresponding string � ��� ��� ����� ��� ����� ��� � �&� � ��� � �&� ��� � �&� ��� we have that �9���G��� ��� �F� � � ��� � ������� ��� � ����� ��� '#� ,
�9������� ��� � � � � � ��� � % � ����� � ��� ' � , �9������� ��� � ��� � ' �����(%��T�&% � ��������� , �9��� �&� � ��� � ��� � ��� � ������� ��� ����� '� ,
�9��� �&� � � �9� � � � ��� �&%�� ����� ' ��� ��% � ������� ��� ' � , and �9��� '&� � � �F� � � 'G��� �(%�� �&%�� ����� �(%�� ��% � ��������� . Notice,
that if we had another negative variable in the first clause then we could have easily added keys to the other
two variables in the second clause. This task is performed by just adding new elements to the corresponding
sets and thus it does not change the time needed to compute these sets to something more than polynomial.
Furthermore, in NFPO-SAT, all negative literals occur first, so a ��& with locks comes before any ��8 with
matching keys. The difficult part is to see what happens if the two above clauses are far enough apart. This
means that we have to propagate the locks correspondingly. Notice that we could have only one symbol in
the string corresponding to each clause (instead of one symbol for each variable), as in our earlier proof.
But now, we will combine the idea of locks and keys with our observation in Remark 1.3.2.

Proof 2. Assume that we have an instance of NFPO-SAT with � variables and � clauses. Construct
� � � ��� � � � � � '&� I ��� � I � � � I � ' �X� � �X��� �X��' � I� � � I��� � I��' � � � � � � � ��� � � ' � I�X� � I��� � I� ' . Intuitively, � & � and
� I& � correspond to the � -th literal of the

4
-th clause. We know that in NFPO-SAT every clause contains

either only negative or only positive literals. In addition, we know that all the negative clauses precede
the positive clauses in the sequence. Assume that � is a negative clause. Then each literal /0��
 � sets
a lock ��������� � ��� � ��� � ����� � ��� � (� � appears as many times as the positive occurrences of �). The keys
for this variable occur in categories assigned to the other variables in the (positive) clauses where � occurs
positively. For some positive � ���L� Q H Q
	 � , then �9��� � �'� � � � ����� ��� � ��� ' ����������� � ��� '#� ���9��� I� �'�
� � I� ���� ��� I� ��� I' ����������� I� ��� I' � , where � & ��� I& are used as described in Remark 1.3.2. That is, literal
� holds the keys for the other two literals H and 	 . �9�����G�����9����� � I ���9���� � and �9������ I are constructed
analogously.

1.5 Restricting to LC

This second proof is conceptually less dependent on permutation in the sense that it is only used to com-
bine locks and keys. Also, observe that our constructions involve only first-order categories, where the
recognition problem is known to be in

�
. The main task of adapting the previous reductions to LC (with

no permutation) is that we need a way of propagating the locks with no permutation at all. If we have a
tuple of clauses we can easily compute the sequence in which the literals appear. The problem is that when
we put a lock in some clause we may need to change the order of the previously placed locks. So, we need
a sufficient number of rewritings. But we do not know the exact number of locks previously placed, which

Bounded and Ordered Satisfiability: Michail Flouris, Lap Chi Lau, Tsuyoshi Morioka, Periklis A. Papakonstantinou,GeraldPenn/6

in the worst case could be
� !&

�
� 4�� ��� ! � � , where � is the number of variables with locks placed in

a negative clause to the left.

BD-NFPO-SAT places exactly the bound we need to avoid an exponential explosion in this case. The
resulting reduction, of course, says nothing about whether recognition in LC is NP-hard. Intuitively,
NP-complete problems involve a significant amount of communication among their parts. For example,
if we flip the value of a variable � then this has an effect to the whole formula. When we bound this
communication in this way, then we fall in the complexity hierarchy from B �

-complete to membership
in B�� . What is needed is a reduction that uses higher-order categories in order to avoid this.

1.5.1 Example of the LC-embedding of BD-NFPO-SAT

For simplicity, assume that the distance bound suffices to cover all of the following portion of a formula:

��/ �W�@Q /0� �9QR/0� '��WJK�L��� Q �W�0QU� ���WJK��/0���9QR/0��	9Q /0��
��SJK�L��� QU� �0Q � ' �SJK�L� �0QU��	FQ ��
 �SJ�� � �

In the clause �L�NQUHTQ 	 � the literals H and 	 are called neighbours of � . Only variables in the first and the
third clause can place locks. If some / � has placed a lock, then with respect to every other occurrence of
� except the last one, the neighbours of � should propagate the lock placed by � . In the clause with the last
occurrence of � , the neighbours of � unlock the lock previously imposed by /0� . Below, by “propagate”
we refer to the fact that if a positive literal is selected to be true then it should rewrite all locks concerning
all variables occurring negatively before itself with the following two constraints: (a) it does not propagate
locks placed by its own negation, and (b) it does not propagate locks from variables with instances only
before, i.e., to the left of, its clause.

A simple form of this reduction follows: recall from Remark 1.3.2 that we can have a single
symbol corresponding to a clause. For the above formula we have the string �N���X� ��'&�� ��� , where
� � ���X� ����' ���� ����� are all different symbols of an alphabet. The target category we want to de-
duce is ����� . We construct the lexicon as follows: �9��� � �K� � ��������� � ����������� � ����������� ' � , where
��������� � ����������� � ����������� ' correspond to the locks placed by /0� � ��/0� � ��/0� ' respectively. �9��� � � �
� �X� ��� ����� � ��� ' ��� '#� , because ��� and � � can unlock ��� (���) which occurs for the last time in the second
clause, ��� and � � can propagate the lock for �0� (� � ��� �), and ��� can propagate the lock for � ' (� ' ��� ').
In the same fashion, we construct the rest of the lexicon, where �X& � & � A%A%A &�� denotes a composite lock, corre-
sponding to the � locks placed by �S& � � � � ����� &�� :
�9����'��9� � �X����� ��� ����� ��� ��� ��� ' ��� '�� ������������� �
� � ��� ��	 ��� � ��� ��	 ��� ' ��� '�	 ����������� 	 ��� � ��� ��
 ��� � ��� ��
 �
� ' ��� '�
 ������������
 � , �9���� �9� � � ' ��� '�� ����� ��� '�	 ����	G��� '�
 ����
G����� ��� ��� ���X���
����� ��� � ��� '�� ��� ' ��� 'G��� '�� ����� ��� '�	 ����	G��� '�
 ����
#� , �9����� �9��� ��	G����
#� .
Notice that the above formula is satisfiable, e.g., by �F�'� � ����� � � ����� ��� ��� ' � � ����	 � � , correspond-
ing to ���������X� � � ���X� �X� ���X�����X��� ��� � � � , from which ����� can be derived.

7 � Mathematics of Language 8, 2003

1.6 LOGCFL-Hardness of LC

In the previous sections we developed some machinery, based on ordered satisfiability, in order to show
hardness results for LC and LP. A restriction of this machinery, in which the parameter of the longest
distance between two appearances of a variable is bounded, exhausts its limits for a logarithm in the
number of variables. The reason is that if the distance is more than a logarithm then the reduction is no
longer polytime (or log-space). We also saw in Section 1.2 that LC is NL-hard.

In this section we use another approach, which proves a stronger hardness result for LC, namely that it
is LOGCFL-hard. All of our reductions belong to � , which is the class of languages characterized by their
decidability with deterministic logarithmic space Turing Machines. One characterization of LOGCFL
is as the class of all languages log-space reducible to a Context-Free Language (CFL). It contains NL
(Sudborough 1978) and is contained in P. Cook (1985) contains more information on LOGCFL. All told,
we have the following containments relative to our problem of interest:

���CB � � ��� � ��� � � � �CB �

None of these containments is known to be proper, although it is widely conjectured that every one of these
containments is proper.

Theorem 1.6.1. LC is hard for LOGCFL.

Note that this is not a proof of LOGCFL-completeness. If we knew that LC belonged to LOGCFL, we
would know that LC is in polytime.

Proof. Fix an arbitrary language �
 ��� � ��� � . By the definition of LOGCFL, there exists a context-
free language � and a log-space computable function � such that, for all � , ��
 � iff �9�L�S��
 � . We prove
that there exists a log-space computable function � �L��� such that �D
�� if and only if � �L�S�
 ��� . We
require the following well-known lemma:

Lemma 1.6.2. If � is a CFL then � % ��� � is also context-free, where � is the empty string.

Since � %�� is context-free, there exists a CFG � in Greibach normal form such that � %��N� �����T� . Two
cases arise:

1. If �
 � , then � �L�S� is computed as follows. If �9�L�S� ��� then let ���L��� be some fixed accepting in-
stance for LC. Otherwise, from � and �9�L�S� , we construct as � �L��� an instance of LC with string �9�L���
and a Lambek Grammar defined as follows: for every Greibach-normal rule, B
	 ��� B � � � �0B ! ,
where

is terminal and the B & are non-terminals, add to the categories assigned to

in the Lambek

Grammar the category B 	 � B ! ��� � � � B � .
2. ���
 � . This case is handled similarly to the above except that, if �9�L��� ��� , then let � �L��� be some

fixed non-accepting instance of ��� .

Bounded and Ordered Satisfiability: Michail Flouris, Lap Chi Lau, Tsuyoshi Morioka, Periklis A. Papakonstantinou,GeraldPenn/8

Bibliography

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of 3rd Annual IEEE
Symposium on the Foundations of Computer Science, pp. 151–158.

Cook, S. A. (1985). A taxonomy of problems with fast parallel algorithms. Information and Control,
64(1-3):2–22.

Doerre, J. (1996). Parsing for semidirectional lambek grammar is NP-complete. In Proceedings of the
34th Annual Meeting of the Association for Computational Linguistics.

Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the ACM, 13(2):90–102.

Florencio, C. C. (2002). A note on the complexity of the associative-commutative lambek calculus. In
Proceedings of the 6th Int’l Workshop on Tree Adjoining Grammar and Related Framework, pp. 101–
106.

Hepple, M. (1992). Chart parsing lambek grammars: Model extensions and incrementatlity. In Proceed-
ings of the 14th Int’l Conference on Computational Linguistics.

Kanovitch, M. (1991). The multiplicative fragment of linear logic is NP-complete. Technical Report
X-91-13, University of Amsterdam, 1TL1 Prepublication Series.

Kanovitch, M. (1992). Horn-programming in linear logic is NP-complete. In Proceedings of the 7th
Annual IEEE Symposium on Logic in Computer Science, pp. 200–210.

Kurtonina, N. and M. Moortgat (1996). Structural control. In P. Blackburn and M. de Rijke, eds., Specify-
ing Syntactic Structures. CSLI Publications.

Lincoln, P., J. Mitchell, A. Scedrov, and N. Shankar (1990). Decision problems on propositional linear
logic. In Proceedings of 31st Annual IEEE Symposium on the Foundations of Computer Science.

Moot, R. and Q. Puite (1999). Proof nets for multimodal categorial grammars. In G.-J. M. Kruijff and
R. T. Oehrle, eds., Proceedings of the Conference on Formal Grammar.

Morrill, G. (1996). Memoisation of categorial proof nets: parallelism in categorial processing. Technical
Report LSI-96-24-R, Dept. de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya.

Penn, G. (2002). A graph-theoretic approach to sequent derivability in the lambek calculus. In Electronic
Notes in Theoretical Computer Science: Proceedings of the Conference on Formal Grammar / 7th
Meeting on Mathematics of Language, volume 53.

Pentus, M. (1993). Lambek grammars are context free. In Proceedings of the 8th Annual IEEE Symposium
on Logic in Computer Science, pp. 429–433.

Pentus, M. (1997). Product-free lambek calculus and context-free grammars. Journal of Symbolic Logic,
62(2):648–660.

9 � Mathematics of Language 8, 2003

Pentus, M. (2003). Lambek calculus is np-complete. Technical Report TR-2003005, CUNY Graduate
Centre Ph.D. Program in Computer Science.

Sudborough, I. H. (1978). On the tape complexity of deterministic context-free languages. Journal of the
ACM, 25(3):405–414.

