
University of Toronto, Department of Computer Science

CSC 2501F—Computational Linguistics, Fall 2023

Reading assignment 4

Due date: Electronically by 12:10, Monday 30th October, 2023.

Late write-ups will not be accepted without documentation of a medical or other emergency.

This assignment is worth 5% of your final grade.

What to read

1. Z. Chen and Q. Gao, Monotonicity Marking from Universal Dependency Trees. Proc.

IWCS 2021, pp. 121–131.

2. Z. Chen, Q. Gao and L.S. Moss, NeuralLog: Natural Language Inference with Joint Neu-

ral and Logical Reasoning. Proc. *SEM 2021, pp. 78–88.

What to write

Write a brief summary of the papers’ argumentation, with a critical assessment of their mer-

its.

Some points to consider:

• Neither of these papers manages to define monotonicity. What is it?

• How is the choice of NeuralLog’s architecture justified? Do you find the justification

convincing?

General requirements: Your write-up should be typed, using 12-point font and 1.5-line

spacing; it should fit on one to two sides of a sheet of paper. Submit using the teach.cs

submit command:

$ submit -c csc2501h -a Essay4 essay4.pdf

Proceedings of the 14th International Conference on Computational Semantics, pages 121–131
June 17–18, 2021. ©2021 Association for Computational Linguistics

121

Monotonicity Marking from Universal Dependency Trees

Zeming Chen Qiyue Gao
Department of Computer Science and Software Engineering,

Rose-Hulman Institute of Technology
{chenz16, gaoq}@rose-hulman.edu

Abstract

Dependency parsing is a tool widely used in
the field of Natural Language Processing and
computational linguistics. However, there is
hardly any work that connects dependency
parsing to monotonicity, which is an essential
part of logic and linguistic semantics. In this
paper, we present a system that automatically
annotates monotonicity information based on
Universal Dependency parse trees. Our system
utilizes surface-level monotonicity facts about
quantifiers, lexical items, and token-level po-
larity information. We compared our system’s
performance with existing systems in the liter-
ature, including NatLog and ccg2mono, on a
small evaluation dataset. Results show that our
system outperforms NatLog and ccg2mono.

1 Introduction

The number of computational approaches for Natu-
ral Language Inference (NLI) has rapidly grown in
recent years. Most of the approaches can be cate-
gorized as (1) Systems that translate sentences into
first-order logic expressions and then apply theo-
rem proving (Blackburn and Bos, 2005). (2) Sys-
tems that use blackbox neural network approaches
to learn the inference (Devlin et al., 2019; Liu et al.,
2019). (3) Systems that apply natural logic as a
tool to make inferences (MacCartney and Man-
ning, 2009; Hu et al., 2020; Angeli et al., 2016;
Abzianidze, 2017). Compared to neural network
approaches, systems that apply natural logic are
more robust, formally more precise, and more ex-
plainable. Several systems contributed to the third
category (MacCartney and Manning, 2009; Hu
et al., 2020; Angeli et al., 2016) to solve the NLI
task using monotonicity reasoning, a type of log-
ical inference that is based on word replacement.
Below is an example of monotonicity reasoning:

1. (a) All students↓ carry a MacBook↑.

(b) All students carry a laptop.

(c) All new students carry a MacBook.

2. (a) Not all new students↑ carry a laptop.

(b) Not all students carry a laptop.

As the example shows, the word replacement is
based on the polarity mark (arrow) on each word.
A monotone polarity (↑) allows an inference from
(1a) to (1b), where a more general concept laptop
replaces the more specific concept MacBook. An
antitone polarity (↓) allows an inference from (1a)
to (1c), where a more specific concept new stu-
dents replaces the more general concept students.
The direction of the polarity marks can be reversed
by adding a downward entailment operator like
Not which allows an inference from (2a) to (2b).
Thus, successful word placement relies on accurate
polarity marks. To obtain the polarity mark for
each word, an automatic polarity marking system
is required to annotate a sentence by placing po-
larity mark on each word. This is formally called
the polarization process. Polarity markings sup-
port monotonicity reasoning, and thus are used by
systems for Natural Language Inference and data
augmentations for language models. (MacCartney
and Manning, 2009; Hu et al., 2020; Angeli et al.,
2016).

In this paper, we introduce a novel automatic po-
larity marking system that annotates monotonicity
information by applying a polarity algorithm on
a universal dependency parse tree. Our system is
inspired by ccg2mono, an automatic polarity mark-
ing system (Hu and Moss, 2018) used by Hu et al.
(2020). In contrast to ccg2mono, which derives
monotonicity information from CCG (Lewis and
Steedman, 2014) parse trees, our system’s polariza-
tion algorithm derives monotonicity information
using Universal Dependency (Nivre et al., 2016)
parse trees. There are several advantages of us-
ing UD parsing for polarity marking rather than

122

CCG parsing. First, UD parsing is more accurate
since the amount of training data for UD parsing
is larger than those of CCG parsing. The high
accuracy of UD parsing should lead to more ac-
curate polarity annotation. Second, UD parsing
works for more types of text. Overall, our system
opens up a new framework for performing infer-
ence, semantics, and automated reasoning over UD
representations. We will introduce the polariza-
tion algorithm’s general steps, a set of rules we
used to mark polarity on dependency parse trees,
and comparisons between our system and some
existing polarity marking tools, including NatLog
(MacCartney and Manning, 2009; Angeli et al.,
2016) and ccg2mono. Our evaluation focuses on a
small dataset used to evaluate ccg2mono (Hu and
Moss, 2020). Our system outperforms NatLog and
ccg2mono. In particular, our system achieves the
highest annotation accuracy on both the token level
and the sentence level.

2 Related Work

Universal Dependencies (UD) (Nivre et al., 2016)
was first designed to handle language tasks for
many different languages. The syntactic annota-
tion in UD mostly relies on dependency relations.
Words enter into dependency relations, and that is
what UD tries to capture. There are 40 grammati-
cal dependency relations between words, such as
nominal subject (nsubj), relative clause modifier
(acl:relcl), and determiner (det). A dependency
relation connects a headword to a modifier. For
example, in the dependency parse tree for All dogs
eat food (figure 1), the dependency relation nsubj
connects the modifier dogs and the headword eat.
The system presented in this paper utilizes Univer-
sal Dependencies to obtain a dependency parse tree
from a sentence. We will explain the details of the
parsing process in the implementation section.

There are two relevant systems of prior work:
(1) The NatLog (MacCartney and Manning, 2009;
Angeli et al., 2016) system included in the Stan-
ford CoreNLP library (Manning et al., 2014); (2)
The ccg2mono system (Hu and Moss, 2018). The
NatLog system is a natural language inference sys-
tem, a part of the Stanford CoreNLP Library. Nat-
Log marks polarity to each sentence by applying
a pattern-based polarization algorithm to the de-
pendency parse tree generated by the Stanford de-
pendency parser. A list of downward-monotone
and non-monotone expressions are defined along

Figure 1: A dependency parse tree for "All dogs eat
food."

with an arity and a Tregex pattern for the system to
identify if an expression occurred.

The ccg2mono system is a polarity marking
tool that annotates a sentence by polarizing a
CCG parse tree. The polarization algorithm of
ccg2mono is based on van Benthem (1986)’s work
and Moss (2012)’s continuation on the soundness
of internalized polarity marking. The system uses
a marked/order-enriched lexicon and can handle
application rules, type-raising, and composition in
CCG. The main polarization contains two steps:
mark and polarize. For the mark step, the sys-
tem puts markings on each node in the parse tree
from leaf to root. For the polarize step, the system
generates polarities to each node from root to leaf.
Compared to NatLog, an advantage of ccg2mono
is that it polarizes on both the word-level and the
constituent level.

3 Universal Dependency to Polarity

3.1 Overview
Our system’s polarization algorithm contains three
steps: (1) Universal Dependency Parsing, which
transforms a sentence to a UD parse tree, (2) Bina-
rization, which converts a UD parse tree to a binary
UD parse tree, and (3) Polarization, which places
polarity marks on each node in a binary UD parse
tree.

3.2 Binarization
To preprocess the dependency parse graph, we de-
signed a binarization algorithm that can map each
dependency tree to an s-expression (Reddy et al.,
2016). Formally, an s-expression has the form
(exp1 exp2 exp3), where exp1 is a dependency
label, and both exp2 and exp3 are either (1) a word
such as eat; or (2) an s-expression such as (det
all dogs). The process of mapping a dependency
tree to an s-expression is called binarization. Our
system represents an s-expression as a binary tree.
A binary tree has a root node, a left child node, and
a right child node. In representing an s-expression,
the root node can either be a single word or a de-
pendency label. Both the left and the right child
nodes can either be a sub-binary-tree, or null. The

123

Figure 2: A binarized dependency parse tree for "All
dogs eat apples."

system always puts the modifiers on the left and the
headwords on the right. For example, the sentence
All dogs eat apples has an s-expression

(nsubj (det All dogs) (obj eat apples))

and can be shown as a binary tree in figure 2. In
the left sub-tree (All dogs), the dependency label
det will be the root node, the modifier all will be
the left child, and the headword dogs will be the
right child.

Our binarization algorithm employs a depen-
dency relation hierarchy to impose a strict traversal
order from the root relation to each leaf word. The
hierarchy allows for an ordering on the different
modifier words. For example, in the binary depen-
dency parse tree (nsubj (det All dogs) (obj eat

relation level-id relation level-id
conj-sent 0 obl:tmod 50
advcl-sent 1 obl:npmod 50

advmod-sent 2 cop 50
case 10 det 55
mark 10 det:predet 55
expl 10 acl 60

discourse 10 acl:relcl 60
nsubj 20 appos 60
csubj 20 conj 60

nsubj:pass 20 conj-np 60
conj-vp 25 conj-adj 60
ccomp 30 obj 60
advcl 30 iobj 60

advmod 30 cc 70
nmod 30 amod 75

nmod:tmod 30 nummod 75
nmod:npmod 30 compound 80

nmod:poss 30 compound:prt 80
xcomp 40 fixed 80

aux 40 conj-n 90
aux:pass 40 conj-vb 90

obl 50 flat 100

Table 1: Universal Dependency relation hierarchy. The
smaller a relation’s level-id is, the higher that relation
is in the hierarchy.

apples)), the nominal subject (nsubj) goes above
the determiner (det) in the tree because det is lower
than nsubj in the hierarchy. We originally used the
binarization hierarchy from Reddy et al. (2016)’s
work, and later extended it with additional depen-
dency relations such as oblique nominal (obl) and
expletive (expl). Table 1 shows the complete hier-
archy where the level-id indicates a relation’s level
in the hierarchy. The smaller a relation’s level-id
is, the higher that relation is in the hierarchy.

Algorithm 1 Binarization
1: root← GET_ROOT_NODE(G)
2: T ← COMPOSE(root)
3: return T
4:
5: function COMPOSE(node):
6: C ← GET_CHILDREN(node)
7: Cs ← SORT_BY_PRIORITY(C)
8: if | Cs | == 0 then
9: B ← BINARYDEPENDENCYTREE()

10: B.val = node
11: return B
12: else
13: top← C.pop()
14: B ← BINARYDEPENDENCYTREE()
15: B.val = RELATE(top, node)
16: B.left = COMPOSE(top)
17: B.right = COMPOSE(node)
18: return B
19: end if
20: end function

3.3 Polarization
The polarization algorithm places polarities on each
node of a UD parse tree based on a lexicon of polar-
ization rules for each dependency relation and some
special words. Our polarization algorithm is simi-
lar to the algorithms surveyed by Lavalle-Martínez
et al. (2018). Like the algorithm of Sanchez (1991),
our algorithm computes polarity from leaves to
root. One difference our algorithm has is that often,
the algorithm computes polarity following a left-to-
right inorder traversal (left−→root−→right) or a
right-to-left inorder traversal (right−→root−→left)
in additional to the top-down traversal. In our al-
gorithm, each node’s polarity depends both on its
parent node and its sibling node (left side or right
side), which is different from algorithms in Lavalle-
Martínez et al. (2018)’s paper. Our algorithm is
deterministic, and thus never fails.

The polarization algorithm takes in a binarized
UD parse tree T and a set of polarization rules,
both dependency-relation-level (L) and word-level
(W). The algorithm outputs a polarized UD parse
tree T ∗ such that (1) each node is marked with

124

Figure 3: Visualization of a polarized binary depen-
dency parse tree for a triple negation sentence No stu-
dent refused to dance without shoes.

a polarity of either monotone (↑), antitone (↓), or
no monotonicity information (=), (2) both T and
T ∗ have the same universal dependency structure
except the polarity marks. Figure 3 shows a visu-
alization of the binary dependency parse tree after
polarization completes. The general steps of the
polarization start from the root node of the binary
parse tree. The system will get the correspond-
ing polarization rule from the lexicon according to
the root node’s dependency relation. In each po-
larization rule, the system applies the polarization
rule and then continues the above steps recursively
down the left sub-tree and the right sub-tree. Each
polarization rule is composed from a set of basic
building blocks include rules for negation, equal-
ization, and monotonicity generation. When the re-
cursion reaches a leaf node, which is an individual
word in a sentence, a set of word-based polariza-
tion rules will be retrieved from the lexicon, and
the system polarizes the nodes according to the rule
corresponding to a particular word. More details
about word-based polarization rules will be covered
in section 3.4.2, Polarity Generation. An overview
of the polarization algorithm and a general scheme
of the implementation for dependency-level polar-
ization rules are shown in Algorithm 2.

3.4 Polarization Rules

Our polarization algorithm contains a lexicon of po-
larization rules corresponding to each dependency
relation. Each polarization rule is composed from a
set of building blocks divided into three categories:
negation rules, equalization rules, and monotonic-
ity generation rules. The generation rules will gen-
erate three types of monotonicity: monotone (↑),
antitone (↓), and no monotonicity information (=)
either by initialization or based on the words.

Algorithm 2 Polarization
Input: T : binary dependency tree

L: dependency-level polarization rules
W: word-level polarization rules

Output: T ∗: polarized binary dependency tree

1: if T .is_tree then
2: relation← T .val
3: POLARIZATION_RULE(.) ← L[relation]
4: POLARIZATION_RULE(T)
5: end if
6:
7: . General scheme of a polarization rule’s implementation

for a dependency relation
8: function POLARIZATION_RULE(T)
9: . Initialize or inherit polarities

10: if T .mark 6= NULL then
11: T .right.mark = T .mark
12: T .left.mark = T .mark
13: else
14: T .right.mark = ↑
15: T .left.mark = ↑
16: end if
17:
18: . Polarize sub-trees
19: POLARIZATION(T .left)
20: POLARIZATION(T .right)
21: . Or, for relations like nsubj:
22: . POLARIZATION(T .right)
23: . POLARIZATION(T .left)
24:
25: . Apply negation and equalization rules
26: if NEGATE is applicable then
27: NEGATE(T)
28: end if
29: if EQUALIZE is applicable then
30: EQUALIZE(T)
31: end if
32:
33: . Apply word-level rules
34: if not T .is_tree and T .val ∈ W .keys then
35: WORD_RULE(.) ←W[T .val]
36: WORD_RULE(T)
37: end if
38: end function

3.4.1 Building Blocks

Negation and Equalization The negation rule
and the equalization rule are used by several core
dependency relations such as nmod, obj, and
acl:recl. Both negation and equalization have two
ways of application: backward or top-down. A
backward negation rule is triggered by a downward
polarity (↓) on the right node of the tree (marked be-
low as R), flipping every node’s polarity under the
left node (marked below as L). Similarly, a back-
ward equalization rule is triggered by a no mono-
tonicity information polarity (=) on the tree’s right
node, and it marks every node under the left node
as =. Examples for trees before and after applying
a backward and forward negation and equalization
are shown as follows:

125

• Backward Negation:

obj↑

¬(L↑) R↓

obj↑

L↓ R↓

• Backward Equalization:

obj↑

∼= (L↑) R=

obj↑

L= R=

• Forward Negation:

advmod↑

L↓ ¬(R↑)

advmod↑

L↓ R↓

• Forward Equalization:

advmod↑

L= ∼= (R↑)

advmod↑

L= R=

where ¬means negation and∼= means equalization.
A top-down negation is used by the polarization

rule like determiner (det) and adverbial modifier
(advmod). It starts at the parent node of the current
tree, and flips the arrow on each node under that
parent node excluding the current tree. This top-
down negation is used by det, case, and advmod
when a negation operators like no, not, or at-most
appears. Below is an example of a tree before and
after applying the top-down negation:

¬(nsubj↑)

det↑

No↑ cat↓
¬(flies↑)

nsubj↓

det↑

No↑ cat↓
flies↓

Polarity Generation The polarity is generated
by words. During the polarization, the polarity can
change based on a particular word that can promote
the polarity governing the part of the sentence to
which it belongs. These words include quantifiers
and verbs. For the monotonicity from quantifiers,
we follow the monotonicity profiles listed in the
work done by Icard III and Moss (2014) on mono-
tonicity, which built on van Benthem (1986). Addi-
tionally, to extend to more quantifiers, we observed
polarization results generated by ccg2mono. Over-
all, we categorized the quantifiers as follows:

• Universal Type

Every ↓ ↑ Each ↓ ↑ All ↓ ↑

• Negation Type

No ↓ ↓ Less than ↓ ↓ At most ↓ ↓

• Exact Type

Exactly n = = The = ↑ This = ↑

• Existential Type

Some ↑ ↑ Several ↑ ↑ A,An ↑ ↑

• Other Type

Most = ↑ Few = ↓

Where the first mark is the monotonicity for the
first argument after the quantifier and the second
mark is the monotonicity for the second argument
after the quantifier. For verbs, there are upward
entailment operators and downward entailment op-
erators. Verbs that are downward entailment opera-
tors, such as refuse, promote an antitone polarity,
which will negate its dependents. For example, for
the phrase refused to go, refused will promote an
antitone polarity, which negates to dance:

xcomp↑

¬(mark↑)

¬(to↑) ¬(go↑)

refused↑

xcomp↑

mark↓

to↓ go↓
refused↑

In addition to quantifiers and verbs, some other
words also change the monotonicity of a sentence.
For example, words like not, none, and nobody
promote an antitone polarity. Our system also han-
dles material implications with the form if x then
y. Based on Moss (2012), the word if promotes
an antitone polarity in the antecedent and posi-
tive polarity in the consequent. For background
on monotonicity and semantics, see van Benthem
(1986), Keenan and Faltz (1984), and also Kart-
tunen (2012).

3.4.2 Dependency Relation Rules

Each dependency relation has a corresponding po-
larization rule. All the rules start with initializing
the starting node as upward monotone polarity (↑).
Alternatively, if the starting node has a polarity
marked, each child node will inherit the root node’s
polarity. Each rule’s core part is a combination of
the default rules and monotonicity generation rules.
In this section, we will briefly show three major
types of dependency relation rules in the polariza-
tion algorithm. The relative clause modifier rela-
tion will represent rules for modifier relations. The
determiner relation rule will represent rules con-
taining monotonicity generation rules. The Object
and open clausal complement rule will represent
rules containing word-level polarization rules.

126

Algorithm 3 Polarize_acl:relcl
Input: T : binary dependency sub-tree
Output: T ∗: polarized binary dependency sub-tree

1: if T .mark 6= NULL then
2: T .right.mark = T .mark
3: else
4: T .right.mark = ↑
5: end if
6: T .left.mark = ↑
7:
8: POLARIZE(T .right)
9: POLARIZE(T .left)

10:
11: if T .right.mark == ↓ then
12: NEGATE(T .left)
13: else if T .right.mark == = then
14: EQUALIZE(T .left)
15: end if

Relative Clause Modifier For the relative clause
modifier relation (acl:relcl), the relative clause de-
pends on the noun it modifies. First, the polariza-
tion will first be performed on both the left and
right nodes, and then, depending on the polarity
of the right node, a negation or an equalization
rule will be applied. The algorithm first applies a
top-down inheritance if the root already has its po-
larity marked; otherwise, it initializes the left and
right nodes as monotone. The algorithm polarizes
both the left and right nodes. Next, the algorithm
checks the right node’s polarity. If the right node
is marked as antitone, a backward negation is ap-
plied. Alternatively, if the right node is marked as
no monotonicity information, a backward equaliza-
tion is applied. During the experiments, we noticed
that if the root node is marked antitone, and the left
node inherits that, a negation later will cause a dou-
ble negation, producing incorrect polarity marks.
To avoid this double negation, we exclude the left
node from the top-down inheritance rule by initial-
izing the left node directly with a monotone mark.
The rule for acl:relcl also applies to the adverbial
clause modifier (advcl) and the clausal modifier of
noun (acl). An overview of the algorithm is shown
in Algorithm 3.

Determiner For the determiner relation (det),
each different determiner can assign a new mono-
tonicity to the noun it modifies. First, the algorithm
performs a top-down inheritance on the left node if
the root already has polarity marked. Next, the al-
gorithm assigns the polarity for the noun depending
on the determiner’s type. For example, if the deter-
miner is a universal quantifier, an antitone polarity
is assigned to the right node. For negation quanti-

Algorithm 4 Polarize_det
Input: T : binary dependency sub-tree

D: determiner mark dictionary
Output: T ∗: polarized binary dependency sub-tree

1: det_type← GET_DET_TYPE(T .left)
2: if T .mark 6= NULL then
3: T .left.mark = T .mark
4: else
5: T .left.mark = ↑
6: end if
7:
8: T .right.mark = D[det_type]
9: POLARIZE(T .right)

10:
11: if det_type == negation then
12: NEGATE(T .parent)
13: end if

fiers like no, its right node also receives an antitone
polarity. Thus, a top-down negation is applied at
the determiner relation tree’s parent. Algorithm 4
shows an overview of the algorithm.

Object and Open Clausal Complement For
the object relation (obj) and the open clausal com-
plement relation xcomp, both the verb and the noun
would inherit the monotonicity from the parent in
the majority of cases. The inheritance procedure is
the same as the one used in acl:relcl’s rule. Sim-
ilarly, after the inheritance, the rule will polarize
both the right sub-tree and the left sub-tree. Differ-
ently, since obj and xcomp both have a verb under
the relation, they require a word-level polarization
rule that will check the verb determine if the verb
is a downward entailment operator, which prompts
an antitone monotonicity. The algorithm takes in
a dictionary that contains a list of verbs and their

Algorithm 5 Polarize_obj
Input: T : binary dependency sub-tree
Output: T ∗: polarized binary dependency sub-tree

1: if T .mark 6= NULL then
2: T .right.mark = T .mark
3: else
4: T .right.mark = ↑
5: end if
6: T .left.mark = ↑
7:
8: POLARIZE(T .right)
9: POLARIZE(T .left)

10:
11: . Word-level polarization rule for downward entailment

operators
12: if IS_DOWNWARD_OPERATOR(T .right.mark) then
13: NEGATE(T .left)
14: end if
15:

127

implicatives. The dictionary is generated from the
implicative verb dataset made by Ross and Pavlick
(2019). If a verb is a downward entailment opera-
tor, which has a negative implicative, the rule will
apply a negation rule on the left sub-tree to flip
each node’s arrow in the left sub-tree. An overview
of the algorithm is shown in Algorithm 5.

4 Comparison to Existing Systems

We conducted several preliminary comparisons to
two existing systems. First, we compared to Nat-
Log’s monotonicity annotator. Natlog’s annotator
also uses dependency parsing. The polarization al-
gorithm does pattern-based matching for finding oc-
currences of downward monotonicity information,
and the algorithm only polarizes on word-level. In
contrast, our system uses a tree-based polarization
algorithm that polarizes both on word-level polari-
ties and constituent level polarities. Our intuition
is that the Tregex patterns used in NatLog is not
as common or as easily understandable as the bi-
nary tree structure, which is a classic data structure
wildly used in the filed of computer science.

According to the comparison on a list of sen-
tences, NatLog’s annotator does not perform as
well as our system. For example, for a phrase the
rabbit, rabbit should have a polarity with no mono-
tonicity information (=). However, NatLog marks
rabbit as a monotone polarity (↑). NatLog also
incorrectly polarizes sentences containing multiple
negations. For example, for a triple negation sen-
tence, No newspapers did not report no bad news,
NatLog gives: No↑ newspapers↓ did↓ not↓ report↑

no↑ bad↑ news↑. This result has incorrect polar-
ity marks on multiple words, where report, bad,
news should be ↓, and no should be ↑. Both of the
scenarios above can be handled correctly by our
system.

Comparing to ccg2mono, our algorithm shares
some similarities to its polarization algorithm. Both
of the systems polarize on a tree structure and rely
on a lexicon of rules, and they both polarize on
the word-level and the constituent level. One dif-
ference is that ccg2mono’s algorithm contains two
steps, the first step puts markings on each node, and
the second step puts polarities on each node. Our
system does not require the step of adding mark-
ings and only contains the step of adding polarities
on each node.

Our system has multiple advantages over
ccg2mono. For parsing, our system uses UD pars-

ing, which is more accurate than CCG parsing used
by ccg2mono due to a large amount of training
data. Also, our system covers more types of text
than ccg2mono because UD parsing works for a
variety of text genres such as web texts, emails, re-
views, and even informal texts like Twitter tweets.
(Silveira et al., 2014; Zeldes, 2017; Liu et al., 2018).
Our system can also work for more languages than
ccg2mono since UD parsing supports more lan-
guages than CCG parsing.

Overall, our system delivers more accurate po-
larization than ccg2mono. Many times the CCG
parser makes mistakes and leads to polarization
mistakes later on. For example, in the annotation
The↓ market↓ is↓ not↓ impossible↓ to↓ navigate↓,
ccg2mono incorrectly marks every word as ↓. Our
system, on the other hand, uses UD parsing which
has higher parsing accuracy than CCG parsing, and
thus leads to fewer polarization mistakes compared
to ccg2mono. For the expression above, our sys-
tem correctly polarizes it as The↑ market= is↑ not↑

impossible↓ to↑ navigate↑.

Our system also handles multi-word quantifiers
better than ccg2mono. For example, for a multi-
word quantifier expression like all of the dogs,
ccg2mono mistakenly marks dogs as =. Our sys-
tem, however, can correctly mark the expression:
all↑ of ↑ the↑ dogs↓.

Moreover, the core of ccg2mono does not in-
clude aspects of verbal semantics of downward-
entailing operators like forgot and regret (Moss
and Hu, 2020). For example ccg2mono’s polariza-
tion for Every↑ member↓ forgot↑ to↑ attend↑ the↑

meeting= is not correct because it fails to flip the
polarity of to attend the. In contrast, our system
produces a correct result: Every↑ member↓ forgot↑

to↓ attend↓ the↓ meeting=.

All three systems have difficulty polarizing sen-
tences containing numbers. A scalar number n’s
monotonicity information is hard to determine be-
cause it can presenter different contexts: a single
number n, without additional quantifiers or adjec-
tives, can either mean at least n, at most n, exactly
n, and around n. These contexts are syntactically
hard to identify for a dependency parser or a CCG
parser because it would require pragmatics and
some background knowledge which the parsers do
not have. For example, in the sentence A dog ate
2 rotten biscuits, the gold label for 2 is = which
indicates that the context is "exactly 2". However,
our system marks this as "↓ since it considers the

128

sentence type
More↑ dogs↑ than↑ cats↓ sit= comparative
Less↑ than↑ 5↑ people↓ ran↓ less-than

A↑ dog↑ who↑ ate↑ two= rotten↑ biscuits↑ was↑ sick↑ for↑ three↓ days↓ number
Every↑ dog↓ who↓ likes↓ most↓ cats= was↑ chased↑ by↑ at↑ least↑ two↓ of↑ them↑ every:most:at-least

Even↑ if↑ you↓ are↓ addicted↓ to↓ cigarettes↓ you↑ can↑ smoke↑two↓ a↑ day↑ conditional:number

Table 2: Example sentences in Hu and Moss (2020)’s evaluation dataset

context as "at least 2", which is different from the
gold label.

5 Experiment

Dataset We obtained the small evaluation dataset
used in the evaluation of ccg2mono (Hu and Moss,
2020) from its authors. The dataset contains 56
hand-crafted English sentences, each with manu-
ally annotated monotonicity information. The sen-
tences cover a wide range of linguistic phenomena
such as quantifiers, conditionals, conjunctions, and
disjunctions. The dataset also contains hard sen-
tences involving scalar numbers. Some example
sentences from the dataset are shown in Table 2.

Dependency Parser In order to obtain a univer-
sal dependency parse tree from a sentence, we uti-
lize a parser from Stanza (Qi et al., 2020), a Python
natural language analysis package made by Stan-
ford. The neural pipeline in Stanza allow us to
use pretrained neural parsing models to generate
universal dependency parse trees. To achieve op-
timal performance, we trained two neural parsing
models: one parsing model trained on Universal
Dependency English GUM corpus (Zeldes, 2017).
The pretrained parsing model achieved 90.0 LAS
(Zeman et al., 2018) evaluation score on the testing
data.

Experiment Setup We evaluated the polariza-
tion accuracy on both the token level and the sen-
tence level, in a similar fashion to the evaluation for
part-of-speech tagging (Manning, 2011). For both
levels of accuracy, we conducted one evaluation on
all tokens (acc(all-tokens) in Table 3) and another
one on key tokens including content words (nouns,
verbs, adjectives, adverbs), determiners, and num-
bers (acc(key-tokens) in Table 3). The key tokens
contain most of the useful monotonicity informa-
tion for inference. In token-level evaluation, we
counted the number of correctly annotated tokens
for acc(all-tokens) or the number of correctly anno-
tated key tokens for acc(key-tokens). In sentence-
level evaluation, we counted the number of cor-

Token-level
system NatLog ccg2mono ours

acc(all-tokens) 69.9 76.0 96.5
acc(key-tokens) 68.1 78.0 96.5

Sentence-level
system NatLog ccg2mono ours

acc(all-tokens) 28.0 44.6 87.5
acc(key-tokens) 28.6 50.0 89.2

Table 3: This table shows the polarity annotation accu-
racy on the token level and the sentence level for three
systems: NatLog, ccg2mono, and our system. The to-
ken level accuracy counts the number of correctly anno-
tated tokens, and the sentence level accuracy counts the
number of correctly annotated sentences. Two types of
accuracy are used. For acc(all-tokens), all tokens are
evaluated. For acc(key-tokens), only key tokens (con-
tent words + determiners + numbers) are evaluated.

rect sentences. A correct sentence has all tokens
correctly annotated for acc(all-tokens) or all key
tokens correctly annotated for acc(key-tokens). We
also evaluated our system’s robustness on the token
level. We followed the robustness metric for eval-
uating multi-class classification tasks, which uses
precision, recall, and F1 score to measure a sys-
tem’s robustness. We calculated these three metrics
for each polarity label: monotone(↑), antitone(↓),
and None or no monotonicity information(=). The
robustness evaluation is also done both on all to-
kens and on key tokens.

6 Evaluation

Table 3 shows the performance of our system, com-
pared with NatLog and ccg2mono. Our evaluation
process is the same as Hu and Moss (2020). From
Table 3, we first observe that our system consis-
tently outperforms ccg2mono and NatLog on both
the token level and the sentence level. For accuracy
on the token level, our system has the highest ac-
curacy for the evaluation on all tokens (96.5) and
the highest accuracy for the evaluation on key to-
kens (96.5). Our system’s accuracy on key tokens
is higher than the accuracy on all tokens, which
demonstrates our system’s good performance on
polarity annotation for tokens that are more signif-

129

All Tokens
system NatLog ccg2mono ours
Polarity Monotone Antitone None Monotone Antitone None Monotone Antitone None
precision 71.4 43.5 70.7 86.0 75.6 58.0 97.6 96.5 91.7

recall 87.3 15.9 63.9 77.8 78.3 74.6 97.2 89.4 87.3
F1-score 78.6 23.3 67.1 81.7 76.9 65.3 97.4 97.6 89.4

Key Tokens
system NatLog ccg2mono ours
Polarity Monotone Antitone None Monotone Antitone None Monotone Antitone None
precision 68.7 70.9 42.1 85.2 78.7 62.7 96.9 96.4 94.2

recall 88.6 61.5 14.0 80.3 79.3 73.7 97.9 98.5 86.0
F1-score 77.4 65.9 21.1 82.7 79.0 67.7 97.4 97.4 89.9

Table 4: Token level robustness comparison between NatLog, ccg2mono, and our system. The robustness score
is evaluated both on all tokens and on key tokens (content words + determiners + numbers). For each of the three
polarities: monotone(↑), antitone(↓), and None or no monotonicity information(=), the relative precision, recall
and F1 score are calculated.

icant to monotonicity inference. For accuracy on
the sentence level, our system again has the high-
est accuracy for the evaluation on all tokens (87.5)
and the highest accuracy for the evaluation on key
tokens (89.2). Such results suggest that our system
can achieve good performance on determining the
monotonicity of the sentence constituents. Overall,
the evaluation validates that our system has higher
polarity annotation accuracy than existing systems.
We compared our annotations to ccg2mono’s an-
notation and observed that of all the tokens in the
56 sentences, if ccg2mono annotates it correctly,
then our system also does so. This means, our sys-
tem’s polarization covers more linguistic phenom-
ena than ccg2mono. Table 4 shows the robustness
score of our system and the two existing systems.
Our systems has much higher precision and recall
on all three polarity labels than the other two sys-
tems. For the F1 score, our system again has the
highest points over the other two systems. The con-
sistent and high robustness scores show that our
system’s performance is much more robust on the
given dataset than existing systems.

7 Conclusion and Future Work

In this paper, we have demonstrated our system’s
ability to automatically annotate monotonicity in-
formation (polarity) for a sentence by conducting
polarization on a universal dependency parse tree.
The system operates by first converting the parse
tree to a binary parse tree and then marking po-
larity on each node according to a lexicon of po-
larization rules. The system produces accurate an-
notations on sentences involving many different
linguistic phenomena such as quantifiers, double
negation, relative clauses, and conditionals. Our

system had better performance on polarity marking
than existing systems including ccg2mono (Hu and
Moss, 2018) and NatLog (MacCartney and Man-
ning, 2009; Angeli et al., 2016). Additionally, by
using UD parsing, our system offers many advan-
tages. Our system supports a variety of text genres
and can be applied to many languages. In general,
this paper opens up a new framework for perform-
ing inference, semantics, and automated reasoning
over UD representations.

For future work, an inference system can be
made that utilizes the monotonicity information an-
notated by our system, which is similar to the Mon-
aLog system (Hu et al., 2020). Several improve-
ments can be made to the system to obtain more
accurate annotations. One improvement would be
to incorporate pragmatics to help determine the
monotonicity of a scalar number.

Acknowledgements

This research is advised by Dr. Lawrence Moss
from Indiana University and Dr. Michael Wol-
lowski from Rose-hulman Institute of Technology.
We thank their helpful advises and feedback on this
research. We also thank the anonymous reviewers
for their insightful comments.

References
Lasha Abzianidze. 2017. LangPro: Natural language

theorem prover. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 115–
120, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Gabor Angeli, Neha Nayak, and Christopher D. Man-
ning. 2016. Combining natural logic and shallow

https://doi.org/10.18653/v1/D17-2020
https://doi.org/10.18653/v1/D17-2020
https://doi.org/10.18653/v1/P16-1042

130

reasoning for question answering. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 442–452, Berlin, Germany. Association for
Computational Linguistics.

Johan van Benthem. 1986. Essays in Logical Seman-
tics, volume 29 of Studies in Linguistics and Philos-
ophy. D. Reidel Publishing Co., Dordrecht.

P. Blackburn and Johan Bos. 2005. Representation and
inference for natural language - a first course in com-
putational semantics. In CSLI Studies in Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Hai Hu, Qi Chen, Kyle Richardson, Atreyee Mukher-
jee, Lawrence S Moss, and Sandra Kübler. 2020.
MonaLog: a lightweight system for natural language
inference based on monotonicity. In Proceedings
of the Society for Computation in Linguistics (SCiL)
2020, pages 319–329.

Hai Hu and Larry Moss. 2018. Polarity computations
in flexible categorial grammar. In Proceedings of
the Seventh Joint Conference on Lexical and Com-
putational Semantics, pages 124–129, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Hai Hu and Lawrence S. Moss. 2020. An automatic
monotonicity annotation tool based on ccg trees.
In Second Tsinghua Interdisciplinary Workshop on
Logic, Language, and Meaning: Monotonicity in
Logic and Language.

Thomas F. Icard III and Lawrence S. Moss. 2014. Re-
cent progress on monotonicity. In Linguistic Issues
in Language Technology, Volume 9, 2014 - Perspec-
tives on Semantic Representations for Textual Infer-
ence. CSLI Publications.

Lauri Karttunen. 2012. Simple and phrasal implica-
tives. In Proceedings of the First Joint Conference
on Lexical and Computational Semantics - Volume 1:
Proceedings of the Main Conference and the Shared
Task, and Volume 2: Proceedings of the Sixth In-
ternational Workshop on Semantic Evaluation, Se-
mEval ’12, page 124–131, USA. Association for
Computational Linguistics.

Edward L. Keenan and Leonard M. Faltz. 1984.
Boolean Semantics for Natural Language. Springer.

J. Lavalle-Martínez, M. Montes y Gómez, L. Pineda,
Héctor Jiménez-Salazar, and Ismael Everardo Bárce-
nas Patiño. 2018. Equivalences among polarity algo-
rithms. Studia Logica, 106:371–395.

Mike Lewis and Mark Steedman. 2014. A* CCG pars-
ing with a supertag-factored model. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 990–
1000, Doha, Qatar. Association for Computational
Linguistics.

Wei Liu, Lei Li, Zuying Huang, and Yinan Liu. 2019.
Multi-lingual Wikipedia summarization and title
generation on low resource corpus. In Proceedings
of the Workshop MultiLing 2019: Summarization
Across Languages, Genres and Sources, pages 17–
25, Varna, Bulgaria. INCOMA Ltd.

Yijia Liu, Yi Zhu, Wanxiang Che, Bing Qin, Nathan
Schneider, and Noah A. Smith. 2018. Parsing tweets
into Universal Dependencies. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 965–975, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Bill MacCartney and Christopher D. Manning. 2009.
An extended model of natural logic. In Proceed-
ings of the Eight International Conference on Com-
putational Semantics, pages 140–156, Tilburg, The
Netherlands. Association for Computational Lin-
guistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Christopher D. Manning. 2011. Part-of-speech tagging
from 97linguistics? In CICLing.

L. Moss. 2012. The soundness of internalized polarity
marking. Studia Logica, 100:683–704.

Lawrence S. Moss and Hai Hu. 2020. Syllogistic log-
ics with comparative adjectives. Unpublished ms.,
Indiana University.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

https://doi.org/10.18653/v1/P16-1042
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/S18-2015
https://doi.org/10.18653/v1/S18-2015
https://huhailinguist.github.io/projects/tsinghua_wkshp_2020.pdf
https://huhailinguist.github.io/projects/tsinghua_wkshp_2020.pdf
https://www.aclweb.org/anthology/2014.lilt-9.7
https://www.aclweb.org/anthology/2014.lilt-9.7
https://doi.org/10.3115/v1/D14-1107
https://doi.org/10.3115/v1/D14-1107
https://doi.org/10.26615/978-954-452-058-8_004
https://doi.org/10.26615/978-954-452-058-8_004
https://doi.org/10.18653/v1/N18-1088
https://doi.org/10.18653/v1/N18-1088
https://www.aclweb.org/anthology/W09-3714
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://www.aclweb.org/anthology/L16-1262
https://www.aclweb.org/anthology/L16-1262
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14

131

Linguistics: System Demonstrations, pages 101–
108, Online. Association for Computational Linguis-
tics.

Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming dependency
structures to logical forms for semantic parsing.
Transactions of the Association for Computational
Linguistics, 4:127–140.

Alexis Ross and Ellie Pavlick. 2019. How well do NLI
models capture verb veridicality? In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2230–2240, Hong Kong,
China. Association for Computational Linguistics.

V. Sanchez. 1991. Studies on natural logic and catego-
rial grammar.

Natalia Silveira, Timothy Dozat, Marie-Catherine
de Marneffe, Samuel Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for English. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC-
2014).

Amir Zeldes. 2017. The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–21, Brussels, Belgium.
Association for Computational Linguistics.

https://doi.org/10.1162/tacl_a_00088
https://doi.org/10.1162/tacl_a_00088
https://doi.org/10.18653/v1/D19-1228
https://doi.org/10.18653/v1/D19-1228
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001

NeuralLog:
Natural Language Inference with Joint Neural and Logical Reasoning

Zeming Chen†∗ Qiyue Gao† Lawrence S. Moss‡
†Rose-Hulman Institute of Technology, Terre Haute, IN, USA

‡Indiana University, Bloomington, IN, USA
{chenz16,gaoq}@rose-hulman.edu

{lmoss}@indiana.edu

Abstract

Deep learning (DL) based language models
achieve high performance on various bench-
marks for Natural Language Inference (NLI).
And at this time, symbolic approaches to NLI
are receiving less attention. Both approaches
(symbolic and DL) have their advantages and
weaknesses. However, currently, no method
combines them in a system to solve the task
of NLI. To merge symbolic and deep learn-
ing methods, we propose an inference frame-
work called NeuralLog, which utilizes both
a monotonicity-based logical inference engine
and a neural network language model for
phrase alignment. Our framework models the
NLI task as a classic search problem and uses
the beam search algorithm to search for opti-
mal inference paths. Experiments show that
our joint logic and neural inference system
improves accuracy on the NLI task and can
achieve state-of-art accuracy on the SICK and
MED datasets.

1 Introduction

Currently, many NLI benchmarks’ state-of-the-art
systems are exclusively deep learning (DL) based
language models (Devlin et al., 2019; Lan et al.,
2020; Liu et al., 2020; Yin and Schütze, 2017).
These models often contain a large number of pa-
rameters, use high-quality pre-trained embeddings,
and are trained on large-scale datasets, which en-
able them to handle diverse and large test data ro-
bustly. However, several experiments show that DL
models lack generalization ability, adopt fallible
syntactic heuristics, and show exploitation of anno-
tation artifacts (Glockner et al., 2018; McCoy et al.,
2019; Gururangan et al., 2018). On the other hand,
there are logic-based systems that use symbolic
reasoning and semantic formalism to solve NLI
(Abzianidze, 2017; Martínez-Gómez et al., 2017;

*The first two authors have equal contribution

Figure 1: Analogy between path planning and an entail-
ment inference path from the premise A motorcyclist
with a red helmet is riding a blue motorcycle down the
road to the hypothesis A motorcyclist is riding a motor-
bike along a roadway.

Yanaka et al., 2018; Hu et al., 2020). These systems
show high precision on complex inferences involv-
ing difficult linguistic phenomena and present logi-
cal and explainable reasoning processes. However,
these systems lack background knowledge and do
not handle sentences with syntactic variations well,
which makes them poor competitors with state-of-
the-art DL models. Both DL and logic-based sys-
tems show a major issue with NLI models: they are
too one-dimensional (either purely DL or purely
logic), and no method has combined these two ap-

ar
X

iv
:2

10
5.

14
16

7v
3

 [
cs

.C
L

]
 1

0
Ju

n
20

21

proaches together for solving NLI.
This paper makes several contributions, as fol-

lows: first, we propose a new framework in section
3 for combining logic-based inference with deep-
learning-based network inference for better perfor-
mance on conducting natural language inference.
We model an NLI task as a path-searching problem
between the premises and the hypothesis. We use
beam-search to find an optimal path that can trans-
form a premise to a hypothesis through a series of
inference steps. This way, different inference mod-
ules can be inserted into the system. For example,
DL inference modules will handle inferences with
diverse syntactic changes and logic inference mod-
ules will handle inferences that require complex
reasoning. Second, we introduce a new method in
section 4.3 to handle syntactic variations in natu-
ral language through sequence chunking and DL
based paraphrase detection. We evaluate our sys-
tem in section 6 by conducting experiments on the
SICK and MED datasets. Experiments show that
joint logical and neural reasoning show state-of-art
accuracy and recall on these datasets.

2 Related Work

Perhaps the closest systems to NeuralLog are
Yanaka et al. (2018), MonaLog (Hu et al., 2020),
and Hy-NLI (Kalouli et al., 2020). Using Martínez-
Gómez et al. (2016) to work with logic representa-
tions derived from CCG trees, Yanaka et al. (2018)
proposed a framework that can detect phrase cor-
respondences for a sentence pair, using natural de-
duction on semantic relations and can thus extract
various paraphrases automatically. Their experi-
ments show that assessing phrase correspondences
helps improve NLI accuracy. Our system uses a
similar methodology to solve syntactic variation
inferences, where we determine if two phrases are
paraphrases. Our method is rather different on this
point, since we call on neural language models to
detect paraphrases between two sentences. We feel
that it would be interesting to compare the systems
on a more theoretical level, but we have not done
the comparison in this paper.

NeuralLog inherits the use of polarity marking
found in MonaLog (Hu et al., 2020). (However,
we use the dependency-based system of Chen and
Gao (2021) instead of the CCG-based system of
Hu and Moss (2018).) MonaLog did propose some
integration with neural models, using BERT when
logic failed to find entailment or contradiction. We

are doing something very different, using neural
models to detect paraphrases at several levels of
“chunking”. In addition, the exact algorithms found
in Sections 3 and 4 are new here. In a sense, our
work on alignment in NLI goes back to MacCartney
and Manning (2009) where alignment was used to
find a chain of edits that changes a premise to a
hypothesis, but our work uses much that simply
was not available in 2009.

Hy-NLI is a hybrid system that makes infer-
ences using either symbolic or deep learning mod-
els based on how linguistically challenging a pair
of sentences is. The principle Hy-NLI followed
is that deep learning models are better at handling
sentences that are linguistically less complex, and
symbolic models are better for sentences contain-
ing hard linguistic phenomena. Although the sys-
tem integrates both symbolic and neural methods,
its decision process is still separate, in which the
symbolic and deep learning sides make decisions
without relying on the other side. Differently, our
system incorporates logical inferences and neural
inferences as part of the decision process, in which
the two inference methods rely on each other to
make a final decision.

3 Method

3.1 NLI As Path Planning

The key motivation behind our architecture and
inference modules is that the Natural Language
Inference task can be modeled as a path planning
problem. Path planning is a task for finding an
optimal path traveling from a start point to a goal
containing a series of actions. To formulate NLI as
path planning, we define the premise as the start
state and the hypothesis as the goal that needs
to be reached. The classical path planning strat-
egy applies expansions from the start state through
some search algorithms, such as depth-first-search
or Dijkstra search, until an expansion meets the
goal. In a grid map, two types of action produce
an expansion. The vertical action moves up and
down, and the horizontal action moves left and
right. Similarly, language inference also contains
these two actions. Monotonicity reasoning is a ver-
tical action, where the monotone inference moves
up and simplifies a sentence, and the antitone in-
ference moves down and makes a sentence more
specific. Syntactic variation and synonym replace-
ment are horizontal actions. They change the form
of a sentence while maintaining the original mean-

Figure 2: Overview system diagram of NeuralLog.

ing. Then, similar to path planning, we can contin-
uously make inferences from the premise using a
search algorithm to determine if the premise entails
the hypothesis by observing whether one of the in-
ferences can reach the hypothesis. If the hypothesis
is reached, we can connect the list of inferences
that transform a premise to a hypothesis to be the
optimal path in NLI, a valid reasoning chain for
entailment.

Figure 1 shows an analogy between an optimal
path for the classical grid path planning problem
and an example of an optimal inference path for
NLI. On the top, we have a reasoning process for
natural language inference. From the premise, we
can first delete the modifier with a red helmet, then
delete blue to get a simplified sentence. Finally,
we can paraphrase down the road to along a road-
way in the premise to reach the hypothesis and
conclude the entailment relationship between these
two sentences.

3.2 Overview

Our system contains four components: (1) a polar-
ity annotator, (2) three sentence inference modules,
(3) a search engine, and (4) a sentence inference
controller. Figure 2 shows a diagram of the full
system. The system first annotates a sentence with
monotonicity information (polarity marks) using
Udep2Mono (Chen and Gao, 2021). The polar-
ity marks include monotone (↑), antitone (↓), and

no monotonicity information (=) polarities. Next,
the polarized parse tree is passed to the search en-
gine. A beam search algorithm searches for the op-
timal inference path from a premise to a hypothesis.
The search space is generated from three inference
modules: lexical, phrasal, and syntactic variation.
Through graph alignment, the sentence inference
controller selects a inference module to apply to
the premise and produce a set of new premises
that potentially form entailment relations with the
hypothesis. The system returns Entail if an in-
ference path is found. Otherwise, the controller
will determine if the premise and hypothesis form
a contradiction by searching for counter example
signatures and returns Contradict accordingly. If
neither Entail nor Contradict is returned, the sys-
tem returns Neutral.

3.3 Polarity Annotator

The system first annotates a given premise with
monotonicity information using Udep2Mono, a po-
larity annotator that determines polarization of all
constituents from universal dependency trees. The
annotator first parses the premise into a binarized
universal dependency tree and then conducts polar-
ization by recursively marks polarity on each node .
An example can be Every↑ healthy↓ person↓ plays↑

sports↑.

3.4 Search Engine
To efficiently search for the optimal inference path
from a premiseP to a hypothesisH, we use a beam
search algorithm which has the advantage of reduc-
ing search space by focusing on sentences with
higher scores. To increase the search efficiency and
accuracy, we add an inference controller that can
guide the search direction.

Scoring In beam search, a priority queueQmain-
tains the set of generated sentences. A core opera-
tion is the determination of the highest-scoring gen-
erated sentence for a given input under a learned
scoring model. In our case, the maximum score is
equivalent to the minimum distance:

y? = argmax
s∈S

score(s,H)

y? = argmin
s∈S

dist(s,H)

where H is the hypothesis and S is a set of gen-
erated sentences produced by the three (lexical,
phrasal, syntactic variation) inference modules. We
will present more details about these inference mod-
ules in section 4. We formulate the distance func-
tion as the Euclidean distance between the sentence
embeddings of the premise and hypothesis. To ob-
tain semantically meaningful sentence embeddings
efficiently, we use Reimers and Gurevych (2019)’s
language model, Sentence-BERT (SBERT), a mod-
ification of the BERT model. It uses siamese and
triplet neural network structures to derive sentence
embeddings which can be easily compared using
distance functions.

3.5 Sentence Inference Controller
In each iteration, the search algorithm expands the
search space by generating a set of potential sen-
tences using three inference modules: (1) lexical
inference, (2) phrasal inference, and (3) syntactic
variation inference. To guide the search engine to
select the most applicable module, we designed
a inference controller that can recommend which
of the labels the overall algorithm should proceed
with. For example, for a premise All animals eat
food and a hypothesis All dogs eat food, only a lex-
ical inference of animals to dogs would be needed.
Then, the controller will apply the lexical inference
to the premise, as we discuss below.

3.5.1 Sentence Representation Graph
The controller makes its decision based on graph-
based representations for the premise and the hy-

pothesis. We first build a sentence representation
graph from parsed input using Universal Depen-
dencies. Let V = Vm ∪ Vc be the set of vertices of
a sentence representation graph, where Vm repre-
sents the set of modifiers such as tall in Figure 5,
and Vc represents the set of content words (words
that are being modified) such as man in Figure 5.
While content words in Vc could modify other con-
tent words, modifiers in Vm are not modified by
other vertices. Let E be the set of directed edges in
the form 〈vc, vm〉 such that vm ∈ Vm and vc ∈ Vc.
A sentence representation graph is then defined as
a tuple G = 〈V, E〉. Figure 3a shows an example
graph.

3.5.2 Graph Alignment
To observe the differences between two sentences,
we rely on graph alignment between two sentence
representation graphs. We first align nodes from
subjects, verbs and objects, which constitutes what
we call a component level. Define Gp as the graph
for a premise and Gh as the graph for a hypothe-
sis. Then, Cp and Ch are component level nodes
from the two graphs. We take the Cartesian product
Cp × Ch = {(cp, ch) : cp ∈ Cp, ch ∈ Ch}. In the
first round, we recursively pair the child nodes of
each cp to child nodes of each ch. We compute
word similarity between two child nodes cip and
cih and eliminate pairs with non-maximum simi-
larity. We denote the new aligned pairs as a set
A∗. At the second round, we iterate through the
aligned pairs in A∗. If multiple child nodes from
the first graph are paired to a child node in the sec-
ond graph, we only keep the pair with maximum
word similarity. In the final round, we perform the
same check for each child node in the first graph to
ensure that there are no multiple child nodes from
the second graph paired to it. Figure 3b shows a
brief visualization of the alignment process.

3.5.3 inference Module Recommendation
After aligning the premise graph Gp with hypoth-
esis graph Gh, the controller checks through each
node in the two graphs. If a node does not get
aligned, the controller considers to delete the node
or insert it depending on which graph the node be-
longs to and recommends phrasal inference. If a
node is different from its aligned node, the con-
troller recommends lexical inference. If additional
lexical or phrasal inferences are detected under
this node, the controller decides that there is a
more complex transition under this node and rec-

rootman

A

tall

running

is

road

the

down

(a) Sentence representation graph (b) Graph alignment visualization

Figure 3: (a) A sentence representation graph for A tall man is running down the road. (b) Visualization for
the graph alignment. The lines between two words represent their similarity. The orange lines are the pairs
with maximum similarities for a blue word. Through bi-directional alignment, we eliminate word pairs with non-
maximum similarity and gets the final alignment pairs.

ommends a syntactic variation.

3.5.4 Contradiction Detection
We determine whether the premise and the hy-
pothesis contradict each other inside the controller
by searching for potential contradiction transitions
from the premise to the hypothesis. For instance,
a transition in the scope of the quantifier (a −→
no) from the same subject could be what we call
a contradiction signature (possible evidence for a
contradiction). With all the signatures, the con-
troller decides if they can form a contradiction as
a whole. To avoid situations when multiple sig-
natures together fail to form a complete contradic-
tion, such as double negation, the controller checks
through the contradiction signatures to ensure a
contradiction. For instance, in the verb pair (not re-
move, add), the contradiction signature not would
cancel the verb negation contradiction signature
from remove to add so the pair as a whole would
not be seen as a contradiction. Nevertheless, other
changes from the premise to the hypothesis may
change the meaning of the sentence. Hence, our
controller would go through other transitions to
make sure the meaning of the sentence does not
change when the contradiction sign is valid. For
example, in the neutral pair P: A person is eating
and H: No tall person is eating, the addition of
tall would be detected by our controller. But the
aligned word of the component it is applied to, per-
son in P, has been marked downward monotone.
So this transition is invalid. This pair would then
be classified as neutral.

For P2 and H2 in Figure 4, the controller no-
tices the contradictory quantifier change around
the subject man. The subject man in P2 is up-
ward monotone so the deletion of tall is valid. Our
controller also detects the meaning transition from

signature type example
quantifier negation no dogs =⇒ some dogs
verb negation is eating =⇒ is not eating
noun negation some people =⇒ nobody
action contradiction is sleeping =⇒ is running
direction contradiction The turtle is following the fish =⇒

The fish is following the turtle

Table 1: Examples of contradiction signatures.

down the road to inside the building, which affects
the sentence’s meaning and cancels the previous
contradiction signature. The controller thus will
not classify P2 and H2 as a pair of contradiction.

Figure 4: Example of contradiction signatures. P1 and
H1 form a contradiction. P2 and H2 does not form a
contradiction because the meaning after the verb run-
ning has changed.

4 Inference Generation

4.1 Lexical Monotonicity Inference
Lexical inference is word replacement based on
monotonicity information for key-tokens including
nouns, verbs, numbers, and quantifiers. The sys-
tem uses lexical knowledge bases including Word-
Net (Miller, 1995) and ConceptNet (Liu and Singh,
2004). From the knowledge bases, we extract four
word sets: hypernyms, hyponyms, synonyms, and
antonyms. Logically, if a word has a monotone po-
larity (↑), it can be replaced by its hypernyms. For
example, swim ≤ move; then swim can be replaced
with move. If a word has an antitone polarity (↓),

it can be replaced by its hyponyms. For example,
flower ≥ rose. Then, flower can be replaced with
rose. We filter out irrelevant words from the knowl-
edge bases that do not appear in the hypothesis.
Additionally, we handcraft knowledge relations for
words like quantifiers and prepositions that do not
have sufficient taxonomies from knowledge bases.
Some handcrafted relations include: all = every =
each ≤ most ≤ many ≤ several ≤ some = a, up ⊥
down.

4.2 Phrasal Monotonicity Inference
Phrasal replacements are for phrase-level mono-
tonicity inference. For example, with a polar-
ized sentence A ↑ woman↑ who↑ is↑ beautiful↑

is↑ walking↑ in↑ the↑ rain=, the monotone mark
↑ on woman allows an upward inference: woman
w woman who is beautiful, in which the relative
clause who is beautiful is deleted. The system fol-
lows a set of phrasal monotonicity inference rules.
For upward monotonicity inference, modifiers of
a word are deleted. For downward monotonicity
inference, modifiers are inserted to a word. The al-
gorithm traverses down a polarized UD parse tree,
deletes the modifier sub-tree if a node is monotone
(↑), and inserts a new sub-tree if a node is antitone
(↓). To insert new modifiers, the algorithm extracts
a list of potential modifiers associated to a node
from a modifier dictionary. The modifier dictionary
is derived from the hypothesis and contains word-
modifier pairs for each dependency relation. Below
is an example of a modifier dictionary from There
are no beautiful flowers that open at night:

• obl: [head: open, mod: at night]

• amod: [head: flowers, mod: beautiful]

• acl:relcl: [head: flowers, mod: that open at night]

4.3 Syntactic Variation Inference
We categorize linguistic changes between a premise
and a hypothesis that cannot be inferred from mono-
tonicity information as syntactic variations. For ex-
ample, a change from red rose to a rose which is red
is a syntactic variation. Many logical systems rely
on handcrafted rules and manual transformation to
enable the system to use syntactic variations. How-
ever, without accurate alignments between the two
sentences, these methods are not robust enough,
and thus are difficult to scale up for wide-coverage
input.

Recent development of pretrained transformer-
based language models are showing state-of-art

performance on multiple benchmarks for Natural
Language Understanding (NLU) including the task
for paraphrase detection (Devlin et al., 2019; Lan
et al., 2020; Liu et al., 2020) exemplify phrasal
knowledge of syntactic variation. We propose a
method that incorporates transformer-based lan-
guage models to robustly handle syntactic varia-
tions. Our method first uses a sentence chunker
to decompose both the premise and the hypothesis
into chunks of phrases and then forms a Cartesian
product of chunk pairs. For each pair, we use a
transformer model to calculate the likelihood of a
pair of chunks being a pair of paraphrases.

4.3.1 Sequence Chunking
To obtain phrase-level chunks from a sentence, we
build a sequence chunker to extract chunks from a
sentence using its universal dependency informa-
tion. Instead of splitting a sentence into chunks, our
chunker composes word tokens recursively to form
meaningful chunks. First, we construct a sentence
representation graph of a premise from the con-
troller. Recall that a sentence representation graph
is defined as G = 〈V, E〉, where V = Vm ∪ Vc is
the set of modifiers (Vm) and content words (Vc),
and E is the set of directed edges. To generate the
chunk for a content word in Vc, we arrange its mod-
ifiers, which are nodes it points to, together with
the content word by their word orders in the origi-
nal sentence to form a word chain. Modifiers that
make the chain disconnected are discarded because
they are not close enough to be part of the chunk.
For instance, the chunk from the verb eats in the
sentence A person eats the food carefully would
not contain its modifier carefully because they are
separated by the object the food. If the sentence
is stated as A person carefully eats the food, care-
fully now is next to eat and it would be included
in the chunk of the verb eat. To obtain chunks for
a sentence, we iterate through each main compo-
nent node, which is a node for subject, verb, or
object, in the sentence’s graph representation and
construct verb phrases by combining verbs’ chunks
with their paired objects’ chunks. There are cases
when a word modifies other words and gets mod-
ified in the same time. They often occur when a
chunk serves as a modifier. For example, in The
woman in a pink dress is dancing, the phrase in a
pink dress modifies woman whereas dress is modi-
fied by in, a and pink. Then edges from dress to in,
a, pink with the edge from woman to dress can be
drawn. Chunks in a pink dress and the woman in a

Type Premise Hypothesis

Verb Phrase Variation
Two men are standing near the water and Two men are standing near the water and
are holding fishing poles are holding tools used for fishing

Noun Phrase Variation
A man with climbing equipment is hanging A man with equipment used for climbing is
from rock which is vertical and white hanging from a white, vertical rock.

Table 2: Examples of phrasal alignments detected by the syntactic variation module

rootman

A

tall

running

is

road

the

down

rootman

A

who

is

tall

running

is

roadway

a

along

0.98

0.99

0.03

0.02

Figure 5: A graph representation of the monolingual phrase alignment process. Here the left graph represents the
premise: A tall man is running down the road. The right graph represents the hypothesis A man who is tall is
running along a roadway. The blue region represents phrase chunks extracted by the chunker from the graph. An
alignment score is calculated for each pair of chunks. The pair 〈 tall man, man who is tall 〉 is a pair of paraphrases,
and thus has a high alignment score (0.98). The pair 〈 tall man, running along a road way 〉 has two unrelated
phrases, and thus has a low alignment score(0.03).

pink dress will be generated for dress and woman
respectively.

4.3.2 Monolingual Phrase Alignment
After the chunker outputs a set of chunks from a
generated sentence and from the hypothesis, the
system selects chunk pairs that are aligned by com-
puting an alignment score for each pair of chunks.
Formally, we define Cs as the set of chunks from
a generated sentence and Ch as the set of chunks
from the hypothesis. We build the Cartesian prod-
uct from Cs and Ch, denoted Cs × Ch. For each
chunk pair (csi, chj) ∈ Cs × Ch, we compute an
alignment score α:

y〈csi,chi〉 = ALBERT.forward(〈csi, chi〉)
α〈csi,chi〉 = p(csi | chj)

α〈csi,chi〉 =
expy〈csi,chi〉0∑2
j=1 exp

y〈csi,chi〉j

If α > 0.85, the system records this pair of phrases
as a pair of syntactic variation. To calculate the
alignment score, we use an ALBERT (Lan et al.,
2020) model for the paraphrase detection task, fine
tuned on the Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005). We first pass the
chunk pair to ALBERT to obtain the logits. Then
we apply a softmax function to the logits to get
the final probability. A full demonstration of the
alignment between chunks is shown in Figure 5.

5 Data

5.1 The SICK Dataset
The SICK (Marelli et al., 2014) dataset is an En-
glish benchmark that provides in-depth evaluation
for compositional distribution models. There are
10,000 English sentence pairs exhibiting a vari-
ety of lexical, syntactic, and semantic phenomena.
Each sentence pair is annotated as Entailment, Con-
tradiction, or Neutral. we use the 4,927 test prob-
lems for evaluation.

5.2 The MED Dataset
The Monotonicity Entailment Dataset (MED), is a
challenge dataset designed to examine a model’s
ability to conduct monotonicity inference (Yanaka
et al., 2019a). There are 5382 sentence pairs in
MED, where 1820 pairs are upward inference prob-
lems, 3270 pairs are downward inference problems,
and 292 pairs are problems with no monotonicity
information. MED’s problems cover a variety of
linguistic phenomena, such as lexical knowledge,
reverse, conjunction and disjunction, conditional,
and negative polarity items.

6 Evaluation

6.1 Experiment Setup
For Universal Dependency parsing, we follow
Chen and Gao (2021)’s framework and use a parser

Model P R acc.
ML/DL-based systems

BERT (base, uncased) 86.8 85.4 86.7
Yin and Schütze (2017) – – 87.1
Beltagy et al. (2016) – – 85.1

Logic-based systems
Abzianidze (2017) 98.0 58.1 81.4
Martínez-Gómez et al. (2017) 97.0 63.6 83.1
Yanaka et al. (2018) 84.2 77.3 84.3
Hu et al. (2020) 83.8 70.7 77.2
Abzianidze (2020) 94.3 67.9 84.4

Hybrid System
Hu et al. (2020)+BERT 83.2 85.5 85.4
Kalouli et al. (2020) – – 86.5

Our System
NeuralLog (full system) 88.0 87.6 90.3
− ALBERT-SV 68.9 79.3 71.4
− Monotonicity 74.5 75.1 74.7

Table 3: Performance on the SICK test set

from Stanford’s natural language analysis pack-
age, Stanza (Qi et al., 2020). In the parser, we
use a neural parsing model pretrained on the UD
English GUM corpus (Zeldes, 2017) with 90.0
LAS (Zeman et al., 2018) evaluation score. For
Sentence-BERT, we selected the BERT-large model
pre-trained on STS-B (Cer et al., 2017). For AL-
BERT, we used textattack’s ALBERT-base model
pretrained on MRPC from transformers. For word
alignment in the controller, we select Řehůřek and
Sojka (2010)’s Gensim framework to calculate
word similarity from pre-trained word embedding.
We evaluated our model on the SICK and MED
datasets using the standard NLI evaluation metrics
of accuracy, precision, and recall. Additionally, we
conducted two ablation tests focusing on analyz-
ing the contributions of the monotonicity inference
modules and the syntactic variation module.

6.2 Results

SICK Table 3 shows the experiment results
tested on SICK. We compared our performance
to several logic-based systems as well as two deep
learning based models. As the evaluation results
show, our model achieves the state-of-art perfor-
mance on the SICK dataset. The best logic-based
model is Abzianidze (2020) with 84.4 percent accu-
racy. The best DL-based model is Yin and Schütze
(2017) with 87.1 percent accuracy. Our system out-
performs both of them with 90.3 percent accuracy.
Compare to Hu et al. (2020) + BERT, which also
explores a way of combining logic-based meth-
ods and deep learning based methods, our system

Model Up Down All
DeComp (Parikh et al., 2016) 71.1 45.2 51.4
ESIM (Chen et al., 2017) 66.1 42.1 53.8
BERT (Devlin et al., 2019) 82.7 22.8 44.7
BERT+ (Yanaka et al., 2019a) 76.0 70.3 71.6
NeuralLog (ours) 91.4 93.9 93.4

Table 4: Results comparing model compared to state-
of-art NLI models evaluated on MED. Up, Down, and
All stand for the accuracy on upward inference, down-
ward inference, and the overall dataset.

shows higher accuracy with a 4.92 percentage point
increase. In addition, our system’s accuracy has a
3.8 percentage point increase than another hybrid
system, Hy-NLI (Kalouli et al., 2020). The good
performance proves that our framework for joint
logic and neural reasoning can achieve state-of-art
performance on inference and outperforms existing
systems.

Ablation Test In addition to the standard evalua-
tion on SICK, we conducted two ablation tests. The
results are included in Table 3. First, we remove
the syntactic variation module that uses neural net-
work for alignment (−ALBERT-SV). As the table
shows, the accuracy drops 18.9 percentage points.
This large drop in accuracy indicates that the syn-
tactic variation module plays a major part in our
overall inference process. The result also proves
our hypothesis that deep learning methods for in-
ference can improve the performance of traditional
logic-based systems significantly. Secondly, when
we remove the monotonicity-based inference mod-
ules (−Monotonicity), the accuracy shows another
large decrease in accuracy, with a 15.6 percentage
point drop. This result demonstrates the impor-
tant contribution of the logic-based inference mod-
ules toward the overall state-of-the-art performance.
Compared to the previous ablation test which re-
moves the neural network based syntactic variation
module, the accuracy does not change much (only
3.3 differences). This similar performance indi-
cates that neural network inference in our system
alone cannot achieve state-of-art performance on
the SICK dataset, and additional guidance and con-
strains from the logic-based methods are essential
parts of our framework. Overall, we believe that
the results reveal that both modules, logic and neu-
ral, contribute equally to the final performance and
are both important parts that are unmovable.

MED Table 4 shows the experimental results
tested on MED. We compared to multiple deep

learning based baselines. Here, DeComp and ESIM
are trained on SNLI and BERT is fine-tuned with
MultiNLI. The BERT+ model is a BERT model
fine-tuned on a combined training data with the
HELP dataset, (Yanaka et al., 2019b), a set of aug-
mentations for monotonicity reasoning, and the
MultiNLI training set. Both models were tested in
Yanaka et al. (2019a). Overall, our system (Neural-
Log) outperforms all DL-based baselines in terms
of accuracy, by a significant amount. Compared
to BERT+, our system performs better both on up-
ward (+15.4) and downward (+23.6) inference, and
shows significant higher accuracy overall (+21.8).
The good performance on MED validates our sys-
tem’s ability on accurate and robust monotonicity-
based inference.

6.3 Error Analysis

For entailment, a large amount of inference errors
are due to an incorrect dependency parse trees from
the parser. For example, P: A black, red, white and
pink dress is being worn by a woman, H: A dress,
which is black, red, white and pink is being worn
by a woman, has long conjunctions that cause the
parser to produce two separate trees from the same
sentence. Secondly, a lack of sufficient background
knowledge causes the system to fail to make infer-
ences which would be needed to obtain a correct
label. For example, P: One man is doing a bicy-
cle trick in midair, H: The cyclist is performing a
trick in the air requires the system to know that a
man doing a bicycle trick is a cyclist. This kind
of knowledge can only be injected to the system
either by handcrafting rules or by extracting it from
the training data. For contradiction, our analysis
reveals inconsistencies in the SICK dataset. We ac-
count for multiple sentence pairs that have the same
syntactic and semantic structures, but are labeled
differently. For example, P: A man is folding a tor-
tilla, H: A man is unfolding a tortilla has gold-label
Neutral while P: A man is playing a guitar, H: A
man is not playing a guitar has gold-label Contra-
diction. These two pair of sentences clearly have
similar structures but have inconsistent gold-labels.
Both gold-labels would be reasonable depending
on whether the two subjects refer to the same entity.

7 Conclusion and Future Work

In this paper, we presented a framework to combine
logic-based inference with deep-learning based in-
ference for improved Natural Language Inference

performance. The main method is using a search
engine and an alignment based controller to dis-
patch the two inference methods (logic and deep-
learning) to their area of expertise. This way, logic-
based modules can solve inference that requires
logical rules and deep-learning based modules can
solve inferences that contain syntactic variations
which are easier for neural networks. Our system
uses a beam search algorithm and three inference
modules (lexical, phrasal, and syntactic variation)
to find an optimal path that can transform a premise
to a hypothesis. Our system handles syntactic vari-
ations in natural sentences using the neural net-
work on phrase chunks, and our system determines
contradictions by searching for contradiction sig-
natures (evidence for contradiction). Evaluations
on SICK and MED show that our proposed frame-
work for joint logical and neural reasoning can
achieve state-of-art accuracy on these datasets. Our
experiments on ablation tests show that neither
logic nor neural reasoning alone fully solve Natural
Language Inference, but a joint operation between
them can bring improved performance.

For future work, one plan is to extend our system
with more logic inference methods such as those
using dynamic semantics (Haruta et al., 2020) and
more neural inference methods such as those for
commonsense reasoning (Levine et al., 2020). We
also plan to implement a learning method that al-
lows the system to learn from mistakes on a train-
ing dataset and automatically expand or correct
its rules and knowledge bases, which is similar to
Abzianidze (2020)’s work.

Acknowledgements

We thank the anonymous reviewers for their in-
sightful comments. We also thank Dr. Michael
Wollowski from Rose-hulman Institute of Technol-
ogy for his helpful feedback on this paper.

References
Lasha Abzianidze. 2017. LangPro: Natural language

theorem prover. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 115–
120, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Lasha Abzianidze. 2020. Learning as abduction: Train-
able natural logic theorem prover for natural lan-
guage inference. In Proceedings of the Ninth Joint
Conference on Lexical and Computational Seman-

https://doi.org/10.18653/v1/D17-2020
https://doi.org/10.18653/v1/D17-2020
https://www.aclweb.org/anthology/2020.starsem-1.3
https://www.aclweb.org/anthology/2020.starsem-1.3
https://www.aclweb.org/anthology/2020.starsem-1.3

tics, pages 20–31, Barcelona, Spain (Online). Asso-
ciation for Computational Linguistics.

I. Beltagy, Stephen Roller, Pengxiang Cheng, Katrin
Erk, and Raymond J. Mooney. 2016. Represent-
ing meaning with a combination of logical and
distributional models. Computational Linguistics,
42(4):763–808.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced LSTM
for natural language inference. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1657–1668, Vancouver, Canada. Association
for Computational Linguistics.

Zeming Chen and Qiyue Gao. 2021. Monotonicity
marking from universal dependency trees. CoRR,
abs/2104.08659.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking NLI systems with sentences that re-
quire simple lexical inferences. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 650–655, Melbourne, Australia. Association
for Computational Linguistics.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural lan-
guage inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Izumi Haruta, Koji Mineshima, and Daisuke Bekki.
2020. Combining event semantics and degree se-
mantics for natural language inference. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 1758–1764, Barcelona,

Spain (Online). International Committee on Compu-
tational Linguistics.

Hai Hu, Qi Chen, Kyle Richardson, Atreyee Mukher-
jee, Lawrence S. Moss, and Sandra Kuebler. 2020.
MonaLog: a lightweight system for natural language
inference based on monotonicity. In Proceedings
of the Society for Computation in Linguistics 2020,
pages 334–344, New York, New York. Association
for Computational Linguistics.

Hai Hu and Larry Moss. 2018. Polarity computations
in flexible categorial grammar. In Proceedings of
the Seventh Joint Conference on Lexical and Com-
putational Semantics, pages 124–129, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Aikaterini-Lida Kalouli, Richard Crouch, and Valeria
de Paiva. 2020. Hy-NLI: a hybrid system for natural
language inference. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 5235–5249, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan
Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. 2020. SenseBERT:
Driving some sense into BERT. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4656–4667, On-
line. Association for Computational Linguistics.

H. Liu and P. Singh. 2004. Conceptnet — a practi-
cal commonsense reasoning tool-kit. BT Technology
Journal, 22(4):211–226.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Bill MacCartney and Christopher D. Manning. 2009.
An extended model of natural logic. In Proceedings
of the Eighth International Conference on Computa-
tional Semantics (IWCS-8), Tilburg, Netherlands.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A SICK cure for the evaluation of compo-
sitional distributional semantic models. In Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14), pages
216–223, Reykjavik, Iceland. European Language
Resources Association (ELRA).

Pascual Martínez-Gómez, Koji Mineshima, Yusuke
Miyao, and Daisuke Bekki. 2016. ccg2lambda: A
compositional semantics system. In Proceedings

https://doi.org/10.1162/COLI_a_00266
https://doi.org/10.1162/COLI_a_00266
https://doi.org/10.1162/COLI_a_00266
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/P17-1152
https://doi.org/10.18653/v1/P17-1152
http://arxiv.org/abs/2104.08659
http://arxiv.org/abs/2104.08659
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://www.aclweb.org/anthology/2020.coling-main.156
https://www.aclweb.org/anthology/2020.coling-main.156
https://www.aclweb.org/anthology/2020.scil-1.40
https://www.aclweb.org/anthology/2020.scil-1.40
https://doi.org/10.18653/v1/S18-2015
https://doi.org/10.18653/v1/S18-2015
https://www.aclweb.org/anthology/2020.coling-main.459
https://www.aclweb.org/anthology/2020.coling-main.459
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2020.acl-main.423
https://doi.org/10.18653/v1/2020.acl-main.423
https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d
https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://aclweb.org/anthology/P/P16/P16-4015.pdf
https://aclweb.org/anthology/P/P16/P16-4015.pdf

of ACL 2016 System Demonstrations, pages 85–
90, Berlin, Germany. Association for Computational
Linguistics.

Pascual Martínez-Gómez, Koji Mineshima, Yusuke
Miyao, and Daisuke Bekki. 2017. On-demand injec-
tion of lexical knowledge for recognising textual en-
tailment. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
710–720, Valencia, Spain. Association for Computa-
tional Linguistics.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

George A. Miller. 1995. Wordnet: A lexical database
for english. Commun. ACM, 38(11):39–41.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2249–2255,
Austin, Texas. Association for Computational Lin-
guistics.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 101–
108, Online. Association for Computational Linguis-
tics.

Radim Řehůřek and Petr Sojka. 2010. Software
Framework for Topic Modelling with Large Cor-
pora. In Proceedings of the LREC 2010 Workshop
on New Challenges for NLP Frameworks, pages 45–
50, Valletta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and Jo-
han Bos. 2019a. Can neural networks understand
monotonicity reasoning? In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 31–40,
Florence, Italy. Association for Computational Lin-
guistics.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and Jo-
han Bos. 2019b. HELP: A dataset for identifying
shortcomings of neural models in monotonicity rea-
soning. In Proceedings of the Eighth Joint Con-
ference on Lexical and Computational Semantics
(*SEM 2019), pages 250–255, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Hitomi Yanaka, Koji Mineshima, Pascual Martínez-
Gómez, and Daisuke Bekki. 2018. Acquisition
of phrase correspondences using natural deduction
proofs. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 756–766,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Wenpeng Yin and Hinrich Schütze. 2017. Task-
specific attentive pooling of phrase alignments con-
tributes to sentence matching. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 1,
Long Papers, pages 699–709, Valencia, Spain. Asso-
ciation for Computational Linguistics.

Amir Zeldes. 2017. The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–21, Brussels, Belgium.
Association for Computational Linguistics.

https://www.aclweb.org/anthology/E17-1067
https://www.aclweb.org/anthology/E17-1067
https://www.aclweb.org/anthology/E17-1067
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
https://doi.org/10.18653/v1/D16-1244
https://doi.org/10.18653/v1/D16-1244
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/W19-4804
https://doi.org/10.18653/v1/W19-4804
https://doi.org/10.18653/v1/S19-1027
https://doi.org/10.18653/v1/S19-1027
https://doi.org/10.18653/v1/S19-1027
https://doi.org/10.18653/v1/N18-1069
https://doi.org/10.18653/v1/N18-1069
https://doi.org/10.18653/v1/N18-1069
https://www.aclweb.org/anthology/E17-1066
https://www.aclweb.org/anthology/E17-1066
https://www.aclweb.org/anthology/E17-1066
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001

