Computational Linguistics CSC 485/2

CSC 485/2501 Fall 2025

7. Statistical parsing

Gerald Penn
Department of Computer Science, University of Toronto

Reading: Jurafsky & Martin: 5.2–5.5.2, 5.6, 12.4, 14.0–1, 14.3–4, 14.6–7. Bird et al: 8.6.

Statistical parsing 1

General idea:

- Assign probabilities to rules in a context-free grammar.
 - Use a likelihood model.
- Combine probabilities of rules in a tree.
 - Yields likelihood of a parse.
- The best parse is the most likely one.

Statistical parsing 2

• Motivations:

- Uniform process for attachment decisions.
- Use lexical preferences in all decisions.

Three general approaches

- 1. Assign a probability to each rule of grammar, including lexical productions.
 - -Parse string of input words with probabilistic rules. The can will rust.
- 2. Assign probabilities only to non-lexical productions.
 - -Probabilistically tag input words with syntactic categories using a **part-of-speech tagger**.
 - Consider the pre-terminal syntactic categories to be terminals, parse that string with probabilistic rules.
 Det N Modal Verb.
- 3. "Supertagging" parsing as tagging with tree fragments.

Part-of-speech tagging

- Part-of-speech (PoS) tagging:
 Given a sequence of words w₁ ... w_n (from well-formed text), determine the syntactic category (PoS) C_i of each word.
- *I.e,* the best category sequence $C_1 \dots C_n$ to assign to the word sequence $w_1 \dots w_n$.

Most likely

Part-of-speech tagging 2

Example:

```
The can will rust

det modal verb modal werb noun

noun noun verb

verb verb
```

Part-of-speech tagging

$$P(C_1 \dots C_n | w_1 \dots w_n) = \frac{P(C_1 \dots C_n \wedge w_1 \dots w_n)}{P(w_1 \dots w_n)}$$

- We cannot get this probability directly.
- Have to estimate it (through counts).
- Perhaps after first approximating it (by modifying the formula).
- Counts: Need representative corpus.

Look at individual words (unigrams):

$$P(C|w) = \frac{P(C \wedge w)}{P(w)}$$

Maximum likelihood estimator (MLE):

$$P(C|w) = \frac{c(w \text{ is } C)}{c(w)}$$

Count in corpus

- Problems of MLE:
 - Sparse data.
 - Extreme cases:
 - a. Undefined if w is not in the corpus.
 - b. 0 if w does not appear in a particular category.

Smoothing of formula, e.g.,:

$$P(C|w) \approx \frac{c(w \text{ is } C) + \epsilon}{c(w) + \epsilon N}$$

- Give small (non-zero) probability value to unseen events, taken from seen events by discounting them.
- Various methods to ensure we still have valid probability distribution.

- Just choosing the most frequent PoS for each word yields 90% accuracy in PoS tagging.
- But:
 - Not uniform across words.
 - Accuracy is low (0.9ⁿ) when multiplied over n words.
 - No context: The fly vs. I will fly.
- Need better approximations for

$$P(C_1 \ldots C_n | w_1 \ldots w_n)$$

PoS tagging: Bayesian method

Use Bayes's rule to rewrite:

$$= \underbrace{P(C_1 \dots C_n | w_1 \dots w_n)}_{P(C_1 \dots C_n) \times P(w_1 \dots w_n | C_1 \dots C_n)} 2$$

 For a given word string, we want to maximize this, find most likely C₁ ... C_n:

$$\underset{C_1...C_n}{\operatorname{argmax}} P(C_1...C_n \mid w_1...w_n)$$

So just need to maximize the numerator.

Approximating probabilities 1

- Approximate $(DP(C_1 ... C_n))$ by predicting each category from previous (V_n) 1 categories: an **N**-gram model. Warning: Not
- Bigram (2-gram) model:

$$P(C_1 \dots C_n) \approx \prod_{i=1}^n P(C_i | C_{i-1})$$

 Posit pseudo-categories START at C₀, and END as C_n. Example:

 $P(A N V N) \approx P(A|START) \cdot P(N|A) \cdot P(V|N) \cdot P(N|V) \cdot P(END|N)$

the same *n*!!

Approximating probabilities 2

• Approximate $2P(w_1 ... w_n|C_1 ... C_n)$ by assuming that the probability of a word appearing in a category is independent of the words surrounding it.

$$P(w_1 ... w_n | C_1 ... C_n) \approx \prod_{i=1}^n P(w_i | C_i)$$
Lexical generation probabilities

Approximating probabilities 3

- Why is P(w|C) better than P(C|w)?
 - P(C|w) is clearly *not* independent of surrounding categories.
 - Lexical generation probability is somewhat more independent.
 - Complete formula for PoS includes bigrams, and so it does capture some context.

Putting it all together

$$P(C_{1}...C_{n} | w_{1}...w_{n})$$

$$= \frac{P(C_{1}...C_{n} \wedge w_{1}...w_{n})}{P(w_{1}...w_{n})}$$

$$= \frac{P(C_{1}...C_{n}) \times P(w_{1}...w_{n} | C_{1}...C_{n})}{P(w_{1}...w_{n})}$$

$$\propto P(C_{1}...C_{n}) \times P(w_{1}...w_{n} | C_{1}...C_{n})$$

$$\approx \prod_{i=1}^{n} P(C_{i} | C_{i-1}) \times P(w_{i} | C_{i})$$

$$= \prod_{i=1}^{n} \frac{c(C_{i-1}C_{i})}{c(C_{i-1})} \times \frac{c(w_{i} \text{ is } C_{i})}{c(C_{i})}$$

Really should use smoothed MLE; MLE for categories not the same as for words; cf slide 10 cf slide 8

Finding max 1

- Want to find the argmax (most probable)
 C₁ ... C_n.
- Brute force method: Find all possible sequences of categories and compute P.
- Unnecessary: Our approximation assumes independence:
 - Category bigrams: C_i depends only on C_{i-1} . Lexical generation: w_i depends only on C_i .
 - Hence we do not need to enumerate all sequences independently.

Finding max 2

- Bigrams:
 Markov model.
 - States are categories and transitions are bigrams.
- Lexical generation probabilities:
 Hidden Markov model.
 - Words are outputs (with given probability) of states.
 - A word could be the output of more than one state.
 - Current state is unknown ("hidden").

Example

Based on an example in section 7.3 of: Allen, James. *Natural* Language Understanding (2nd ed), 1995, Benjamin Cummings.

- Artificial corpus of PoS-tagged 300 sentences using only Det, N, V, P.
 - The flower flowers like a bird.
 Some birds like a flower with fruit beetles.
 Like flies like flies.

. . .

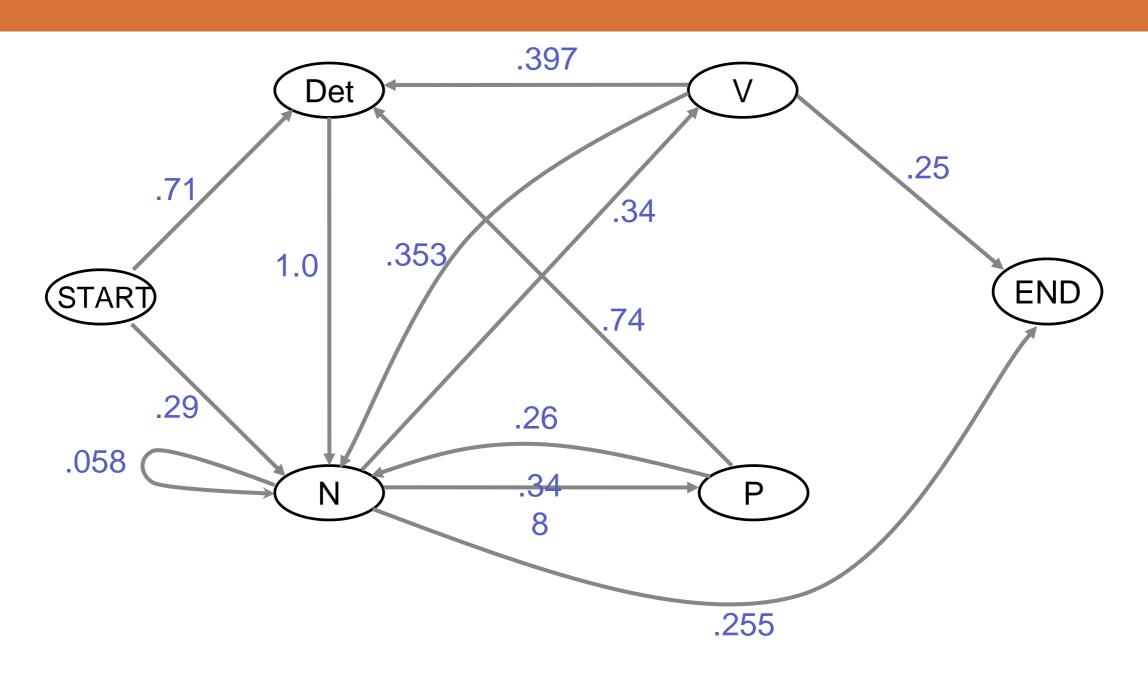
Some lexical generation probabilities:

```
P(the|Det) = .54 P(like|N) = .012 P(flower|N) = .063 P(birds|N) = .076 P(a|Det) = .36 P(like|V) = .1 P(flower|V) = .050 P(flies|V) = .076 P(a|N) = .001 P(like|P) = .068 P(flowers|N) = .050 P(flies|N) = .025 P(flowers|V) = .053 P(flowers|N) = .053 P(flowers|N) = .050
```

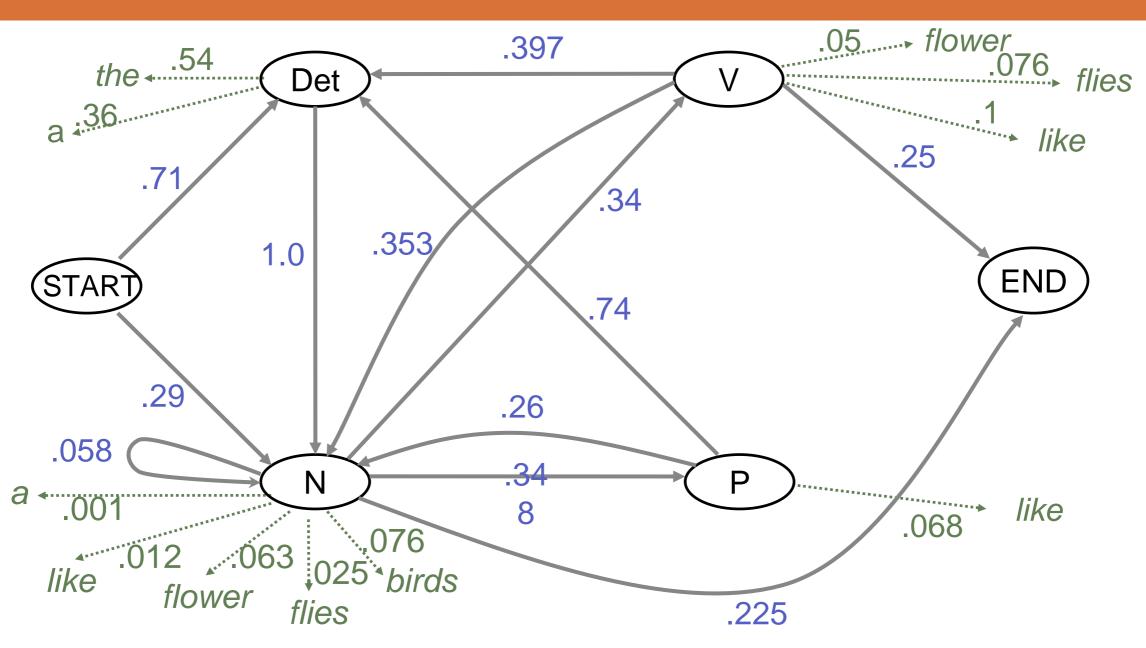
Markov model: Bigram table

Bigram C _{<i>i</i>–1} , C _{<i>i</i>}	Count C _{i-1}	Count C _{i-1} ,C _i	$P(C_i C_{i-1})$	Estimate
START, Det	300	213	P(Det START)	0.710
START, N	300	87	P(N START)	0.290
Det, N	558	558	P(N Det)	1.000
N, V	883	300	P(V N)	0.340
N, N	883	51	P(N N)	0.058
N, P	883	307	P(P N)	0.348
N, END	883	225	P(END N)	0.255
V, N	300	106	P(N V)	0.353
V, Det	300	119	P(Det N)	0.397
V, END	300	75	P(END V)	0.250
P, Det	307	226	P(Det P)	0.740
P, N	307	81	P(N P)	0.260

Markov model: Transition probabilities



HMM: Lexical generation probabilities



$$P(the|Det) = .54$$
 $P(like|N) = .012$ $P(a|Det) = .36$ $P(like|V) = .1$ $P(a|N) = .001$ $P(like|P) = .068$ \vdots \vdots

$$P(flower|N) = .063$$

 $P(flower|V) = .050$
 $P(flowers|N) = .050$
 $P(flowers|V) = .053$

$$P(birds|N) = .076$$

 $P(flies|V) = .076$
 $P(flies|N) = .025$
:

Hidden Markov models 1

 Given the observed output, we want to find the most likely path through the model.

The can will rust

det modal verb modal verb noun
 noun noun verb
 verb

Hidden Markov models 2

- At any state in an HMM, how you got there is irrelevant to computing the next transition.
 - So, just need to remember the best path and probability up to that point.
 - Define $\phi(C_{i-1})$ as the probability of the best sequence up to state C_{i-1} .
- Then find C_i that maximizes $\varphi(C_{i-1}) \times P(C_i | C_{i-1}) \times P(w | C_i)$
- 3 from slide 17

Viterbi Algorithm

- Given an HMM and an observation O of its output, finds the most probable sequence S of states that produced O.
 - O = words of sentence, S = PoS tags of sentence
- Parameters of HMM based on large training corpus.
- Then find C_i that maximizes $\varphi(C_{i-1}) \times P(C_i | C_{i-1}) \times P(w | C_i)$ $\beta_i = C_{i-1}$ [backtrace]

Baum-Welch Algorithm

- Given an HMM M and an observation O, adjust the parameters of M to improve the probability P(O).
 - O = words of sentence, $M = \langle \pi, A, B \rangle$
- This is an instance of Expectation-Maximization (EM).

Statistical chart parsing

- Consider tags as terminals (i.e., use a PoS tagger to pre-process input texts).
 Det N Modal Verb.
- For probability of each grammar rule, use MLE.
- Probabilities derived from hand-parsed corpora (treebanks).
 - Count frequency of use c of each rule $C \to \alpha$, for each non-terminal C and each different RHS α .

What are some problems with this approach?

- MLE probability of rules:
 - For each rule $C \rightarrow \alpha$:

$$P(C \to \alpha | C) = \frac{c(C \to \alpha)}{\sum_{\beta} c(C \to \beta)} = \frac{c(C \to \alpha)}{c(C)}$$

- Takes no account of the context of use of a rule: independence assumption.
- Source-normalized: assumes a top-down generative process.
- NLTK's pchart demo doesn't POS-tag first (words are generated top-down), and it shows P(t) rather than P(t|s). Why?

```
>>> import nltk
>>> nltk.parse.pchart.demo()
  1: I saw John with my telescope
     <Grammar with 17 productions>
  2: the boy saw Jack with Bob under the table with a telescope
     <Grammar with 23 productions>
Which demo (1-2)? 1
s: I saw John with my telescope
parser: <nltk.parse.pchart.InsideChartParser object at 0x7f61288f3290>
grammar: Grammar with 17 productions (start state = S)
    S -> NP VP [1.0]
    NP -> Det N [0.5]
    NP -> NP PP [0.25]
    NP -> 'John' [0.1]
    NP -> 'I' [0.15]
    Det -> 'the' [0.8]
    Det -> 'my' [0.2]
    N -> 'man' [0.5]
    N -> 'telescope' [0.5]
    VP -> VP PP [0.1]
    VP -> V NP [0.7]
   VP -> V [0.2]
   V -> 'ate' [0.35]
   V -> 'saw' [0.65]
    PP -> P NP [1.0]
    P -> 'with' [0.61]
    P -> 'under' [0.39]
```

30

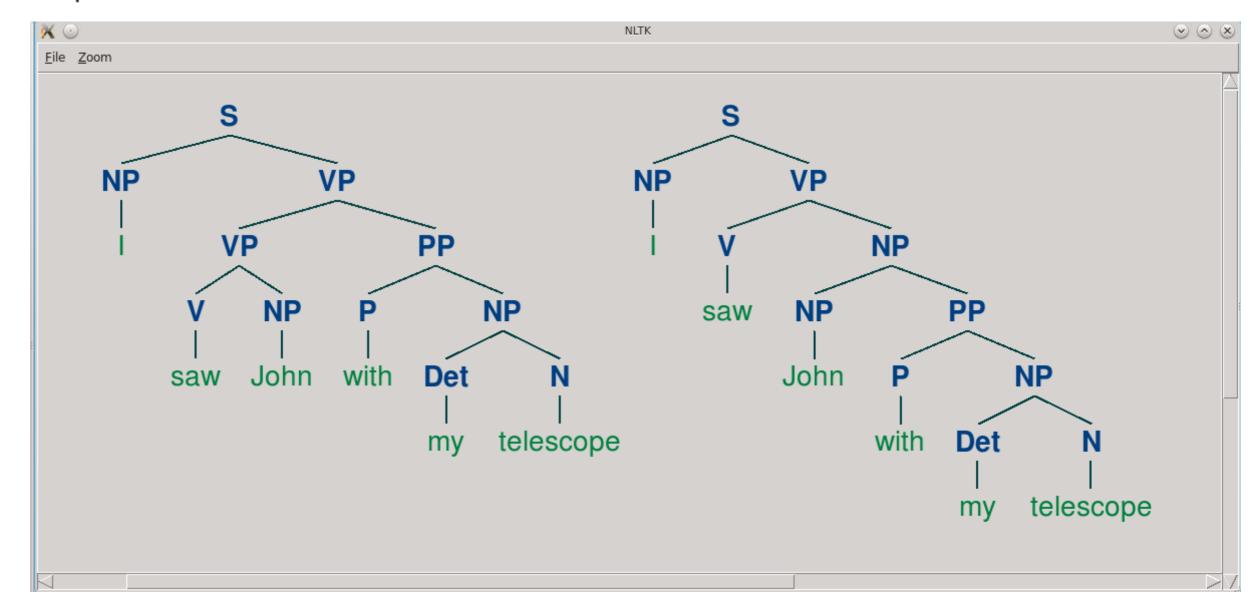
```
|[-] . . . . | [0:1] 'I'
                                                    [1.0]
|. [-] . . . .| [1:2] 'saw'
                                                    [1.0]
|. . [-] . . .| [2:3] 'John'
                                                    [1.0]
|. . . [-] . .| [3:4] 'with'
                                                    [1.0]
|. . . . [-] .| [4:5] 'my'
                                                    [1.0]
  . . . [-]| [5:6] 'telescope'
                                                    [1.0]
  . . . [-]| [5:6] 'telescope'
                                                    [1.0]
|. . . . [-] .| [4:5] 'my'
                                                    [1.0]
|. . . [-] . .| [3:4] 'with'
                                                    [1.0]
|. . [-] . . .| [2:3] 'John'
                                                    [1.0]
|. [-] . . . .| [1:2] 'saw'
                                                    [1.0]
|[-] . . . . .| [0:1] 'I'
                                                    [1.0]
|. [-] . . . .| [1:2] V -> 'saw' *
                                                    [0.65]
|. > . . . . | [1:1] VP -> * V NP
                                                    [0.7]
|. > . . . . | [1:1] V -> * 'saw'
                                                    [0.65]
|. . . [-] . .| [3:4] P -> 'with' *
                                                    [0.61]
. . . > . . . | [3:3] PP -> * P NP
                                                    [1.0]
|. . . [-> . .| [3:4] PP -> P * NP
                                                    [0.61]
|. . . > . . . | [3:3] P -> * 'with'
                                                    [0.61]
|. . . . [-]| [5:6] N -> 'telescope' *
                                                    [0.5]
|. . . . > .| [5:5] N -> * 'telescope'
                                                    [0.5]
|. [-> . . . | [1:2] VP -> V * NP
                                                    [0.455]
|. > . . . . | [1:1] VP -> * V
                                                    [0.2]
|. . . . [-] .| [4:5] Det -> 'my' *
                                                    [0.2]
|. . . . > . .| [4:4] NP -> * Det N
                                                    [0.5]
|. . . . > . .| [4:4] Det -> * 'my'
                                                    [0.2]
```

|. . . . > . . | [4:4] S -> * NP VP |. . . . > . . | [4:4] NP -> * NP PP |. . . . [--->| [4:6] S -> NP * VP |. [---] . . .| [1:3] VP -> V NP * |[-> | [0:1] NP -> NP * PP |. . . [-----]| [3:6] PP -> P NP * |. . [-> . . . | [2:3] NP -> NP * PP |[---] | [0:2] S -> NP VP * |. [-> . . . | [1:2] VP -> VP * PP |. . . . [--->| [4:6] NP -> NP * PP |[----] . . .| [0:3] S -> NP VP * |. [---> . . .| [1:3] VP -> VP * PP |. . [-----]| [2:6] NP -> NP PP * |. . [----->| [2:6] S -> NP * VP |. [-----]| [1:6] VP -> V NP * |. . [----->| [2:6] NP -> NP * PP |. [-----]| [1:6] VP -> VP PP * |[=======]| [0:6] S -> NP VP * |. [-----| [1:6] VP -> VP * PP |[=======]| [0:6] S -> NP VP *

|. [---->| [1:6] VP -> VP * PP

[1.0] [0.25][0.05][0.0455] [0.0375] [0.0305] [0.025] [0.0195] [0.013] [0.0125][0.006825] [0.00455] [0.0007625] [0.0007625] [0.0003469375] [0.000190625] [0.000138775] [5.2040625e-05] [3.469375e-05] [2.081625e-05] [1.38775e-05]

Draw parses (y/n)? y please wait...



```
Print parses (y/n)? y
  (S
    (NP I)
    (VP
        (VP (V saw) (NP John))
        (PP (P with) (NP (Det my) (N telescope))))) [2.081625e-05]
(S
    (NP I)
    (VP
        (V saw)
        (NP
        (NP John)
        (NP John)
        (PP (P with) (NP (Det my) (N telescope)))))) [5.2040625e-05]
```

Statistical chart parsing 3

 In this view of chart parsing, probability of chart entries is relatively simple to calculate. For completed constituents, maximize over C₁,...,C_n (like Viterbi):

$$P(e_0) = P(C_0 \to C_1 \dots C_n | C_0) \times P(e_1) \times \dots \times P(e_n)$$

$$= P(C_0 \to C_1 \dots C_n | C_0) \times \prod_{i=1}^n P(e_i)$$
5

 e_0 is the entry for current constituent, of category C_0 ; $e_1 \dots e_n$ are chart entries for $C_1 \dots C_n$ in the RHS of the rule.

NB: Unlike for PoS tagging above, the C_i are not necessarily lexical categories.

Statistical chart parsing

- Consider a complete parse tree, t, with root label S.
- Recasting **5**, t has the probability: $P(t) = P(S) * \Pi_n P(rule(n) | cat(n))$ where n ranges over all nodes in the tree t; rule(n) is the rule used for n; cat(n) is the category of n.
- P(S) = 1!
- "Bottoms out" at lexical categories.
- Note that we're parsing bottom-up, but the generative model "thinks" top-down regardless.

Inside-Outside Algorithm

- EM for PCFGs: maximum likelihood estimates on an annotated corpus can be improved to increase the likelihood of a different, unannotated corpus
- Step 1: parse the unannotated corpus using the MLE parameters.
- Step 2: adjust the parameters according to the expected relative frequencies of different rules in the parse trees obtained in Step 1:
 - $\dot{p}(A \rightarrow B C) = \mu(A \rightarrow B C) / Z$
 - $\dot{p}(A \rightarrow w) = \mu(A \rightarrow w) / Z$

Inside-Outside Algorithm 2

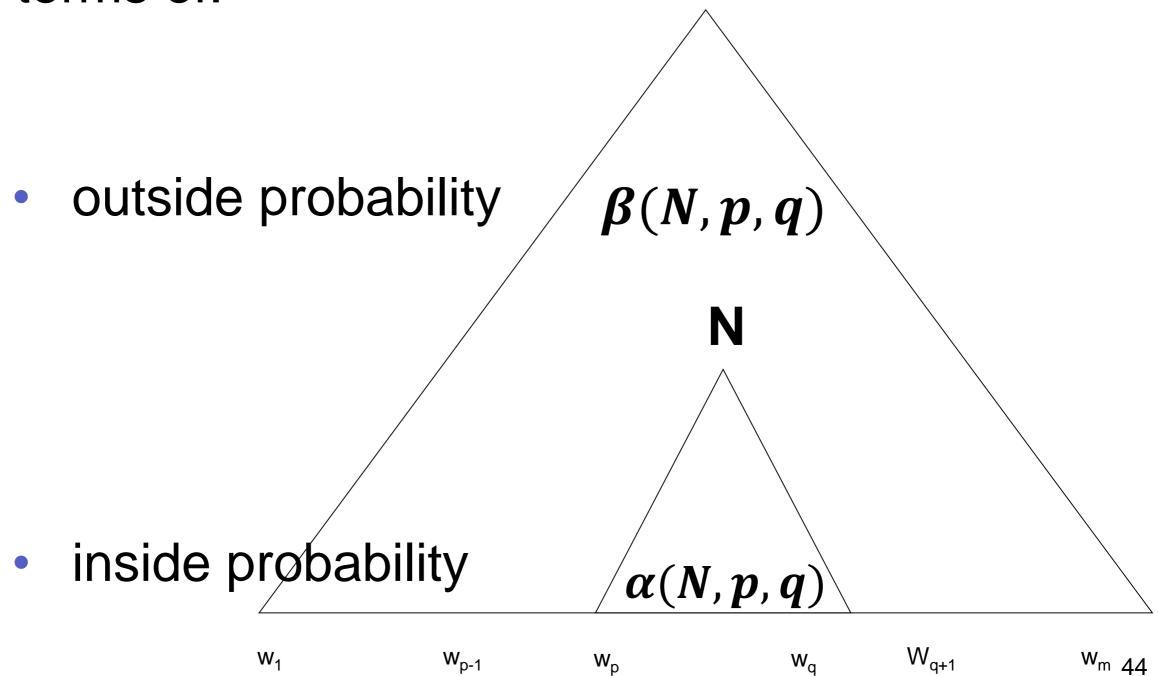
- $\mu(A \rightarrow BC) = \sum_{\{i,k,j\}} \mu(A \rightarrow BC, i, k, j)$
- $\mu(A \to w) = \sum_{i} \mu(A, i) \delta_i(w)$

where we now count having seen an A from i to j, a B from i to k, and a C from k to j,

...or an A at location i, where there appears the word w.

Inside-Outside Algorithm 3

 We can define these position-specific µ's in terms of:



Inside-Outside Algorithm 4

- $\mu(A \to BC, i, k, j) =$ $p(A \to BC) \beta(A, i, j) \alpha(B, i, k) \alpha(C, k + 1, j)$
- $\mu(A,i) = \mu(A,i,i)$
- $\mu(A,i,j) = \alpha(A,i,j) \beta(A,i,j)$
- $Z = \alpha(S, 1, n)$

There are also very terse, recursive formulations of α and β that are amenable to dynamic programming.

Statistical chart parsing 5

- But just like non-statistical chart parsers, this one only answers 'yes' or 'no' (with a probability) in polynomial time:
 - It's not supposed to matter how we got each constituent. Just the non-terminal label and the span are all that should matter.
- There might be exponentially many trees in this formulation.
- And we're not calculating the probability that the input is a sentence – this is only the probability of one interpretation (tree).

- Evaluation method:
 - Train on part of a parsed corpus.
 (I.e., gather rules and statistics.)
 - Test on a different part of the corpus.
 - Development test: early stopping, metaparameters
 - Evaluation test: evaluate (and then done)
- In one sense, the best evaluation of a method like this would be data likelihood, but since we're scoring trees instead of strings, it's difficult to defend any sort of intuition about the numbers assigned to them.

- Evaluation: PARSEVAL measures compare parser output to known correct parse:
 - Labelled precision, labelled recall.

Fraction of constituents in output that are correct.

Fraction of correct constituents in output.

 F-measure = harmonic mean of precision and recall = 2PR / (P + R)

- Evaluation: PARSEVAL measures compare parser output to known correct parse:
 - Penalize for cross-brackets per sentence:
 Constituents in output that overlap two (or more) correct ones; e.g., [[A B] C] for [A [B C]].

```
[[Nadia] [[smelled] [the eggplant]]] [[[Nadia] [smelled]] [the eggplant]]
```

The labels on the subtrees aren't necessary for this one.

- PARSEVAL is a classifier accuracy score much more extensional. All that matters is the right answer at the end.
- But that still means that we can look at parts of the right answer.
- Can get ~75% labelled precision, recall, and F with above methods.

Improving statistical parsing

 Problem: Probabilities are based only on structures and categories:

$$P(C \to \alpha | C) = \frac{c(C \to \alpha)}{\sum_{\beta} c(C \to \beta)} = \frac{c(C \to \alpha)}{c(C)}$$

- But actual words strongly condition which rule is used (cf Ratnaparkhi).
- Improve results by conditioning on more factors, including words. Think semantics – the words themselves give us a little bit of access to this.

Lexicalized grammars 1

- Head of a phrase: its central or key word.
 - The noun of an NP, the preposition of a PP, etc.
- Lexicalized grammar: Refine the grammar so that rules take heads of phrases into account — the actual words.
 - BEFORE: Rule for NP.
 AFTER: Rules for NP-whose-head-is-aardvark,
 NP-whose-head-is-abacus, ..., NP-whose-head-is-zymurgy.
- And similarly for VP, PP, etc.

Lexicalized grammars 2

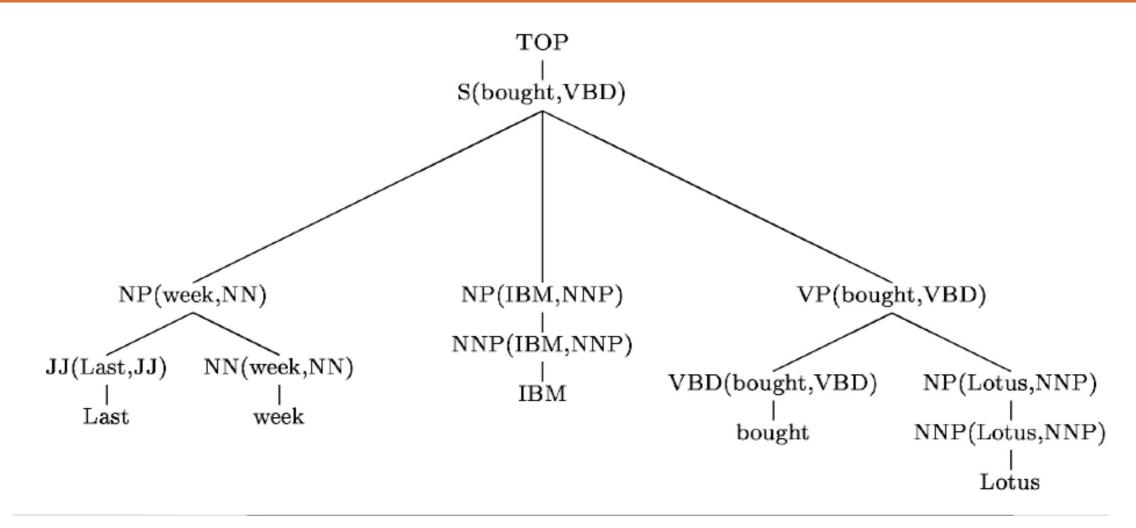
 Notation: cat(head,tag) for constituent category cat headed by head with part-ofspeech tag.

• e.g., NP(aardvark,NN), PP(without,IN)

NP-whose-head-is-the-NN-aardvark

PP-whose-head-is-the-IN-without

A lexicalized grammar



```
\begin{array}{lll} \mathsf{TOP} \to \mathsf{S}(bought,\mathsf{VBD}) & \mathsf{NP}(Lotus,\mathsf{NNP}) \to \mathsf{NNP}(Lotus,\mathsf{NNP}) \\ \mathsf{S}(bought,\mathsf{VBD}) \to \mathsf{NP}(week,\mathsf{NN}) \ \mathsf{NP}(lbought,\mathsf{VBD}) & \mathsf{Lexical Rules:} \\ \mathsf{VP}(bought,\mathsf{VBD}) & \mathsf{JJ}(Last,\mathsf{JJ}) \ \mathsf{NN}(week,\mathsf{NN}) & \mathsf{NN}(week,\mathsf{NN}) \to Last \\ \mathsf{NP}(week,\mathsf{NN}) \to \mathsf{JJ}(Last,\mathsf{JJ}) \ \mathsf{NN}(week,\mathsf{NN}) \to week \\ \mathsf{NP}(lbM,\mathsf{NNP}) \to \mathsf{NNP}(lbM,\mathsf{NNP}) & \mathsf{NNP}(lbM,\mathsf{NNP}) \to lbM \\ \mathsf{VP}(bought,\mathsf{VBD}) \to \mathsf{VBD}(bought,\mathsf{VBD}) & \mathsf{VBD}(bought,\mathsf{VBD}) \to bought \\ \mathsf{NP}(Lotus,\mathsf{NNP}) \to Lotus & \mathsf{NNP}(Lotus,\mathsf{NNP}) \to Lotus \\ \end{array}
```

Lexicalized grammars 3

- Number of rules and categories explodes, but no theoretical change in parsing process (whether statistical or not).
- But far too specific for practical use; each is too rarely used to determine its probability.
- Need something more than regular (unlexicalized) rules and less than complete lexicalization ...
- ... perhaps we should change the process after all.

Lexicalized parsing 1

Starting from unlexicalized rules:

- 1. Lexicalization: Consider the head word of each node, not just its category:
- $P(t) = P(S) * \Pi_n P(rule(n)|head(n))$ Replaces 6 from slide 41

where *head(n)* is the PoS-tagged head word of node *n*.

- Needs finer-grained probabilities:
 - e.g., probability that rule r is used, given we have an NP whose head is the noun deficit.

Lexicalized parsing 2

 2. Head and parent: Condition on the head and the head of the parent node in the tree:

```
P(Sentence, Tree) = \prod_{n \in Tree} P(rule(n) | head(n)) \times P(head(n) | head(parent(n)))
```

e.g., probability of rule r given that head is the noun deficit.

e.g., probability that head is the noun *deficit*, given that parent phrase's head is the verb *report*.

Effects on parsing

- Lexical information introduces context into CFG.
- Grammar is larger.
- Potential problems of sparse data.
 - Possible solutions: Smoothing; back-off estimates.

If you don't have data for a fine-grained situation, use data from a coarser-grained situation that it's contained in.

Bikel's 2004 intepretation

- Can condition on any information available in generating the tree.
- Basic idea: Avoid sparseness of lexicalization by decomposing rules.
 - Make plausible independence assumptions.
 - Break rules down into small steps (small number of parameters).
 - Each rule still parameterized with word/PoS pair:
 S(bought, VBD) → NP(week, NN) NP(IBM, NNP) VP(bought, VBD)

Collins's "model 1" 1

- Lexical Rules, with probability 1: tag(word, tag) → word
- Internal Rules, with treebank-based probabilities. Separate terminals to the left and right of the head; generate one at a time:

$$X \to L_n L_{n-1} ... L_1 H R_1 ... R_{m-1} R_m \quad (n, m \ge 0)$$

X, L_i, H, and R_i all have the form *cat*(*head*,*tag*). *Notation:* Italic lowercase symbol for (*head*,*tag*):

$$X(x) \to L_n(l_n)L_{n-1}(l_{n-1})...L_1(l_1) H(h) R_1(r_1)...R_{m-1}(r_{m-1}) R_m(r_m)$$

Collins's "model 1" 2

- Assume there are additional L_{n+1} and R_{m+1} representing phrase boundaries ("STOP").
- Example:

```
S(bought, VBD) \rightarrow NP(week, NN) NP(IBM, NNP) VP(bought, VBD)

n = 2, m = 0 (two constituents on the left of the head, zero on the right).

X = S, H = VP, L_1 = NP, L_2 = NP, L_3 = STOP, R_1 = STOP.

h = (bought, VBD), I_1 = (IBM, NNP), I_2 = (week, NN).
```

• Distinguish probabilities of heads P_h , of left constituents P_l , and of right constituents P_r .

Probabilities of internal rules

$$P(X(h)) = P(L_{n+1}(l_{n+1})L_n(l_n) ... L_1(l_1) H(h) R_1(r_1) ... R_m(r_m) R_{m+1}(r_{m+1}) | X, h)$$

$$= P_h(H | X, h)$$

$$\times \prod_{i=1}^{m+1} P_l(L_i(l_i) | L_1(l_1) ... L_{i-1}(l_{i-1}), X, h, H)$$

$$\times \prod_{j=1}^{m+1} P_r(R_j(r_j) | L_1(l_1) ... L_n(l_n), R_1(r_1) ... R_{j-1}(r_{j-1}), X, h, H)$$

$$\otimes P_h(H | X, h) \times \prod_{i=1}^{n+1} P_l(L_i(l_i) | X, h, H) \times \prod_{j=1}^{m+1} P_h(R_j(r_j) | X, h, H)$$

Generate head constituent

Generate left modifiers (stop at STOP)

By independence assumption

Generate right modifiers (stop at STOP)

Probabilities of internal rules 2

Example:

```
P(S(bought, VBD))
\rightarrow NP(week, NN) NP(IBM, NNP) VP(bought, VBD))
≈ P_h(VP \mid S, bought, VBD)
\times P_l(NP(IBM, NNP) \mid S, bought, VBD, VP)
\times P_l(NP(week, NN) \mid S, bought, VBD, VP)
\times P_l(STOP \mid S, bought, VBD, VP)
\times P_l(STOP \mid S, bought, VBD, VP)
\times P_l(STOP \mid S, bought, VBD, VP)
```

Generate right modifiers

Adding other dependencies

- (Badly-named) "distance measure" to capture properties of attachment relevant to current modifier.
 - $P_l(L_i(l_i) | X, h, H)$ becomes $P_l(L_i(l_i) | X, h, H, distance_l(i-1))$ and analogously on the right.
 - The value of distance_x is actually a pair of Boolean random variables:
 - Is string 1..(i 1) of length 0?
 i.e., is attachment of modifier i to the head?
 - Does string 1..(i 1) contain a verb?
 i.e., is attachment of modifier i crossing a verb?

Collins's "model 1" 4

- Backs off ...
 - to tag probability when no data for specific word;
 - to complete non-lexicalization when necessary.

Collins's Models 2 and 3

- Model 2: Add verb subcategorization and argument/adjunct distinction.
- Model 3: Integrate gaps and trace identification into model.
 - Especially important with addition of subcategorization.

Results and conclusions 1

- Model 2 outperforms Model 1.
- Model 3: Similar performance, but identifies traces too.
- Model 2 performs best overall:
 - LP = 89.6, LR = 89.9 [sentences \leq 100 words].
 - LP = 90.1, LR = 90.4 [sentences \leq 40 words].
- Rich information improves parsing performance.

Results and conclusions 2

Strengths:

- Incorporation of lexical and other linguistic information.
- Competitive results.

Weaknesses:

- Supervised training.
- Performance tightly linked to particular type of corpus used.

Results and conclusions 3

Importance to CL:

- High-performance parser showing benefits of lexicalization and linguistic information.
- Publicly available, widely used in research.
- There was some initial hope that it would make language models better, but that didn't pan out.
- But it was fairly successful at giving us some access to semantics, i.e. language modelling makes parsing better.