Text Summarization

Gerald Penn

CSC 401 University of Toronto

 $\verb|http://www.cs.toronto.edu/\sim gpenn/csc401|$

Text Summarization

Objective: return shortened version of text that includes its main points.

This includes:

- "gisting": just a few words almost topic classification
- abstracting, e.g., in MS Word
- longer summaries, e.g., 20% of original document size)
- original length (from multiple documents)

Kinds of Summaries

- Text vs. template
- **Perspective**: informative vs. indicative
- Composition: extract vs. abstract
- Orientation: document vs. query
- Source: single vs. multiple document
- Background: complete vs. update

Summarization by Extraction

Identify important information, and drop it into summary.

How do we determine importance?

- Position in text, e.g.:
 - first sentence of each paragraph
 - first and last paragraphs of document
 - section headings, captions, etc.
 - varies with genre
 - Hovy-Lin (partial) ordering:
 - * WSJ: $T > P1S1 > P1S2 > \cdots$
 - * Ziff-Davis: T > P2S1 > P3S1 > P2S2 > $\{P4S1, P5S1, P3S2\} > \cdots$

Summarization by Extraction

Identify important information, and drop it into summary.

How do we determine importance?

- Position in text
- Indicators
 - *− cues*, e.g.:
 - * "in this paper, we show"
 - * "in conclusion"
 - * "recommend that"
 - clues (bonus words), e.g.:
 - * "significantly"
 - * "this paper"
 - stigma words, e.g.:
 - * "hardly"
 - * "incidentally"
 - * "supported by a grant"

Summarization by Extraction

Identify important information, and drop it into summary.

How do we determine importance?

- Position in text
- Indicators
 - -cues
 - clues (bonus words)
 - $-stigma\ words$
 - content words from title
 - **not** tf.idf

Naive Bayes Classification

We can treat summarization as a sequence of bi-nary classification problems: every sentence is either in or out.

Bayes decision rule: choose outcome that is most probable in given context of features:

$$\max\{ P(s \in \text{Summary}|f_1 \dots f_k), \\ P(s \notin \text{Summary}|f_1 \dots f_k) \}$$

 $P(o|f_1 \dots f_k)$ is hard to measure, so we use Bayes's rule:

$$P(o|f_1 \dots f_k) = \text{what}?$$

Naive Bayes Classification

We can treat summarization as a sequence of binary classification problems: every sentence is either in or out.

Bayes decision rule: choose outcome that is most probable in given context of features:

$$\max\{ P(s \in \text{Summary}|f_1 \dots f_k), \\ P(s \notin \text{Summary}|f_1 \dots f_k) \}$$

 $P(o|f_1 \dots f_k)$ is hard to measure, so we use Bayes's rule:

$$P(o|f_1 \dots f_k) = \frac{P(f_1 \dots f_k|o)P(o)}{P(f_1 \dots f_k)}$$

The Naive Bayes Assumption: all features of context are conditionally independent. Thus:

$$P(f_1 \dots f_k | o) \doteq \prod_{1 \le j \le k} P(f_j | o)$$

And we can use relative frequency in annotated corpora for these:

$$P(f_j|o) = \frac{C(f_j, o)}{C(o)}$$

Disadvantages of Summarization by Extraction

- Hard to read, misleading, and/or incoherent, e.g.:
 - lost pronoun antecedents
 - discourse/argument connectives no longer appropriate
- Parts of extracted sentences may be unimportant
 - negation (of clues and stigma words)
 - granularity of sentence-sized extracts

Improvements upon Summarization by Extraction

- Use argument structure to determine importance
- Cut-and-paste summarization: use extraction at phrase level to make new sentences
- Summarize multiple documents and use comparisions to boost confidence in importance.
- Task-based evaluation: determine how well summaries work in context. How do people use summaries?