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Contents

* Define some common feature vectors for speech processing

* Use them as input to a GMM-based speaker classification
system

* All of this is part of A3
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SPEECH FEATURES
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Recall the spectrogram pipeline
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Problems with spectrograms

* As input to speech systems, spectrograms are...
* Too big
* The discrete signal is usually 16,000 samps/sec
* 100 frames/sec x 400 samps/frame = 40,000 samps/sec!
* Too linear
* Pitch perception is log-linear (recall Mels)
* Lots of coefficients wasted on high frequencies
* Too entangled o
* Speaker and phoneme info is correlated = —
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Filtering

* To reduce the size of the spectra, we filter it with filters from
a filter bank
* Each filter is a signal whose spectrum E,, € R" picks out
small a range (or band) of frequencies
®* The bands of the M filters are overlapping and span the
spectrum
* A filter coefficient is computed as the log of the dot product
of the magnitude of the frame X; and filter E,, spectra:
Ctm = log Ym=11Xe|[n]|Enl[n]
* If there are T frames, this gives us a real-valued feature
matrix of size T X M
* M = 40 is a lot smaller than 400!
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The mel-scale filter bank

* The mel-scale triangular overlapping filter bank, or f-bank, is
a popular choice

* The filter’s vertices are arranged along the mel-scale
* Ascending frequency = wider bands
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The source-filter model

* In vowels, the sound signal emitted from the glottis g is
filtered by the vocal tract v
* The source-filter model of speech assumes
[ X[n]| = |G[n][[V][n]]
* |VV]| is responsible for the smooth shape (envelope)
* |G| is responsible for all the bumps (FO harmonics)
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The cepstrum

* We can get at |V | by computing the cepstrum X

® The cepstrum is log|X| transformed by the inverse DFT
* Because log |X| = log|G| + log|V|, and DFT is linear
x[n] = gn| + D[n]

* DFT~! =~ DFT, so % is like the spectrum of log|X|

* |V] is slower-moving than |G|, so ¥|n] is higher for lower n
(lower frequency of frequency)
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Mel-Frequency Cepstral Coefficients

®* MFCCs are the coefficients of the cepstrum of F-bank
coefficients
* Altogether

Frame Spectrum F-b.a.n ; ﬁﬂ MFCCs
coeff|C|ents

®* MFCCs are useful for models which can’t handle speaker
correlations themselves, like (diagonal) GMMs
* F-banks are better for those which can, like NNs
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GAUSSIAN MIXTURES
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Classifying speech sounds
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® Speech sounds can cluster. This graph shows vowels, each in
their own colour, according to the second two formants.
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Classify speakers by cluster attributes

* Similarly, all of the speech produced by one speaker will cluster
differently in the Mel space than speech from another speaker.
* We can .. decide if a given observation comes from one
speaker or another.

.ﬂ-

Observation matrix
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Fitting continuous distributions

* Since we are operating with continuous variables, we need to
fit continuous probability functions to a
discrete number of observations.

* |If we assume the 1-dimensional
data in this histogram are
normally distributed, we can fit a
continuous Gaussian function
simply in terms of the mean u
and variance a?.
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(Aside) Univariate (1D) Gaussians

* Also known as Normal distributions, N(u, o)
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®* The parameters we can modify are 8 = (M, 0'2>
*u=E(x)=[x-P(x)dx (mean)
* 62 = E((x —w)?) = [(x — u)?P(x)dx (variance)

N2
exp (_(x2 ;;) )

\2TTOo

* P(x;u,0) =

- A W B N S W O

But we don’t have samples for all x... |
R
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Maximum likelihood estimation

* Given data X = {xq, x5, ..., X,,}, MLE produces an estimate of
the parameters 8 by maximizing the likelihood, L(X,0):
6 = argmax L(X, 6)
0

where L(X,0) = P(X;0) = [, P(x;; 0).

* Since L(X, 0) provides a surface over all 8, in order to find the
highest likelihood, we look at the derivative

0)
—L(X,0) =
—L(X,6) =0

to see at which point the likelihood stops growing.
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MLE with univariate Gaussians

* Estimate u:

. (_ (x; = )2)
20
L(X,u)=P(X;u) = P(x;0) =
[reom-[ ]2
1 . Z ( Xi — )2
ogL(X,1) = — >3 — nlog(V2ro)
o) 2 (o — 1)
alogL(X ) = = =0
_lei % I
n

, 2 _ Zilg—w?* A
Similarly, 0% = == <_J

CSC401/2511 — Fall 2024

st
i

17 % TORONTO



Non-Gaussian observations

* Speech data are generally not unimodal.
* The observations below are bimodal, so fitting one Gaussian
would not be representative.

|

1G&E" 150

-5
CSC401/2511 — Fall 2024

ﬂ
0 0 50 '
18

¥ TORONTO



Multivariate Gaussians

* When data is d-dimensional, the
input variable is
x = (x[1],x[2], ..., x[d])
the mean is
i =E) = (u[1], u[2], ..., u[d])
the covariance matrix is
X[, j] = EQxlilx[j]) — ulilulj]

and

- : isthe
A~ " is the inverse of A

P(x) =
d 1 | . j
(2m)2 |Z|2 - |A] is the determinant of A

- Nwo—172 -
N G “)) A' is the transpose of 4
|
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Intuitions of covariance

. TR H £ oo™t H e . UL
025 : ; D R AT 025}

I

D.Z‘.i--""'-.:- g
8 oo
Ponseiee T

) TR

o 3
FI TS (R

oy ‘ i
i

* As values in X become larger, the Gaussian spreads out.
* (Iis the identity matrix)
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Intuitions of covariance
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* Different values on the diagonal result in different variances

in their respective dimensions
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Mixtures of Gaussians

* Gaussian mixture models (GMMs) are a weighted linear
combination of M component Gaussians, (I';, I, ..., [y ):

P = ) P(1) :
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Observation likelihoods

* Assuming MFCC dimensions are independent of one another,
the covariance matrix is diagonal —i.e., O off the diagonal.

* Therefore, the probability of an observation vector given a
Gaussian becomes

* Imagine that a GMM first chooses a Gaussian, then emits an
observation from that Gaussian.
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Mixtures of Gaussians

* If we knew which Gaussian generated each sample whichwe dort),
then(yt,,,, Z,,,) could be learned by MLE.
* We must learn P(I}) as well.
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Expectation-Maximization for GMMs

Overall idea:
® First, initialize a set of model parameters.
* “Expectation”: Compute the expected probabilities of
observation, given these parameters.
* “Maximization”: Update the parameters to maximize the
aforementioned probabilities.
®* Repeat.
* Let’s look at the detailed steps in the next a few slides...
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Expectation-Maximization for GMMs

° . ‘component observation
Let w,,, = P(I5,) and Iy d likelihood” '
]_ ‘weight’
— @ =Y o,
m=1

where @ = (w,,, hyy, Z,,,) form = 1..M

* To estimate 6, we solve Vylog L(X,0) = 0 where

T T M
logL(X,0) = z log Py (x;) = z log Z Wy,
t=1 t=1 m=1

s
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Expectation-Maximization for GMMs

* We differentiate the log likelihood function w.r.t . u,,,[1]| and
set this to 0 to find the value of 1,,,|n] at which the likelihood
stops growing.

o log L(X 9) B
Om|n z Py (x¢) [5,le N

&
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Expectation-Maximization for GMMs

°* The expectation step gives us:
— P(x_t)lrm)

— Wi Proportion of overall |
P(T, |x;;0) = | P | '
mitt - robability contributed by m
Po(x;) % :
°* The maximization step gives us:

~ “number of points Y. P(L,|x;; 0)x; " Recall from slide
explained by m” ,um Z P(F—lx 9) 13, MLE wants:
1" ) .
u=

— —s2
—~ L P(Tplxs; 0)x; —,2

—

2y = = —u
¢ 2.t P(Ln |5 6) ¥
1 T
Om = = P (T lx¢; 6)
I bat=1
».ﬁ‘;:l-
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Some notes...
* |n the previous slide, the square of a vector, a?, is
elementwise (i.e., numpy.multiply)

* E.g,[2,3,4]> = [4,9,16]

* Since X is diagonal, it can be represented as a vector.

_2’ th( ‘m|xt' )_2 —,2 A
°* Cang;, = 5P (m|xt, ) — U,, become negative:

* No.
* This is left as an exercise, but only if you're interested.

CSC401/2511 — Fall 2024 o UNIVERSITY OF
29 @ TORONTO



Speaker recognition

* Speaker recognition: n. the identification of a speaker
among several speakers given only
acoustics.

* Each speaker will produce speech according to different
probability distributions.
* We train a Gaussian mixture model for each speaker,
given annotated data (mapping utterances to speakers).
* We choose the speaker whose model gives the highest
probability for an observation.

A Do e
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Recipe for GMM EM

® For each speaker, we learn a GMM given all T frames of their
training data.

1. Initialize: Guess 0 = (w,,, l1;,, 2,,) form =1..M
either uniformly, randomly, or by k-means
clustering.

2. E-step:  Compute and P(I,,|x;; 0).

3. M-step: Update parameters for (w,,,, [i,,, 2y, ) @S
described on slide 28.
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