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Contents

• Define some common feature vectors for speech processing
• Use them as input to a GMM-based speaker classification 

system
• All of this is part of A3
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SPEECH FEATURES
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Recall the spectrogram pipeline
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Problems with spectrograms

• As input to speech systems, spectrograms are…
• Too big

• The discrete signal is usually 16,000 samps/sec
• 100 frames/sec x 400 samps/frame = 40,000 samps/sec!

• Too linear
• Pitch perception is log-linear (recall Mels)
• Lots of coefficients wasted on high frequencies

• Too entangled
• Speaker and phoneme info is correlated
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Filtering

• To reduce the size of the spectra, we filter it with filters from 
a filter bank

• Each filter is a signal whose spectrum 𝐹𝑚 ∈ ℝ𝑁 picks out 
small a range (or band) of frequencies

• The bands of the 𝑀 filters are overlapping and span the 
spectrum

• A filter coefficient is computed as the log of the dot product 
of the magnitude of the frame 𝑋𝑡 and filter 𝐹𝑚 spectra:

𝑐𝑡,𝑚 = log σ𝑛=1
𝑁 𝑋𝑡 [ 𝑛] 𝐹𝑚 𝑛

• If there are 𝑇 frames, this gives us a real-valued feature 
matrix of size 𝑇 × 𝑀
• 𝑀 = 40 is a lot smaller than 400!
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The mel-scale filter bank

• The mel-scale triangular overlapping filter bank, or f-bank, is 
a popular choice

• The filter’s vertices are arranged along the mel-scale
• Ascending frequency = wider bands
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The source-filter model

• In vowels, the sound signal emitted from the glottis 𝑔 is 
filtered by the vocal tract 𝑣

• The source-filter model of speech assumes
|𝑋 𝑛 | = 𝐺 𝑛 𝑉 𝑛

• 𝑉 is responsible for the smooth shape (envelope)
• 𝐺 is responsible for all the bumps (F0 harmonics)
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Gold et al (2011)
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The cepstrum

• We can get at |𝑉| by computing the cepstrum ො𝑥
• The cepstrum is log 𝑋 transformed by the inverse DFT
• Because log 𝑋 = log 𝐺 + log 𝑉 , and DFT-1 is linear

ො𝑥 𝑛 = ො𝑔 𝑛 + ො𝑣 𝑛
• 𝐷𝐹𝑇−1 ≈ 𝐷𝐹𝑇, so ො𝑥 is like the spectrum of log 𝑋
• |𝑉| is slower-moving than 𝐺 , so ොv 𝑛 is higher for lower 𝑛

(lower frequency of frequency)
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Gold et al (2011)
CSC401/2511 – Fall 2024

𝑉

𝐺



Mel-Frequency Cepstral Coefficients

• MFCCs are the coefficients of the cepstrum of F-bank 
coefficients

• Altogether

• MFCCs are useful for models which can’t handle speaker 
correlations themselves, like (diagonal) GMMs

• F-banks are better for those which can, like NNs
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GAUSSIAN MIXTURES
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Classifying speech sounds

• Speech sounds can cluster. This graph shows vowels, each in 
their own colour, according to the second two formants.

Note: The vowel trapezoid’s
dimensions were physical
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Classify speakers by cluster attributes

• Similarly, all of the speech produced by one speaker will cluster 
differently in the Mel space than speech from another speaker.
• We can ∴ decide if a given observation comes from one 

speaker or another.

Time, 𝒕

0 1 … T

M
FC

C

1 …

2 …

3 …

… … … … …

42 …

Observation matrix

P(  |      ) >

P(  |      )

CSC401/2511 – Fall 2024



14

Fitting continuous distributions

• Since we are operating with continuous variables, we need to 
fit continuous probability functions to a 
discrete number of observations.

• If we assume the 1-dimensional 
data in this histogram are 
normally distributed, we can fit a 
continuous Gaussian function 
simply in terms of the mean 𝜇
and variance 𝜎2.
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(Aside) Univariate (1D) Gaussians

• Also known as Normal distributions, 𝑁(𝜇, 𝜎)

• 𝑃 𝑥; 𝜇, 𝜎 =
exp −

𝑥−𝜇 2

2𝜎2

2𝜋𝜎

• The parameters we can modify are 𝜽 = 𝝁, 𝝈𝟐

• 𝜇 = 𝐸 𝑥 = 𝑥׬ ∙ 𝑃 𝑥 𝑑𝑥 (mean)

• 𝜎2 = 𝐸 𝑥 − 𝜇 2 = ׬ 𝑥 − 𝜇 2𝑃 𝑥 𝑑𝑥 (variance)

But we don’t have samples for all 𝑥…
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Maximum likelihood estimation

• Given data 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 , MLE produces an estimate of 

the parameters መ𝜃 by maximizing the likelihood, 𝐿(𝑋, 𝜃):
መ𝜃 = argmax

𝜃
𝐿(𝑋, 𝜃)

where 𝑳 𝑿, 𝜽 = 𝑷 𝑿; 𝜽 = ς𝑖=1
𝑛 𝑃(𝑥𝑖; 𝜃).

• Since 𝐿(𝑋, 𝜃) provides a surface over all 𝜽, in order to find the 
highest likelihood, we look at the derivative

𝛿

𝛿𝜃
𝐿 𝑋, 𝜃 = 0

to see at which point the likelihood stops growing.
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MLE with univariate Gaussians

• Estimate 𝜇:

𝐿 𝑋, 𝜇 = 𝑃 𝑋; 𝜇 =ෑ

𝑖=1

𝑛

𝑃(𝑥𝑖; 𝜃) =ෑ

𝑖=1

𝑛 exp −
𝑥𝑖 − 𝜇 2

2𝜎2

2𝜋𝜎

log 𝐿 𝑋, 𝜇 = −
σ𝑖 𝑥𝑖 − 𝜇 2

2𝜎2
− 𝑛 log 2𝜋𝜎

𝛿

𝛿𝜇
log 𝐿 𝑋, 𝜇 =

σ𝑖 𝑥𝑖 − 𝜇

𝜎2
= 0

𝜇 =
σ𝑖 𝑥𝑖
𝑛

• Similarly, 𝜎2 =
σ𝑖 𝑥𝑖−𝜇

2

𝑛

CSC401/2511 – Fall 2024



18

Non-Gaussian observations

• Speech data are generally not unimodal.
• The observations below are bimodal, so fitting one Gaussian 

would not be representative.
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Multivariate Gaussians

• When data is d-dimensional, the 
input variable is

Ԧ𝑥 = 𝑥 1 , 𝑥 2 , … , 𝑥[𝑑]
the mean is

Ԧ𝜇 = 𝐸 Ԧ𝑥 = 𝜇 1 , 𝜇 2 , … , 𝜇[𝑑]
the covariance matrix is

Σ 𝑖, 𝑗 = 𝐸 𝑥 𝑖 𝑥 𝑗 − 𝜇 𝑖 𝜇 𝑗
and

𝑃 Ԧ𝑥 =
exp −

Ԧ𝑥 − Ԧ𝜇 ⊺Σ−1 Ԧ𝑥 − Ԧ𝜇
2

2𝜋
𝑑
2 Σ

1
2

𝐴⊺ is the transpose of 𝐴
𝐴−1 is the inverse of 𝐴

𝐴 is the determinant of 𝐴
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Intuitions of covariance

• As values in Σ become larger, the Gaussian spreads out.
• (I is the identity matrix)

𝜇 = 0 0
Σ = I

𝜇 = 0 0
Σ = 0.6I

𝜇 = 0 0
Σ = 2.0I
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Intuitions of covariance

• Different values on the diagonal result in different variances 
in their respective dimensions

Σ =
1 0
0 1

Σ =
2 0
0 0.6
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Mixtures of Gaussians

• Gaussian mixture models (GMMs) are a weighted linear 
combination of 𝑀 component Gaussians, Γ1, Γ2, … , Γ𝑀 :

𝑃 Ԧ𝑥 =෍

𝑗=1

𝑀

𝑃 Γ𝑗 𝑃( Ԧ𝑥|Γ𝑗)
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Observation likelihoods

• Assuming MFCC dimensions are independent of one another, 
the covariance matrix is diagonal – i.e., 0 off the diagonal.

• Therefore, the probability of an observation vector given a 
Gaussian becomes

𝑃 Ԧ𝑥|Γ𝑚 =
exp −

1
2
σ𝑖=1
𝑑 𝑥 𝑖 − 𝜇𝑚 𝑖 2

Σ𝑚 [𝑖]

2𝜋
𝑑
2 ς𝑖=1

𝑑 Σ𝑚 [𝑖]
1
2

• Imagine that a GMM first chooses a Gaussian, then emits an 
observation from that Gaussian.
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Mixtures of Gaussians
• If we knew which Gaussian generated each sample (which we don’t), 

then 𝝁𝒎, 𝚺𝒎 could be learned by MLE.
• We must learn 𝑃(Γ𝑗) as well.

𝑃 Ԧ𝑥 =෍

𝑗=1

𝑀

𝑃 Γ𝑗 𝑃( Ԧ𝑥|Γ𝑗)
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Expectation-Maximization for GMMs

• Overall idea:
• First, initialize a set of model parameters.
• “Expectation”: Compute the expected probabilities of 

observation, given these parameters.
• “Maximization”: Update the parameters to maximize the 

aforementioned probabilities.
• Repeat.

• Let’s look at the detailed steps in the next a few slides…
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Expectation-Maximization for GMMs

• Let 𝝎𝒎 = 𝑃(Γ𝑚) and   𝒃𝒎 𝒙𝒕 = 𝑃(𝑥𝑡|Γ𝑚),

𝑃𝜃 𝑥𝑡 = ෍

𝑚=1

𝑀

𝜔𝑚𝑏𝑚(𝑥𝑡)

where 𝜽 = 𝝎𝒎, 𝝁𝒎, 𝚺𝒎 for 𝑚 = 1. .𝑀

• To estimate 𝜃, we solve 𝛻𝜃 log 𝐿 𝑋, 𝜃 = 0 where

log 𝐿 𝑋, 𝜃 =෍

𝑡=1

𝑇

log 𝑃𝜃 𝑥𝑡 =෍

𝑡=1

𝑇

log ෍

𝑚=1

𝑀

𝜔𝑚𝑏𝑚 𝑥𝑡

‘weight’

‘component observation
likelihood’
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Expectation-Maximization for GMMs

• We differentiate the log likelihood function w.r.t . 𝜇𝑚[𝑛] and 
set this to 0 to find the value of 𝜇𝑚 𝑛 at which the likelihood 
stops growing.

𝛿 log 𝐿(𝑋, 𝜃)

𝛿𝜇𝑚[𝑛]
=෍

𝑡=1

𝑇
1

𝑃𝜃 𝑥𝑡

𝛿

𝛿𝜇𝑚 𝑛
𝜔𝑚𝑏𝑚(𝑥𝑡) = 0
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Expectation-Maximization for GMMs
• The expectation step gives us:

𝑏𝑚 𝑥𝑡 = 𝑃(𝑥𝑡|Γ𝑚)

𝑃 Γ𝑚 𝑥𝑡; 𝜃 =
𝜔𝑚𝑏𝑚 𝑥𝑡
𝑃𝜃 𝑥𝑡

• The maximization step gives us:

෢𝜇𝑚 =
σ𝑡𝑃 Γ𝑚 𝑥𝑡; 𝜃 𝑥𝑡
σ𝑡𝑃 Γ𝑚 𝑥𝑡; 𝜃

෢Σ𝑚 =
σ𝑡𝑃 Γ𝑚 𝑥𝑡; 𝜃 𝑥𝑡

2

σ𝑡𝑃 Γ𝑚 𝑥𝑡; 𝜃
− ෢𝜇𝑚

2

ෞ𝜔𝑚 =
1

𝑇
෍

𝑡=1

𝑇

𝑃 Γ𝑚 𝑥𝑡; 𝜃

Proportion of overall 
probability contributed by 𝑚

Recall from slide
13, MLE wants:

𝜇 =
σ𝑖 𝑥𝑖
𝑛

𝜎2 =
σ𝑖 𝑥𝑖 − 𝜇 2

𝑛
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Some notes…

• In the previous slide, the square of a vector, Ԧ𝑎2, is 
elementwise (i.e., numpy.multiply)
• E.g., 2, 3, 4 2 = [4, 9, 16]

• Since Σ is diagonal, it can be represented as a vector.

• Can 
෢
𝜎𝑚
2 =

σ𝑡 𝑃 Γ𝑚 𝑥𝑡; 𝜃 𝑥𝑡
2

σ𝑡 𝑃 Γ𝑚 𝑥𝑡; 𝜃
− ෢𝜇𝑚

2
become negative?

• No. 
• This is left as an exercise, but only if you’re interested.
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Speaker recognition

• Speaker recognition: n. the identification of a speaker 
among several speakers given only 
acoustics.

• Each speaker will produce speech according to different
probability distributions.
• We train a Gaussian mixture model for each speaker, 

given annotated data (mapping utterances to speakers).
• We choose the speaker whose model gives the highest 

probability for an observation.
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Recipe for GMM EM

• For each speaker, we learn a GMM given all 𝑇 frames of their 
training data.

1. Initialize: Guess 𝜃 = 𝜔𝑚, 𝜇𝑚, Σ𝑚 for 𝑚 = 1. .𝑀
either uniformly, randomly, or by k-means 
clustering.

2. E-step: Compute 𝑏𝑚(𝑥𝑡) and 𝑃(Γ𝑚|𝑥𝑡; 𝜃).

3. M-step: Update parameters for 𝜔𝑚, 𝜇𝑚, Σ𝑚 as 
described on slide 28.
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