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Transformer networks

CSC401/2511 – Fall 2024

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

• Breakout paper: Vaswani et al. (2017) Attention is all you need. 

• Core idea: replace recurrent connections with attention
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Transformer networks (abstract)
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Core 
Idea Now two kinds of attention

• Encoder uses self-attention
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Transformer motivations
● Limitations of recurrent connections: long-term dependencies, lack of 

parallelizability, interaction distance (steps to distant tokens).

● Attention allows access to entire sequence

● Lots of computation can be shared, parallelized across sequence 
indices. Identical layers: [self, cross]-attention, feed-forward w/ tricks

● There are more avant-garde applications to other domains 



Transformer Architecture

• Architecture diagram from Vaswani[1]

1 Vaswani, Ashish, et al. "Attention is all you need." NeurIPS (2017).

• Building blocks: 

1. Encoder

2. Decoder

DecoderEncoder
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DecoderEncoder
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Transformer Architecture

• Architecture diagram from Vaswani[1]

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

• Building blocks: 

1. Encoder

2. Decoder

• Main components within building blocks:

• Attention mechanisms:
• single and multi-head attention
• self, cross, and masked attention

• Feed-forward MLPs (FFN)
• Layer normalization (LN)
• Positional encodings (PE)
• Residual connections 

DecoderEncoder
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Transformer Attention(Q,K,V) : Intuition

Keys

Filing 
Cabinet

w/ labels

Values

In the classical roboquity era (2100-2250 AD), humans in designated zones/zoos 
are only allowed filing cabinets and paper documents to store information.

ACORN has been terminated, and UofT students’ info (financial, academic, 
personal) retrieval works as follows: 

What is the student’s current academic standing?

What is the student’s current financial status?

What is the student’s residency status in Canada?

q1

q2

q3

Dot Product
Attention

Similarity
Measure

QueriesQ

K V
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Transformer Encoder
Tiny transformer tutorialE

T
:Mini tutoriel de 

transformateur

F
S
: DecoderEncoder
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MH Self-Attention

ENCODER

N x

Sub-layers (only)
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(Post) LayerNorm

(Post) LayerNorm
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connections

LayerNorm
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• Plan: discuss building blocks:
1. Residual connections
2. LayerNorm
3. Attention and FFN sub-layers
4. Positional encodings
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tutoriel de transformateur </s >

� � � � �
Positional
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Embeddings

Input

𝑥𝑠 = 𝑇𝐹 𝐹𝑠 + 𝜙 𝑠
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Residual Connections

1 He, Kaiming, et al. "Deep residual learning for image recognition." CVPR. 2016.

FFN

ENCODER

MH Self-Attention

(Post) LayerNorm

(Post) LayerNorm

sub-layers

residual

connections

𝑥𝑠 = 𝑇𝐹 𝐹𝑠 + 𝜙 𝑠

• Problem: NNs struggle to learn the identity function mapping 

• Idea from computer vision[1]

𝑥𝑙+1 = ℱ 𝑥𝑙 + 𝑥𝑙

• Solution: Add back the input embeddings to the sub-layer’s output moving up 

• Analogy: think of the noisy-channel analogy. Helps address forgetting past 
information by passing through a signal without distortion. 

+ Helps smoothen loss 
curvature allowing better 
backprop.

𝑥𝑠
′ = 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟 𝑥𝑠 + 𝑥𝑠

𝑥𝑠
′
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Layer Normalization: default (Post-) LN

1 Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization. 2016” [link]
2 Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." ICML. PMLR, 2020. [link]

FFN

ENCODER

MH Attention

(Post) LayerNorm

(Post) LayerNorm

𝑥𝑠 = 𝑇𝐹 𝐹𝑠 + 𝜙 𝑠

• Layer Normalization[1]: 

• Normalize input layer’s distribution to 0 mean and 1 standard 
deviation. 

• Removes uninformative variation in layer’s features

residual

block

residual

block

LayerNorm
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of features in ℎ𝑙. 𝛾, 𝛽 are scale, bias params.  
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Layer Normalization Variant: Pre-LN

1 Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization.” 2016 [No NLP; no pre- vs. post-]
2 Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." ICML. PMLR, 2020

FFN

ENCODER

MH Attention

(Post) LayerNorm

(Post) LayerNorm

𝑥𝑠 = 𝑇𝐹 𝐹𝑠 + 𝜙 𝑠

FFN

ENCODER

MH Attention

(Pre) LayerNorm

(Pre) LayerNorm

𝑥𝑠 = 𝑇𝐹 𝐹𝑠 + 𝜙 𝑠

• Layer Normalization[1]: two popular variants

o Post layer normalization (Post-LN): original Transformer model: requires learning 
rate warm-up due to initial instability of large output gradients.

o Pre layer normalization (Pre-LN): puts layer-norm within the residual block. 
Allows removing warm-up stage. More stable training initialization.

residual

block

residual

block

LayerNorm

residual

block

LayerNorm

residual

block

LayerNorm
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Transformer Encoder - Self Attention

• Recall our discussion of attention in transformer LMs

• Steps:

1. Calculate the query, key, and value for each token

• Attention of each query (𝑞𝑖) against all the keys (𝑘1:𝑗)

2. Calculate the attention score between query and keys

3. Normalize the attention scores by applying softmax

4. Calculate values by taking a weighted sum

1 Vaswani, Ashish, et al. "Attention is all you need." NeurIPS (2017).

𝑞𝑖 = 𝑊𝑄𝑥𝑖
𝑘𝑖 = 𝑊𝐾𝑥𝑖
𝑣𝑖 = 𝑊𝑉𝑥𝑖

𝑎𝑖,𝑗 = 𝑠𝑐𝑜𝑟𝑒 𝑞𝑖 , 𝑘𝑗

𝑎𝑖,𝑗 = 𝑞𝑖 . 𝑘𝑗

𝑎𝑖,𝑗 =
𝑞𝑖 . 𝑘𝑗

√𝑑𝑘

𝛼𝑖,𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑎𝑖,1:𝐾

𝛼𝑖,𝑗 =
𝑒𝑥𝑝(𝑎𝑖,𝑗)

σ𝑘=1
𝐾 𝑒𝑥𝑝(𝑎𝑖,𝑘)

𝑐𝑖 =෍
𝑗
𝛼𝑖,𝑗𝑣𝑗
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Transformer Encoder - Self Attention

• Recall our discussion of attention in transformer LMs

• Steps:

1. Calculate the query, key, and value for each token

• Attention of each query (𝑞𝑖) against all the keys (𝑘1:𝑗)

2. Calculate the attention score between query and keys

3. Normalize the attention scores by applying softmax

4. Calculate values by taking a weighted sum

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

𝑍 = Α. 𝑉

𝑄 = 𝑋𝑊𝑄

𝐾 = 𝑋𝑊𝐾

𝑉 = 𝑋𝑊𝑉

𝐴 = 𝑠𝑐𝑜𝑟𝑒 𝑄, 𝐾

𝐴 =
𝑄. 𝐾𝑇

√𝑑𝑘

𝐴 = 𝑄.𝐾𝑇
Α = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴

Α = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
) 

Vectorized notation:
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Transformer Encoder - Self Attention

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

𝐴 = 𝑠𝑐𝑜𝑟𝑒 𝑄, 𝐾

𝐴 = 𝑄.𝐾𝑇

19

𝑄 = 𝑋𝑊𝑄

𝐾 = 𝑋𝑊𝐾

𝑉 = 𝑋𝑊𝑉

Step 1

Step 2

Step 3

Step 4
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Multi-head Self Attention (MHA)

• As alluded to earlier, multi-head attention (MHA) jointly attends to 
information from different representation subspaces at different 
positions 

1 Vaswani, Ashish, et al. "Attention is all you need." NeurIPS (2017).

𝑀𝐻𝐴 𝑄,𝐾, 𝑉 = 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ 𝑊𝑂

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑊𝑖
𝑄
, 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉

𝑊𝑖
𝑄
∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙 × 𝑑𝑘

𝑊𝑖
𝐾 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙 × 𝑑𝑘

𝑊𝑖
𝑉 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙 × 𝑑𝑣

𝑊𝑂 ∈ ℝℎ𝑑𝑣 × 𝑑𝑚𝑜𝑑𝑒𝑙

And  projections are parameter matrices:

𝑑𝑘 = 𝑑𝑣 =
𝑑𝑚𝑜𝑑𝑒𝑙

ℎ
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Feed-forward (FFN) layers
• Attention only re-weighs the value vectors

• We still need more degrees of freedom (and non-linearity) to learn

• The feed-forward layer(s) (FFN) provide these non-linearities to attention layer outputs

• Specifically, each output x undergoes two (layer) linear transformations with a ReLU
activation in between.  Pointwise:

1 Vaswani, Ashish, et al. "Attention is all you need." NeurIPS (2017).

𝐹𝐹𝑁 𝑥𝑖 = max 0, 𝑥𝑖𝑊1 + 𝑏1 𝑊2 + 𝑏2

• FFN sub-layer is applied to each token pos. separately and identically

• Given x, a sequence of tokens 𝑥1, … , 𝑥𝑆 :

where 𝑊1,𝑊2, 𝑏1 𝑎𝑛𝑑 𝑏2 are parameters

𝑍 = Α. 𝑉

𝑧𝑖 =෍
𝑗
𝛼𝑖,𝑗𝑣𝑗
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𝐹𝐹𝑁 𝑥 = 𝑅𝑒𝐿𝑈 𝑥𝑊1 + 𝑏1 𝑊2 + 𝑏2



Position (in)dependence

● To a great extent, attention is agnostic to order

● For permutation vector 𝑣 on (1,2, … , 𝑉):

● But word order matters in language

● Solution: encode position in input:

𝑥𝑠 = 𝑇𝐹 𝐹𝑠 + 𝜙 𝑠

𝐴𝑡𝑡 𝑎, 𝑏𝑣 = 𝐴𝑡𝑡 𝑎, 𝑏1:𝑉



• Building blocks: 

1. Encoder

2. Decoder

Recap: Transformer Architecture

• Architecture diagram from Vaswani[1]

• Main components within building blocks:

• Attention mechanisms:
• single and multi-head attention
• self, cross, and masked attention

• Feed-forward MLPs (FFN)
• Layer normalization (LN)
• Positional encodings (PE)
• Residual connections 

DecoderEncoder
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Next block: Transformer Decoder

• Layer normalization, residual connections, 
FFNs are identical to the encoder block

• Thus, we focus on remaining:

• Masked/Causal self-attention sub-layer

• Cross-attention

1 Vaswani, Ashish, et al. "Attention is all you need." NeurIPS (2017).

FFN

(Masked) Self-Attention

Cross-Attention

DECODER

FFN

Self-Attention

ENCODER

DecoderEncoder
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Decoder – Masked Self-Attention

• Masked (Multi-head) self-attention:

• Enforce auto-regressive language modeling 
objective. The decoder cannot peek and pay 
attention to the (unknown) future words

• Solution: use a look-ahead mask M, by setting 
attention scores of future tokens to –inf. 

1 Vaswani, Ashish, et al. "Attention is all you need." NeurIPS (2017).

𝑎𝑖𝑗 = ൝
𝑞𝑖
𝑇 . 𝑘𝑗 , 𝑗 < 𝑖

−∞, 𝑗 ≥ 𝑖

FFN

(Masked) Self-Attention

Cross-Attention

DECODER

26CSC401/2511 – Fall 2024



Decoder – Masked Self-Attention

1 Vaswani, Ashish, et al. "Attention is all you need." NeurIPS (2017).

FFN

(Masked) Self-Attention

Cross-Attention

DECODER

E
T
:

<s> tiny transformer tutorial

−∞ −∞ −∞ −∞

−∞ −∞ −∞

−∞ −∞

−∞
<s>

tiny

transformer

tutorial

tiny transformer 

tutorial

<s>

𝐴 = 𝑠𝑐𝑜𝑟𝑒 𝑄, 𝐾

𝑎𝑖,𝑗 = 𝑠𝑐𝑜𝑟𝑒 𝑞𝑖 , 𝑘𝑗

or,

Recall

0

0

1 2 3

1

2

3

Q

K

j

i
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Encoder-Decoder (Cross) Attention
• In self-attention: Q, K and V have same source (tokens)

• Cross attention is encoder <> decoder attention between output 
vectors

• Using our running example and notation:

• Let ℎ1, … , ℎ𝑆 be encoder output vectors, where ℎ𝑖 ∈ ℝ𝑑𝑘

• Let ෨ℎ1, … , ෨ℎ𝑇 be decoder output vectors, where ෨ℎ𝑖∈ ℝ𝑑𝑞

FFN

(Masked) Self-Attention

Cross-Attention

DECODER

FFN

Self-Attention

ENCODER

• Queries, Q comes from decoder:

• 𝑞𝑖 = 𝑄෨ℎ𝑖

28

Filing 
Cabinet
w/ labels

ValueKey

⇒ ⇶Recall

Attention

QueriesQ

K

Intuition

• Then, keys and values: K and V 
comes from encoder (or, memory):

• 𝑘𝑖 = 𝐾ℎ𝑖 , 𝑣𝑖 = 𝑉ℎ𝑖
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Encoder-Decoder (Cross) Attention

FFN
Self-Attention

ENCODER

Queries, Q come from decoder

29

Filing 
Cabinet
w/ labels

ValueKey

⇒ ⇶Recall

Cross
Attention

Q

K

FFN

(Masked) Self-Attention

Cross-Attention

DECODER

𝑍 = Α. 𝑉

Step 4
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(Compare) Encoder - Self Attention

1 Vaswani, Ashish, et al. "Attention is all you need." NeuIPS (2017).

𝐴 = 𝑠𝑐𝑜𝑟𝑒 𝑄, 𝐾

𝐴 = 𝑄.𝐾𝑇

Α = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝐴

𝑍 = Α. 𝑉

30

𝑄 = 𝑋𝑊𝑄

𝐾 = 𝑋𝑊𝐾

𝑉 = 𝑋𝑊𝑉

Step 1

Step 2

Step 3

Step 4

Self
Attention
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Recap

31

• We have now covered all the primitives you need for building a 
transformer! 

• All of these equations look abstract, but not to worry …

• Assignment 2 was designed for you to implement all these 
concepts into a working MT model of your own.
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Transformers - Drawbacks

32

• Attention’s quadratic computation cost

• Function of sequence length N, and token dimension 𝑑
• Computing all token pairs mean the function grows 

quadratically with  N, 𝑂 𝑁2𝑑 unlike RNNs: 𝑂 𝑁𝑑

XQ KTXT

𝑋𝑄 ∈ ℝ𝑁×𝑑

∈ ℝ𝑑×𝑁

XQKTXT

∈ ℝ𝑁×𝑁

=

• Can you see why this could be the biggest hurdle for 
increasing a transformer LM’s context length (i.e., the 
size of input it can process)?
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Transformers - Drawbacks

33

• Context (input) size limitation:
• Dimension 𝑑 in modern LLMs are ~>3K

• If length of one sentence is ~10-30 word tokens, then 
computation scales with 102-302 times 𝑑

• Thus, many encoders set a bound on N (usually 500-700 tokens)

• But, some people want N to be much larger, e.g., processing a 
document ( N > 10K) at one go (instead of chunking by N for 
every call)

[1] Wang, Sinong, et al. "Linformer: Self-attention with linear complexity." (2020).

• Active research area: improving the quadratic cost of 
attention, like self-attention with linear complexity[1]

• + Roformer, flash attention, sliding-window etc.
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Transformers - Drawbacks

34

• Other drawbacks / improvement areas:
• Positional encoding representations:

• Do we need absolute indices to represent position?

• Slew of variants proposed to the (sinusoidal, absolute) 
positional encoding we saw

• General trend:
• Move towards relative position encoding
• E.g. Relative linear position attention [Shaw et al. 2018]

𝑟 = 𝑐𝑙𝑖𝑝(𝑚 − 𝑛, 𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥)

Relative distance between pos. m and n
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[Aside] Rotary Position Embeddings

35

[1] RoPE: Su, Jianlin, et al. "Roformer: Enhanced transformer with rotary position embedding." (2021)

• RoPE – perhaps the most common in modern LLMs 
• Encodes absolute position with a rotation matrix

• RoPE + Transformer = RoFormer
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Aside – BERT → BART → NMT

● Explosion of variants to BERT

● Pretrained BERT language model used to re-score/fine-tune 
downstream NLP tasks

● BART (Lewis et al, 2020) adds the decoder back to BERT, keeping the 
BERT objective

● Add some source language layers on top to train for NMT

B
A

R
T↓

B
A

R
T 

fo
r 

N
M

T↓
Lewis, Mike, et al. "Bart: Denoising sequence-to-sequence pre-training for natural language generation, 

translation, and comprehension." (2019). link.

https://arxiv.org/pdf/1910.13461.pdf


Distinguishing features:

• Consistent, task-invariant MLE training 
objective. 

• Self-attention “mask” with prefix.

• Unsupervised “denoising” training objectives: 
span corruption (conceptually same to MLM, 
mask ‘spans’ instead of words).

49

1. Raffel et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." (2020).

T5: Text-to-Text Transfer Transformer

• T5 is an unified framework that casts all NLP problems into a ‘text-to-text’ format. 

• Architecturally (almost) identical to the original Transformer (Vaswani et al., 2017). 

• Draws from a systematic study comparing pre-training objectives, architectures, 
unlabeled data sets, transfer approaches, and other factors on dozens of language 
understanding tasks.

• Introduces and uses a new curated dataset: “Colossal Clean Crawled Corpus” (C4) 
for training.

• A transformer refined with extensive scientific testing

Attention mask patterns
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50

T5: Text-to-Text Transfer Transformer

Input/Output format for training denoising objective

Input sentence: “That is good.”
Target: “Das ist gut.”

• Training: task specification is imbued by 
prepending task prefix to the input sequence. 
Model trained on next sequence prediction 
over the concatenated input sequence: 

“translate En-De: That is good. Target: Das ist gut.”

• For prediction, the model is fed prefix:
• “translate En-De: That is good. Target:”

Example Task: English to German (En-De) translation:

• For classification tasks, the model predicts a single word 
corresponding to the target label. 

• E.g. MNLI task of entailment prediction:
• “mnli premise: I hate pigeons. hypothesis: I am hostile to 

pigeons. entailment. ”
• Model predicts label: {“entailment”, “neutral”, “contradiction”}.
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51

T5: Text-to-Text Transfer Transformer
Why T5 matters?

• Unifying diverse NLP problems as one (‘text-to-text’) format is a really cool idea.

• This allows us to use the same model, loss function, hyperparameters etc. across a 
diverse set of tasks 

• Remarkable transfer learning capabilities: T5 can be finetuned to answer a wide 
range of (open-domain) questions, retrieving factoids from its parameters
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On that note – A2 BART/T5 Analysis 

● **Code Demo** HuggingFace [t5_small|BART-base] NMT trained on 
Hansard (Fr-En)

● https://huggingface.co/docs/transformers/model_doc/bart

● https://huggingface.co/raeidsaqur/bart-base

● https://huggingface.co/raeidsaqur/mt_fr2en_hansard_t5-small

Lewis, Mike, et al. "Bart: Denoising sequence-to-sequence pre-training for natural language generation, 

translation, and comprehension." (2019).

https://huggingface.co/docs/transformers/model_doc/bart
https://huggingface.co/raeidsaqur/bart-base


GPT SERIES
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(slides borrowed from Brown et al. (2020) Language Models are Few-Shot Learners,
Arxiv 2005.14165)



• Open AI GPT-series of models – uses multi-layer decoder only blocks 

54

1. Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018)
2. Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI Blog 1.8 (2019)
3. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020)

GPT: Generative Pretrained Transformers

• Architecturally (almost) identical – each scales (params, data) on predecessor 

• Open AI GPT papers: GPT (2018)[1], GPT-2 (2019)[2], GPT-3 (2020)[3]

• Specifically, given an unsupervised corpus 
of tokens 𝛍 = {𝜇1, … , 𝜇𝑛}, where k is 
context window, P is modelled using a 
neural network with parameters θ.

• Pretraining objective is classic ‘language 
modeling’, to maximize the likelihood:
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1. Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018)
2. Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI Blog 1.8 (2019)
3. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020)

GPT: Generative Pretrained Transformers

• Distinguishing features:
• Uses multi-layer transformer decoder only blocks
• Auto-regressive generative model, does not see the future (no bi-

directional awareness) 
• Like traditional LMs, outputs one token at a time
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● GPT vs. BERT-variants: 

● GPT uses ‘transformer’ blocks as decoders, and BERT as encoders. 
● Underlying (block level) ideology is same
● GPT (later Transformer XL, XLNet) is an autoregressive model, BERT is not

– At the cost of auto-regression, BERT has bi-directional context awareness.

● GPT, like traditional LMs, outputs (predicts) one token at a time.

● Compare with T5, BART that uses encoder-decoder

Key architectural differences

[1]  Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).



● Increasingly convincing results permeating into the public sphere 
and Zeitgeist

● In-context learning:

● Very large models (GPT-3 175B parameters vs. T5 11B 
parameters) exhibiting the ‘in-context learning’ (ICL) 
phenomenon

● Exhibits learning without any gradient updates (traditional 
learning), but merely from given examples!

GPT-3 LLMs take off … 

1. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020)



GPT-3: In context learning + … prompting
• ‘Prompting’ had been around as a convenience, but now a necessity …

1. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020)



GPT-3: In context learning + … prompting

1. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint (2020)

• ‘Prompting’ had been around as a convenience, but now a necessity …



Prompting: Chain of Thought
• Encourage the model to establish a logical chain of inference

• See also “least-to-most” prompting, in which the inference proceeds 
relative to a taxonomy or decomposition into subproblems.



ICL/Prompting vs. Fine-tuning?
• Fine-tuning is probably here to stay, however…



GPT-3: Results 

● TL;DR: very impressive results across task domains

● Performance (e.g. accuracy) increases with size

● Datasets grouped to 9 categories of downstream tasks
● Examples: language modeling, QA, translation, Winograd, common-sense 

reasoning, reading comprehension, NLI etc.
● Read the paper for details

Turing-NLG?



DIFFERENT DIRECTIONS
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Token free models

66

• Unlike the ubiquitous pre-trained LMs that operate on 
sequences of tokens corresponding to word or sub-word 
units, token free models:

Con: raw sequences significantly longer than token sequences, 
increases computational complexity. (Reminder: ‘attention’ costs are 
quadratic to the length of input sequence)

Operate on raw text (bytes or characters) directly.

Removes necessity for (error-prone, complex) text preprocessing 
pipelines.

1. Clark et al. "CANINE: Pre-training an efficient tokenization-free encoder for language representation." (2021). link
2. Xue et al. "ByT5: Towards a token-free future with pre-trained byte-to-byte models." (2022). link
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• Pitfalls of explicit (word, sub-word) tokenization:  

• Need for large language dependent (fixed) vocabulary mapping matrices.

• Applies hand-engineered, costly, language-specific string 
tokenization/segmentation algorithms (e.g. BPE, word-piece, sentence-piece) 
requiring linguistic expertise. 

• Heuristic string-splitting, however nuanced, cannot capture full breadth of 
linguistic phenomena, (e.g. morphologically distant agglutinative, non-
concatenative languages). Other examples include languages without white-
space (Thai, Chinese), or that uses punctuation as letters (Hawaiian, Twi). Fine-
tuning tokenization needs to match pretraining tokenization methods.

• Brittle to noise, corruption of input (typos, adversarial manipulations). 
Corrupted tokens lose vocabulary coverage.

Token free models

67

1. Clark et al. "CANINE: Pre-training an efficient tokenization-free encoder for language representation." (2021). link
2. Xue et al. "ByT5: Towards a token-free future with pre-trained byte-to-byte models." (2022). link
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[Aside] Token free models - CANINE

68

• Three primary components: 

• Vocab free embedding technique; 

• Character-level model (CLM) with efficiency measures (up/down sampling of 
sequences); and 

• Perform unsupervised masked LM (MLM) pretraining on the CLM using variants:

• Autoregressive character prediction

• Subword prediction  

Clark et al. "CANINE: Pre-training an efficient tokenization-free encoder for language representation." (2022).

CANINE: Character Architecture with No tokenization In Neural Encoders.

• CANINE is a large language encoder with a deep transformer stack at its core.

• Inputs to the model are sequences of Unicode characters. 143,698 Unicode codepoints 
assigned to characters covers 154 scripts and over 900 languages!

• To avoid slowdown from increasing sequence length, it uses stride convolutions to down-
sample input sequences to a shorter length, before the deep transformer stack to encode 
context.
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[Aside] Token free models - CANINE

69

• The overall functional composition form uses [UP|DOWN]-sampling, and primary encoder:

𝑌𝑠𝑒𝑞 ← UP(ENCODE(DOWN 𝑒 )

CANINE neural architecture

ℎ𝑖𝑛𝑖𝑡 ← LOCALTRANSFORMER 𝑒 ; ℎ𝑑𝑜𝑤𝑛 ← STRIDEDCONV ℎ𝑖𝑛𝑖𝑡 , 𝑟

ℎ𝑢𝑝 ← CONV ℎ𝑖𝑛𝑖𝑡 ۩ℎ𝑑𝑜𝑤𝑛
′ , 𝑤 ; 𝑦𝑠𝑒𝑞 ← TRANSFORMER ℎ𝑢𝑝

𝑒 ∈ ℝ𝑛 × 𝑑 is an input characters sequence, and  

• Up-sampling: prediction require model’s output layer sequence length to match input’s length 

where ۩ is vector concatenation, CONV projects ℝ𝑛 × 2𝑑 back to ℝ𝑛 × 𝑑 across a window of 𝑤

characters. Applying a final transformer layer yields a final sequence representation: 𝑌𝑠𝑒𝑞 ∈ ℝ𝑛 × 𝑑

where

• Down-sampling:

where ℎ𝑑𝑜𝑤𝑛 ∈ ℝ𝑚 × 𝑑 and  𝑚 =
𝑛

𝑟
is the number of downsampled positions

𝑌𝑠𝑒𝑞 ∈ ℝ𝑛 × 𝑑 is output of sequence predictions
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