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Transformer networks

* Breakout paper: Vaswani et al. (2017) Attention is all you need.

* Core idea: replace recurrent connections with attention

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.
BLEU Training Cost (FLOPs)
Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0 - 102
GNMT + RL [31] 24.6 39.92 2.3-10° 1.4.10%
ConvS2S [8] 25.16 40.46 9.6-10'® 1.5.10%
MoE [26] 26.03 40.56 2.0-10" 1.2.10%
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 -10%0
GNMT + RL Ensemble [31] 26.30  41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [8] 2636  41.29 7.7-10° 1.2-10*
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.0 2.3.10"°

LVaswani, Ashish, et al. "Attention is all you need." NeulPS (2017).
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Transformer networks (abstract)

Now two kinds of attention

DECODER

ENCODER FEN i t=1..L—-1

FFN Cross-Attention

Self-Attention (Masked) Self-Attention

e Encoder uses self-attention

£+1 £ '
R« Atten, (h§ ) I )

Decoder uses 1. self-attention*

2 < Aty (B9, D)

then 2. attention with encoder

ﬁ(£+1) — Att (Z(£+1),h({.’+1)) -
‘ AT = s=1...5 t=1.T

o
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Transformer motivations

. Limitations of recurrent connections: long-term dependencies, lack of
parallelizability, interaction distance (steps to distant tokens).

. Attention allows access to entire sequence

. Lots of computation can be shared, parallelized across sequence
indices. Identical layers: [self, cross]-attention, feed-forward w/ tricks

. There are more avant-garde applications to other domains

__‘;1

2 layers

2 layers
|

L
L

T L s T —
Te(1)  Telamitié)  Tglest) Tp(magique) Te(l")  Te(amitié) Telest)  Tr(magique)
source sentence (French): L amitié est magique B
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Transformer Architecture

Encoder .. Decoder

* Architecture diagram from Vaswani!l! -
Probabilities
* Building blocks:

1. Encoder

Feed

2. Decoder Feed

4 | ™\ I Add & Norm :

Add & Norm =
Encoder .. Decoder (S | || ke

Forward 7 7 Nx
_ h
Add & Norm

Nx 1
f—bl Add & Norm | Vasked

LRI Mult-Head Mult-Head
Attention Attention

ENCODER ' ) Y )

FFN L\ ) U ) )
q Positional iti
FFN Cross-Attention Encl)lding o ¢ Egiglgiagl
MH Self-Attention (Masked) MH Self-Attention Emll?g:(;ing En?b”;gg}ng
Inputs Qutputs
(shifted right)
LvVaswani, Ashish, et al. "Attention is all you need." NeurlPS (2017). ﬂk
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Transformer Architecture

* Architecture diagram from Vaswanilll

* Building blocks:
1. Encoder
2. Decoder

 Main components within building blocks:

e Attention mechanisms:
* single and multi-head attention
* self, cross, and masked attention

* Feed-forward MLPs (FFN)
e Layer normalization (LN)
* Positional encodings (PE)
e Residual connections

LVaswani, Ashish, et al. "Attention is all you need." NeulPS (2017).
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Feed
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,—>| Add & Norm | Masked
Multi-Head Multi-Head
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Transformer Attention(q,kyv) : Intuition

In the classical roboquity era (2100-2250 AD), humans in designated zones/zoos
are only allowed filing cabinets and paper documents to store information.

ACORN has been terminated, and UofT students’ info (financial, academic,
personal) retrieval works as follows:

- .
-
. = Documents
Personal S —
[ ‘ 2 B @ In ‘Academic’
-] |
- Academic '—Labels _
Filing - Finance '. Documents
Falsta — In ‘Finance’
Folders _
w/ labels

v

-
Attention (Q,K,V) = softmax (%) V

Nllileldis" Dot Product
Measure Attention
ql What is the student’s current academic standing?

Q g2 What is the student’s current financial status?

q3 What is the student’s residency status in Canada?
#

K O

UNIVERSITY OF
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Transformer Encoder

Positional
Encoding

Fs: Mini tutoriel de Encoder [Jif{ Decoder E-:Tiny transformer tutorial
transformateur
P
i /
Sub-layers (only) : D
Block ,
| Layerhiorm -
l 2
ENCODER |
,' FFN
FEN “s residual .~
 comectons, S
MH Self-Attention : 1 3
D I
: MH Self-Attention
Input .
Embedding \
] = x; = Tr(F) + $(s)
Positional
lnDUtS 4 Encodings
+
. . Embeddi
* Plan: discuss building blocks: mRsEEnes,
Residual connections Input

1.

2.
3.
4.

LayerNorm
Attention and FFN sub-layers
Positional encodings
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Residual Connections

ENCODER

(Post) LayerNorm

Multi-Head |
Attention ML .

FFN

* Problem: NNs struggle to learn the identity function mapping

TR 2 | 1. residual <
\ / connections . (Post) LayerNorm > sub-layers
Positional D x;
Encoding y
Input
Embgdding MH Self-Attention
Inputs xs = Tp(F;) + ¢(s)

* |dea from computer vision!
X141 = Flx) + x
+ Helps smoothen loss

curvature allowing better
backprop.

* Solution: Add back the input embeddings to the sub-layer’s output moving up

x¢ = Sublayer(x,) + x,

* Analogy: think of the noisy-channel analogy. Helps address forgetting past

information by passing through a signal without distortion.

1He, Kaiming, et al. "Deep residual learning for image recognition.” CVPR. 2016.
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Layer Normalization: default (Post-) LN

/
[Add f. Norm )l ENCODER " l
] v h* = LayerNorm(h
v nl_yl
— —
v | -~ | _V( ! )+ﬁ
Mult-Tead eeicuel FEN
Attention block .
- — h! where p, o are mean and std. dew.
————/ | LayerNorm in Il i
Positional of features in h". y,  are scale, bias params.
Encoding D
Input residual i d
Embedding block MH Attention 1 hl
u==
Inputs d k=1
xs = Tp(Fs) + ¢(s) 1

 Layer Normalization!!:

* Normalize input layer’s distribution to 0 mean and 1 standard
deviation.

* Removes uninformative variation in layer’s features

1 Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization. 2016” [link]
2 Xiong, Ruibin, et al. "On layer normalization in the transformer architecture.” ICML. PMLR, 2020. [link] UNIVERSITY OF

&
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https://arxiv.org/pdf/1607.06450.pdf
https://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf

Layer Normalization Variant: Pre-LN

ENCODER ENCODER
-
(Post) LayerNorm ] d
residual
block - A
1
e residual !
Attention block FFN LayerNorm --E- (Pre) LayerNorm
L -
N\ / LayerNorm (Post) LayerNorm !
Positional D " ! .
Encoding rebslldukal ! MH Attention
1
Input residual _ O !
Embedding block MH Attention LayerNorm --- (Pre) LayerNorm
1
1
Inputs b

xs = Tp(Fs) + ¢(s)

« Layer Normalization!!!: two popular variants

xs = Tp(Fs) + ¢(s)

o Post layer normalization (Post-LN): original Transformer model: requires learning
rate warm-up due to initial instability of large output gradients.

o Pre layer normalization (Pre-LN): puts layer-norm within the residual block.
Allows removing warm-up stage. More stable training initialization.

1Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization.” 2016 [No NLP; no pre- vs. post-]

2 Xiong, Ruibin, et al. "On layer normalization in the transformer architecture.” ICML. PMLR, 2020
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Transformer Encoder - Self Attention

 Recall our discussion of attention in transformer LMs

e Steps: " ‘
1. Calculate the query, key, and value for each token —]
* Attention of each query (q;) against all the keys (k. ;) TTOET
. 1~ "
2. Calculate the attention score between query and keys N et
ncodng Q9
Normalize the attention scores by applying softmax e Ty
4. Calculate values by taking a weighted sum mpTutS

q; = WQxl ai}j — SCOTe(q,:, k]) ai,j = SOftmax(ai,l:K)
ki = WEx; aij = qi-k; exp(3is) C; = z @ijYj
v, = WVx, ik W = !

K a;
k=1 exp( l,k)

al-,j

WV,

LVaswani, Ashish, et al. "Attention is all you need." NeurlPS (2017). &
T
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Transformer Encoder - Self Attention

e Recall our discussion of attention in transformer LMs
* Steps:
1. Calculate the query, key, and value for each token
* Attention of each query (g;) against all the keys (k. ;)

2. Calculate the attention score between query and keys
3. Normalize the attention scores by applying softmax

\

S

L f‘"_ Add & Norm |

 S——

-
Add & Norm

~
Feed
Forward

Multi-Head
Attention

At

Positional
Encoding

)

Input
Embedding

4. Calculate values by taking a weighted sum linutS

Vectorized notation:

Q =Xwe Al = s A = softmax(A)

K = XWX A=Q.K" - Z= AV

V=Xxw" p Q.KT A=Softmax(37)

= k
Vd,,

LVaswani, Ashish, et al. "Attention is all you need." NeulPS (2017). .
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Transformer Encoder - Self Attention

Embedding
size

d

number
14
oftokens || X

nputs

3
matrix

Step 2
A = score(Q,K)
A=Q.KT
l QK *q

=e|_Add & Mo

Multi-Head
Attantion

Poasitional
Encoding

Inputs

N
. 2
_I wq '| Q
n
D
d
dﬁ -_ d <-—q—->
—I W* —ol K
n
D
d,
d\‘ .« >
“
_' wv > v
D "|
Step 1
K = XWkX
V=Xw"

LVaswani, Ashish, et al. "Attention is all you need." NeulPS (2017).
CSC401/2511 — Fall 2024
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A

Step 3

~l

d\‘ A
Gy

A = softmax(A)

Z

Step 4

Z= AV

I").r.;-.h
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Multi-head Self Attention (MHA)

e As alluded to earlier, multi-head attention (MHA) jointly attends to
information from different representation subspaces at different
positions

MHA(Q,K,V) = Concat(heady, ..., head;)W?°
where head; = Attention(QWiQ , KWk, VWl-V)
And projections are parameter matrices:

VViQ (= ]Rdmodel X dg WO = ]thv X dmodel
K Admodel X Ak

WLERmoe d. = d _dmodel

WiV € Rdmodel X dy i v h

LVaswani, Ashish, et al. "Attention is all you need." NeurlPS (2017). &
T
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Feed-forward (FFN) layers

* Attention only re-weighs the value vectors
* We still need more degrees of freedom (and non-linearity) to learn
* The feed-forward layer(s) (FFN) provide these non-linearities to attention layer outputs

» Specifically, each output x undergoes two (layer) linear transformations with a ReLU
activation in between. Pointwise:

FFN(x;) = max(0,xiW; + by) W5 + b, Zi = z}. 3777

* FFN sub-layer is applied to each token pos. separately and identically

* Given x, a sequence of tokens (xq, ..., Xs):

FFN(x) = ReLU(xW; + by) W, + b, Z= AV

where Wy, W,, by and b, are parameters

LVaswani, Ashish, et al. "Attention is all you need." NeurlPS (2017). &
T

UNIVERSITY OF
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Position (in)dependence

. To a great extent, attention is agnostic to order

. For permutation vector von (1,2, ..., V):

Att(a, b,) = Att(a, by.y)

. But word order matters in language

. Solution: encode position in input:

xs = Tr(Fs) + ¢(s)

T

% TORONTO



Recap: Transformer Architecture

* Architecture diagram from Vaswanilll

* Building blocks:

v

 Main components within building blocks:

1. Encoder

2. Decoder

Attention mechanisms:
¥'| single and multi-head attention
* self, cross, and masked attention

Feed-forward MLPs (FFN)
Layer normalization (LN)

Positional encodings (PE)
Residual connections

CSC401/2511 — Fall 2024 24

Encoder .. Decoder
Qutput
Probabilities
Softmax
( )
Add & Norm
Feed
Forward
s 1 ™\ | Add & Norm |<_:
> Add & Norm J Mult-Head
Feed Attention
Forward T Nx
— 1
N Add & Norm
,—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
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Next block: Transformer Decoder

Encoder .. Decoder

* Layer normalization, residual connections,
Output

FFNs are identical to the encoder block Probabilties
_
* Thus, we focus on remaining: 1

* Masked/Causal self-attention sub-layer ()

Feed

Forward

 Cross-attention
— \‘ T

| |
A00 & Norm Multi-Head

Feed Attention

Forward g 7 Nx
— 1
Add & Norm

Nx
p—rl Add & Norm | Vaskod

DECODER Multi-Head Multi-Head
Attention Attention
ENCODER ) 'y 7
Positional D Positional
Self-Attention (Masked) Self-Attention Encoding y ¢ Encoding
Input Qutput
Embedding Embedding
Inputs QOutputs
(shifted right)
LVaswani, Ashish, et al. "Attention is all you need." NeurlIPS (2017). .
# | UNIVERSITY OF
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Decoder — Masked Self-Attention

 Masked (Multi-head) self-attention:

* Enforce auto-regressive language modeling

objective. The decoder cannot peek and pay

attention to the (unknown) future words

* Solution: use a look-ahead mask M, by setting

attention scores of future tokens to —inf.

a® bE K
a? 0 —c0 —o0
2 10 0 —o
c? |0 0 0
De |0 0 0

a,;j =

LVaswani, Ashish, et al. "Attention is all you need." NeurlIPS (2017).
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DECODER

(Masked) Self-Attention

Causal self-

attention \
Encoder —:
l
Fgrevfadm

Nx

Decoder

Positional )
Encoding

Outputs
(shifted right)

Positional
Encoding

&

&
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Decoder — Masked Self-Attention

J
DECODER : tutoriali 3| —® Bl - o
FFN | i
! | —00 —00 —00
Cross-Attention i transformeirz
(Masked) Self-Attention i tiny i 1 —00 —00
: i o| —
E{: <s> tiny transformer K <52 ‘
tutoriad o i 2 TE g
| <s> tiny  transformer tutorial |

@ Recall I ;

a;; = Score(ql-, kj)

or,

A = score(0Q,K)

LvVaswani, Ashish, et al. "Attention is all you need." NeurlPS (2017).
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Encoder-Decoder (Cross) Attention

In self-attention: Q, K and \V have same source (tokens)

Cross attention is encoder <> decoder attention between output
vectors

Using our running example and notation:
* Lethy,..., hg be encoder output vectors, where h; € R%

e Lethy, ..., hy be decoder output vectors, where h;€ R%

ENCODER

Then, keys and values: K and V el B - D=
comes from encoder (or, memory): @ Fing ke vaue Se,f_Atte,,ﬁo,,

' kithii UiZVhi

w/ labels

K
: DECODER
Queries, Q comes from decoder:
h a
ql = th Intuition (Masked) Self-Attention

&

UNIVERSITY OF
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Encoder-Decoder (Cross) Attention

DECODER

Embedding d

FEN : !
Cross-Attention size
(Masked) Self-Attention d
+—>
number
of tokens X
d
<+—>
number
X
of tokens /7 2
b4
/
* *
new
ENCODER
i Recall

Self-Attention @

CSC401/2511 - Fall 2024

<— Queries, Q come from decoder

Cross
Attention

= Step 4
dv v
Z =AYV
—
H- =
Filing Key  value
Cabinet Z
w/ labels n
[y UNIVERSITY OF
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(Compare) Encoder - Self Attention

d ( ~(agsom))
d s Step 2 =
q Forward
4+—> ~—
_I W, —|| Q A = score(Q,K) N¢ | e |
i 4=0.K" ey
Embedding Self '_'_LJ n
s;e dq Attention n Positio;al ’
dk _ dq «— > «— Encoding D
rber «— K T Emgggéiing
of tokens " & I Wk n n QK" — T
Inputs
- n
D d, — Step 3
d, = :
— " N | A — softmax(A)
| I W, v = softmax
"
dv A J
Step 1 <~ Step 4
K = XwX n
V=xw"
s

UNIVERSITY OF

LVaswani, Ashish, et al. "Attention is all you need." NeulPS (2017). )
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Recap

 We have now covered all the primitives you need for building a
transformer!

e All of these equations look abstract, but not to worry ...

e Assignment 2 was designed for you to implement all these
concepts into a working MT model of your own.

Class Sk
Tasks Section criterion Max mark Total File
1 LayerNorm :forward 2
2 Building MultiHeadAttention :attention 4
3 Blocks :forward 5
4 FeedForwardLayer :forward 1 F 12
2 TransformerEncoderLayer pre Jayer,_norm forward :
6 :post_layer_norm_forward 1
7 . init__ 4
8 TransformerDecoderLayer :pre_layer_norm_forward 2
9 Architecture :post_layer_norm_forward 2
10 TransformerDecoder forward 3 a2_transformer_model.py
11 :create_pad_mask 1
12 TransformerEncoderDecoder :create_causal_mask 2
13 :forward 3 ’ 20
arc imenndi Aasada c

st
UMNIVEESITY OF
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Transformers - Drawbacks

e Attention’s quadratic computation cost

* Function of sequence length N, and token dimension d
 Computing all token pairs mean the function grows
quadratically with N, O(N?d) unlike RNNs: O(Nd)

XQ € RNXd

EZ-

e Rde

e Can you see why this could be the biggest hurdle for
increasing a transformer LM’s context length (i.e., the
size of input it can process)?

CSC401/2511 - Fall 2024
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Transformers - Drawbacks

e Context (input) size limitation:
e Dimension d in modern LLMs are ~>3K

* |f length of one sentence is ~10-30 word tokens, then
computation scales with 10%-30% times d

* Thus, many encoders set a bound on N (usually 500-700 tokens)

* But, some people want N to be much larger, e.g., processing a
document ( N > 10K) at one go (instead of chunking by N for

every call)

* Active research area: improving the quadratic cost of
attention, like self-attention with linear complexity!1]
* + Roformer, flash attention, sliding-window etc.

[1] Wang, Sinong, et al. "Linformer: Self-attention with linear complexity.” (2020). s
UMIVERSITY OF
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Transformers - Drawbacks

e Other drawbacks / improvement areas:
* Positional encoding representations:
* Do we need absolute indices to represent position?

ft:tE{g,k,'u} (mi: E) = Wt:tE{g,k,v}(mi + pz)

* Slew of variants proposed to the (sinusoidal, absolute)
positional encoding we saw

* General trend:
 Move towards relative position encoding
* E.g. Relative linear position attention [Shaw et al. 2018]

fo(@m) := Wozm Relative distance between pos. m and n
fr(@n,n) := Wi(zn + By)

~ T=Cli m—Nn,"min, I
fo(@n,n) = W, (x, + D;) p( min» Tmax)

where f)f ,PY € R? are trainable relative position embeddings

T
UMNIVEESITY OF
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[Aside] Rotary Position Embeddings

* ROPE — perhaps the most common in modern LLMs
* Encodes absolute position with a rotation matrix

o d
 ROPE + Transformer = RoFormer fary(@m,m) = Rg W (g 1} Tm
untenm= (Goms ) (Wb Vb ) ()
{a:k}\Fm = i o ) (21) (22) (2)
s m cosm W{q,k} W{q,k} T
Model BLEU
e 1
Transformer-baseVaswani et al. [2017] 27.3 : Constant X'y ‘\m ;
RoFormer 27.5 i 1] X ;
i (x1, x3) ’ — m .
i o X1 X i Encat ey
Table 2: Comparing RoFormer and BERT by fine tuning on downstream GLEU tasks. : m ’
1d=2 Fost :
Model MRPC SST-2 QNLI STS-B QQP MNLI(m/mm) r =
BERTDevlin et al. [2019] 889 935 905 858 712  84.6/834 Enhanced @E -+ LT - Ol
RoFormer 895 907 880 870 864 80.2/79.8 Transformer [T --- [T 2 L L
N i i O e 3 — -
rotary (DT -+~ (I a 9 s R o v 5
10 —— PerFormer w/. RoPE Position D:l:l:] aee D:l:lj .en [
o 10 —— PerFormer wfo. RoPE Embedding D:l:l:‘ . D:l:l:l i M . H
8 Query / Key Position Position Encoded Query / Key
@ 7 " 2.5
S :
2, 3.
4
3 1.5 1
2
(I) 5‘0 16 0 1 50 2| CI)O 2 éﬂ 0 2‘0 f\l‘O 6‘0 BVO 1(‘] 0

Train Steps (K)

[1] ROPE: Su, Jianlin, et al. "Roformer

CSC401/2511 - Fall 2024

Train Steps (K)

: Enhanced transformer with rotary position embedding." (2021) 5
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Aside — BERT - BART - NMT

. Explosion of variants to BERT

. Pretrained BERT language model used to re-score/fine-tune
downstream NLP tasks

. BART (Lewis et al, 2020) adds the decoder back to BERT, keeping the
BERT objective

. Add some source language layers on top to train for NMT

ABCDE
1EETE 1z 2
:_U| E ( Pre-trained )@[ Pre-trained
Bidirectional Autoregressive \ | < = % n Df C:dir e
< Encoder Decoder S| Randomiy <s>A B C D
f f f ff f f f f f E Initialized Encoder
A_B_E <s>AB C D = MLt

Lewis, Mike, et al. "Bart: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension.” (2019). link. _
R
UNIVERSITY OF
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https://arxiv.org/pdf/1910.13461.pdf

T5: Text-to-Text Transfer Transformer

Q A transformer refined with extensive scientific testing

Distinguishing features:

g lSeIf attention “mask” with prefix. ' Y, .[:JDDD [ Y ...[j[j
e e o oo oo e e e e e e e e e o m
Unsupervised “denoising” training objectives: it —— : L Pt —

span corruption (conceptually same to MLM,

T5 is an unified framework that casts all NLP problems into a ‘text-to-text’ format.
Architecturally (almost) identical to the original Transformer (Vaswani et al., 2017).

Draws from a systematic study comparing pre-training objectives, architectures,
unlabeled data sets, transfer approaches, and other factors on dozens of language
understanding tasks.

Introduces and uses a new curated dataset: “Colossal Clean Crawled Corpus” (C4)
for training.

Fully-visible Causal I Causal with prefix

|
HHEE - BEEEE
- 308EL) - eel ) !
Y || meny | | ek
- @800 8880 ||
|

!

|

Consistent, task-invariant MLE training
objective

Attention mask patterns
mask ‘spans’ instead of words).

1. Raffel et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." (2020). i

UNIVERSITY OF
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T5: Text-to-Text Transfer Transformer

Example Task: English to German (En-De) translation:

Input sentence: “That is good.”
Target: “ ”

* Training: task specification is imbued by
prepending task prefix to the input sequence.

Model trained on next sequence prediction

over the concatenated input sequence:

“translate En-De: That is good. Targe

* For prediction, the model is fed prefix:

* “translate En-De: That is good. Target:”

* For classification tasks, the model predicts a single word ‘_xxdg 7T

corresponding to the target label.

t:

* E.g. MNLI task of entailment prediction:

* “mnli premise: | hate pigeons. hypothesis: | am hostile to

”

pigeons.

n

CSC401/2511 - Fall 2024

Model predicts label: {“entailment”, “neutra

50

III o
’

Original text

Thank you fef inviting me to your party lasf week.

Inputs
Thank you <x> me to your party <v> week.

Targets

<x> for inviting <v> last <z>

Input/Output format for training denoising objective

”

Prefix LM

XQ XB y‘l y2 '

e, e, —

contradiction”}.
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T5: Text-to-Text Transfer Transformer

Why T5 matters?

* Unifying diverse NLP problems as one (‘text-to-text’) format is a really cool idea.

* This allows us to use the same model, loss function, hyperparameters etc. across a
diverse set of tasks

l "translate English to German: That is good.”

"Das ist gut.“]

"cola sentence: The
course is jumping well."

"not acceptable"]

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi..”

"six people hospitalized after
a storm in attala county."

* Remarkable transfer learning capabilities: T5 can be finetuned to answer a wide
range of (open-domain) questions, retrieving factoids from its parameters

st
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On that note — A2 BART/T5 Analysis

**Code Demo™** HuggingFace [t5_small|BART-base] NMT trained on
Hansard (Fr-En)

. https://huggingface.co/docs/transformers/model doc/bart

https://huggingface.co/raeidsaqur/bart-base

https://huggingface.co/raeidsaqur/mt_fr2en_hansard_t5-small

Lewis, Mike, et al. "Bart: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension." (2019). _
o
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https://huggingface.co/raeidsaqur/bart-base

GPT SERIES

(slides borrowed from Brown et al. (2020) Language Models are Few-Shot Learners,
Arxiv 2005.14165)
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GPT: Generative Pretrained Transformers

Q Open Al GPT-series of models — uses multi-layer decoder only blocks

* Open Al GPT papers: GPT (2018), (201912, GPT-3 (2020)%

—

Improving Language Understanding

by Generative Pre-Training Language Models are Unsupervised Multitask Learners

Language Models are Few-Shot Learners

eyl Alec Radford ‘! Jeffrey Wu *! Rewon Child! David Luan' Dario Amodei ! Tlya Sutskever **! OI)C"AI

OpenAl

* Architecturally (almost) identical — each scales (params, data) on predecessor

* Pretraining objective is classic ‘language n
modeling’, to maximize the likelihood: plr) = Hp(:sn_
i=1

S1yeeny Sn—l)

* Specifically, given an unsupervised corpus
of tokens u = {u,, ..., 1.}, where kis L(U) = Zlog Pwiltig, ... ui1;0)
context window, P is modelled using a p
neural network with parameters 6.

1. Radford, Aleg, et al. "Improving language understanding by generative pre-training." (2018)
2. Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAl Blog 1.8 (2019)
3. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020)
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GPT: Generative Pretrained Transformers

* Distinguishing features:
* Uses multi-layer transformer decoder only blocks
* Auto-regressive generative model, does not see the future (no bi-
directional awareness)
* Like traditional LMs, outputs one token at a time

orders

f 6 [ DECODER BLOCK J

2 [ DECODER BLOCK J

E}Transformer—Decoder

...................................

| ’ ( Masked Self-Attention )
<s> robot must obey ... T y
1 2 3 4 4000

1. Radford, Aleg, et al. "Improving language understanding by generative pre-training." (2018)
2. Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAl Blog 1.8 (2019)

3. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020) ‘ﬂ'
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Key architectural differences

. GPT vs. BERT-variants:

GPT uses ‘transformer’ blocks as decoders, and BERT as encoders.
Underlying (block level) ideology is same
GPT (later Transformer XL, XLNet) is an autoregressive model, BERT is not
— At the cost of auto-regression, BERT has bi-directional context awareness.

GPT, like traditional LMs, outputs (predicts) one token at a time.

. Compare with T5, BART that uses encoder-decoder

OpenAl GPT

[1] Radford, Alec, et al. "Improving language understanding by generative pre-training.” (2018). s
UNIVERSITY OF
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GPT-3 LLMs take off ...

Increasingly convincing results permeating into the public sphere

and Zeitgeist

In-context learning:

outer loop

Learning via SGD during unsupervised pre-training

inner loop

~l
+
[+
n
(=]

w
+
B
1]
~l

5+9 =14

9 +8 =17

sequence #1

Bujuiea] 1xa1uo2-u|

gaot => goat

sakne => snake

brid => bird

fsih == fish

dcuk => duck

cmihp => chimp

sequence #2

Buiuiea] 1x81U09-U]|

thanks => merci

hello => bonjour

mint => menthe

wall => mur

otter => loutre

bread == pain

sequence #3

A 4

Bululea| 1x21u02-u|

Figure 1.1: Language model meta-learning. During unsupervised pre-training, a language model develops a broad
set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize
the desired task. We use the term “in-context learning” to describe the inner loop of this process, which occurs within

Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020)

{;:S'f
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GPT-3: In context learning + ... prompting

* ‘Prompting’ had been around as a convenience, but now a necessity ...

The three settings we explore for in-context learning

Traditional fine-tuning (not used for GPT-3)

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description

cheese => prompt

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example
cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Fine-tuning
The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
plush giraffe => girafe peluche example #N
cheese => prompt

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show

1. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020)
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GPT-3: In context learning + ... prompting

* ‘Prompting’ had been around as a convenience, but now a necessity ...

Zero-shot One-shot Few-shot
1 T S
175B Params

Natural Language

60 Prompt

9

)

g

3

Q

Q

< 13B Params
- 1.3B Params

Number of Examples in Context (K)

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning

&

1. Brown, Tom B., et al. "Language models are few-shot learners." arXiv preprint (2020) UNIVERSITY OF
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Prompting: Chain of Thought

* Encourage the model to establish a logical chain of inference

CoT Prompt (0-shot with LLAMA2-TOB-CHAT) Accuracy
Let’s reflect on each answer option like an operations research expert 0.487
Let's think step by step 0.518
Let’s think step by step like an operations research expert 0.509
Let's use step by step inductive reasoning, given the mathematical nature of the question 0.510
Let’s work by elimination 0.475
Prompt ensembling (majority vote) 0.537

* See also “least-to-most” prompting, in which the inference proceeds
relative to a taxonomy or decomposition into subproblems.

s
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ICL/Prompting vs. Fine-tuning?

* Fine-tuning is probably here to stay, however...

From

0.6

0.5

o
>

Accuracy
o
w

0.2

0.1

0.0

4

/
.-------------------------f--

7/
7/
/7
BN SRR SRR SRR SRR SRR SRR SRR SRR SR SRR SR SRR SRR SRR SR R S S ———‘————-
7/
/
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/
/
/
/
/7
7/
7/
/
7/
/
,’ == == Human Accuracy w/ Context
,’ == == Strong Supervised Model
J 4 = = Linear Fit (RZ = 0.98)
7/
J ,
10 10%2 101 10'¢ 10%8 10%

Number of Parameters

“V mreves | Aarnstias AAnrdale Tiriirmsle , s | s Fail Knnwlord~roa® =1 7 =/
Large Language Models Struggle to Learn Long-Tail Knowledge” by Kanapal et al.
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GPT-3: Results

. TL;DR: very impressive results across task domains

. Performance (e.g. accuracy) increases with size

. Datasets grouped to 9 categories of downstream tasks

. Examples: language modeling, QA, translation, Winograd, common-sense
reasoning, reading comprehension, NLI etc.

. Read the paper for details

Selting PTB

SOTA (Zero-Shot)  35.8°
GPT-3 Zero-Shot 20.5

Table 3.1: Zero-shot results on PTB language modeling dataset. Many other common language modeling datasets
are omitted because they are derived from Wikipedia or other sources which are included in GPT-3"s training data.

ARWCT19]
I_ Turing-NLG?

LAMBADA LAMBADA StoryCloze HellaSwag
Sdling (acc) {ppl) (acc) (acc)
SOTA 68.0¢ 8.63" 91.8¢ 85.6¢
GPT-3 Zero-Shot 76.2 3.00 83.2 78.9
GPT-3 One-Shot 72.5 3.35 84.7 78.1
GPT-3 Few-Shot 86.4 1.92 87.7 79.3

Table 3.2: Performance on cloze and completion tasks. GPT-3 significantly improves SOTA on LAMBADA while
achieving respectable performance on two ditficult completion prediction datasets. “[Tur20] P[RWCT19] €[LDL19]
Ay o+

[LCH*20]

TriviaQA

70 | _ Fine-tuned SOTA

60

50

40

Accuracy

30

20
—e— Zero-Shot

10 - —e— One-Shot
,%f" Few-Shot (K=64)

0.1B 04B 08B 138 26B 678 13B 1758
Parameters in LM (Billions)

Figure 3.3: On TriviaQA GPT3’s performance grows smoothly with model size, suggesting that language models
continue to absorb knowledge as their capacity increases. One-shot and few-shot performance make significant gains
over zero-shot behavior, matching and exceeding the performance of the SOTA fine-tuned open-domain model, RAG
[LPP720]

&
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DIFFERENT DIRECTIONS
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Token free models

* Unlike the ubiquitous pre-trained LMs that operate on
sequences of tokens corresponding to word or sub-word
units, token free models:

Operate on raw text (bytes or characters) directly.

Removes necessity for (error-prone, complex) text preprocessing
pipelines.

@ Con: raw sequences significantly longer than token sequences,
increases computational complexity. (Reminder: ‘attention’ costs are
quadratic to the length of input sequence)

1. Clark et al. "CANINE: Pre-training an efficient tokenization-free encoder for language representation." (2021). link
2. Xue et al. "ByT5: Towards a token-free future with pre-trained byte-to-byte models." (2022). link
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Token free models

* Pitfalls of explicit (word, sub-word) tokenization:

* Need for large language dependent (fixed) vocabulary mapping matrices.

* Applies hand-engineered, costly, language-specific string
tokenization/segmentation algorithms (e.g. BPE, word-piece, sentence-piece)
requiring linguistic expertise.

* Heuristic string-splitting, however nuanced, cannot capture full breadth of
linguistic phenomena, (e.g. morphologically distant agglutinative, non-
concatenative languages). Other examples include languages without white-
space (Thai, Chinese), or that uses punctuation as letters (Hawaiian, Twi). Fine-
tuning tokenization needs to match pretraining tokenization methods.

* Brittle to noise, corruption of input (typos, adversarial manipulations).
Corrupted tokens lose vocabulary coverage.

1. Clark et al. "CANINE: Pre-training an efficient tokenization-free encoder for language representation.” (2021). link

2. Xue et al. "ByT5: Towards a token-free future with pre-trained byte-to-byte models." (2022). link oy
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[Aside] Token free models - CANINE

CANINE: Character Architecture with No tokenization In Neural Encoders.

®* CANINE is a large language encoder with a deep transformer stack at its core.

* Inputs to the model are sequences of Unicode characters. 143,698 Unicode codepoints
assigned to characters covers 154 scripts and over 900 languages!

* To avoid slowdown from increasing sequence length, it uses stride convolutions to down-
sample input sequences to a shorter length, before the deep transformer stack to encode
context.

®* Three primary components:
* Vocab free embedding technique;

* Character-level model (CLM) with efficiency measures (up/down sampling of
sequences); and

* Perform unsupervised masked LM (MLM) pretraining on the CLM using variants:
* Autoregressive character prediction

* Subword prediction

Clark et al. "CANINE: Pre-training an efficient tokenization-free encoder for language representation." (2022).
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|[Aside] Token free models - CANINE

CANINE neural architecture

X € hdown

[
[

hinit

[

0J D000

______________________ O
C] Hash' [:] Single D ) Downsample
Embedding Local kY (Strided
D D Transformer D Convolunon] ‘ '
Codepoint Character Contextualized
Integers Embeddings Characters

h lldown

Deep Transformer Stack

Yis
Position 0

hup

.» Used as [CLS]

representation

for classification D

Transformer

D D D [:] upmmp“m [:] .......... - mglp_ D

0

Concatenated
Convolved
Representations

¥seq

O
[

Final Character
Representation
for Sequence Tasks

The overall functional composition form uses [UP| DOWN]-sampling, and primary encoder:

Yseq < UP(ENCODE(DOWN (e)) where e € R"*4 s an input characters sequence, and

Yseq € € R™"*? jsoutput of sequence predictions

* Down-sampling: h;,;; < LOCALTRANSFORMER(€); MNgown < STRIDEDCONV(Rjpnj¢, )

where hyopn € R %% and m = ; is the number of downsampled positions

Up-sampling: prediction require model’s output layer sequence length to match input’s length

hup < CONV(Rinie @® hijgwn ,W);  Yseq < TRANSFORMER (hyp)

where @ is vector concatenation, CONV projects R™ % 2¢ back to R™* % across a window of w

characters. Applying a final transformer layer yields a final sequence representation: Y;., € R" AE

&‘.1:&
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