
Copyright © 2024. Raeid Saqur, University of Toronto
1

CSC401/2511 – Fall 2024 3

Artificial neural networks

• Artificial neural networks (ANNs) were loosely inspired by
networks of cytoplasmic protrusions in the brain.
• Each unit has many inputs (~dendrites), one output (~axon).
• The nucleus fires (sending an electric signal along the axon)

given input from other neurons.
• ‘Learning’ was formerly thought to occur at the synapses

that connect neurons, either by amplifying or attenuating
signals.

Dendrites
Axon

Nucleus

5

Feed-forward output
• Output is determined by an activation function, 𝑔(), which

can be non-linear (of weighted input). Activation is
empirically determined, but not learned as a parameter.

• Popular activation functions include tanh and the sigmoid:

𝑔 𝑥 = 𝜎 𝑥 =
1

1 + 𝑒𝜌𝑥
• The sigmoid’s derivative is the easily computable 𝜎′ = 𝜎 ⋅ (1 − 𝜎)

Input

O
u

tp
u

t

Input

O
u

tp
u

t

From Wikipedia

tanh sigmoid

0

1

CSC401/2511 – Fall 2024

6

Rectified Linear Units (ReLUs)

• Since 2011, the ReLU 𝑆 = 𝑔 𝑥 = max(0, 𝑥) has become
popular.
• More appeals to biological plausibility, but sparse activation, and

reduced likelihood of vanishing gradients are very practical reasons.

Input

O
u

tp
u

t

From Wikipedia

X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.

• A smooth approximation is
the softplus log(1 + 𝑒𝑥),
which has a simple
derivative 1/(1 + 𝑒−𝑥)

• Why do we care about the
derivatives?

CSC401/2511 – Fall 2024

7

Parameter estimation

• Weights are adjusted in proportion to the error (i.e., the
difference between the desired, 𝑦, and the actual output, 𝑆.

• The derivative 𝑔′ allows us to assign blame proportionally.

• Given a small learning rate, 𝛼 (e.g., 0.05), we can repeatedly
adjust each of the weight parameters by

𝑤𝑗 ≔ 𝑤𝑗 + 𝛼 ⋅ ෍

𝑖=1

𝑅

𝐸𝑟𝑟𝑖 ⋅ 𝑔′(𝑥𝑖) ⋅ 𝑎𝑗[𝑖]

where 𝐸𝑟𝑟𝑖 = (𝑦𝑖 − 𝑆𝑖), among 𝑅 training examples.

Assumes
mean-square
error objective

CSC401/2511 – Fall 2024

8

Threshold perceptra and XOR

• Some relatively simple logical functions cannot be learned by
threshold perceptra (since they are not linearly separable).

𝑎1

𝑎2

𝒂𝟏 ∧ 𝒂𝟐

𝑎1

𝑎2

𝒂𝟏 ∨ 𝒂𝟐

𝑎1

𝑎2

𝒂𝟏⨁𝒂𝟐

CSC401/2511 – Fall 2024

9

Multi-layer neural networks

• Complex functions can be represented by layers of
perceptron (multi-layer perceptron, MLPs).

MLP

...

...
• Inputs are passed to the

input layer.
• Activations are propagated

through hidden layers
to the output layer.

• MLPs are quite robust to noise.
Sometimes, we even add noise.

CSC401/2511 – Fall 2024

Parameter estimation

16

We have many options. Gradient descent is popular.
Given 𝑇 tokens of training data, optimize objective:

𝐽 𝜃 =
1

𝑇
෍

𝑡=1

𝑇

෍

−𝑐<𝑗<𝑐,𝑗≠0

log 𝑃(𝑤𝑡+𝑗|𝑤𝑡)

And we want to update vectors 𝑉𝑤𝑡+𝑗
then 𝑣𝑤𝑡

within 𝜃

𝜃 𝑛𝑒𝑤 = 𝜃 𝑜𝑙𝑑 − 𝛼𝛻𝜃𝐽 𝜃

So, we’ll need to take the derivative of the (log of the) softmax
function:

𝑃 𝑤𝑜 𝑤𝑖 =
exp(𝑉𝑤𝑜

⊺ 𝑣𝑤𝑖
)

σ𝑤=1
𝑊 exp(𝑉𝑤

⊺𝑣𝑤𝑖
)

Where 𝑣𝑤 is the ‘input’ vector for word 𝑤,
and 𝑉𝑤 is the ‘output’ vector for word 𝑤,

CSC401/2511 – Fall 2024

Parameter estimation

17

We need the derivative of the (log of the) softmax function:

𝛿

𝛿𝑣𝑤𝑡

log 𝑃 𝑤𝑡+𝑗 𝑤𝑡 =
𝛿

𝛿𝑣𝑤𝑡

log
exp(𝑉𝑤𝑡+𝑗

⊺ 𝑣𝑤𝑡
)

σ𝑤=1
𝑊 exp(𝑉𝑤

⊺𝑣𝑤𝑡
)

=
𝛿

𝛿𝑣𝑤𝑡

log exp 𝑉𝑤𝑡+𝑗
⊺ 𝑣𝑤𝑡

− log෍
𝑤=1

𝑊

exp(𝑉𝑤
⊺𝑣𝑤𝑡

)

= 𝑉𝑤𝑡+𝑗
−

𝛿

𝛿𝑣𝑤𝑡

log෍
𝑤=1

𝑊

exp(𝑉𝑤
⊺𝑣𝑤𝑡

)

[apply the chain rule
𝛿𝑓

𝛿𝑣𝑤𝑡
=

𝛿𝑓

𝛿𝑧

𝛿𝑧

𝛿𝑣𝑤𝑡
]

= 𝑉𝑤𝑡+𝑗
−෍

𝑤=1

𝑊

𝑝 𝑤 𝑤𝑡 𝑉𝑤

More details: http://arxiv.org/pdf/1411.2738.pdf

CSC401/2511 – Fall 2024

http://arxiv.org/pdf/1411.2738.pdf

18

Words

• Given a corpus with 𝐷 (e.g., = 100𝐾) unique words, the one-
hot approach uniquely assigns each word an index in 𝐷-
dimensional vectors (‘one-hot’ representation).

• In psychology, word-feature representations assign features
to each index in a much denser vector.
• E.g., concept-based features ‘cheerful’, ‘emotional-tone’.

• Neither of these is learned.

0 0 0 0 .. 0 1 0 … 0

𝐷

1 0.8 2.5 0.81 … 99

𝑑 ≪ 𝐷

lugubrious

CSC401/2511 – Fall 2024

https://docs.receptiviti.com/frameworks/liwc

Using word representations

19

𝑥 𝑊𝐼

D
 =

 1
0
0
K

Without a latent space,
lugubrious = 0,0,0, … , 0,1,0, … , 0 , &
sad = 0,0,0, … , 0,0,1, … , 0 so

Similarity = cos(𝑥, 𝑦) = 0.0

In latent space,
lugubrious = 0.8,0.69,0.4, … , 0.05 𝐻, &
sad = 0.9,0.7,0.43, … , 0.05 𝐻 so

Similarity = cos(𝑥, 𝑦) = 0.9

EMBEDDING

𝑣𝑤 = 𝑥 ⊺𝑊𝐼

H = 300

Reminder:

cos 𝑢, 𝑣 =
𝑢 ⋅ 𝑣

𝑢 × | 𝑣 |

CSC401/2511 – Fall 2024

word2vec training regimen

Skip-grams with negative sampling

21

• Most word types do not appear together within a
small window. The default process does not know
this.
• Also, not all that efficient – would be nice

not to update 𝐻 × 𝐷 weights
• Contrastive learning: push away from negative

examples as well as towards positives.
• For the observed (true) pair (lugubrious, sadness),

only the output neuron for sadness should be 1, and
all 𝐷 − 1 others should be 0.

• Mathematical Intuition:

• 𝑃 𝑤𝑜 𝑤𝑐) =
exp(𝑣𝑜

𝑇𝑉𝑐)

σ𝑤=1
𝐷 exp(𝑣𝑤

𝑇𝑉𝑐) Computationally
infeasible

CSC401/2511 – Fall 2024

Skip-grams with negative sampling

22

• We want to maximize the association of
observed (positive) contexts:

lugubrious sad
lugubrious feeling
lugubrious tired

• We want to minimize the association of
‘hallucinated’ contexts:

lugubrious happy
lugubrious roof
lugubrious truth

CSC401/2511 – Fall 2024

Skip-grams with negative sampling

23

• Choose a small number 𝑘 of ‘negative’ words, then
update the weights only for all the positive and the 𝑘
negative words.
• 5 ≤ 𝑘 ≤ 20 can work in practice for fewer data.
• For 𝐷 = 100𝐾, we only update 0.006%

of the weights in the output layer.

• Mimno and Thompson (2017) choose the top
𝑘 words by modified unigram probability:

𝑃∗ 𝑤𝑡+1 =
𝐶 𝑤𝑡+1

3
4

σ𝑤 𝐶 𝑤
3
4

Mimno, D., & Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. EMNLP 2017. [link]

𝐽 𝜃 = log 𝜎(𝑣𝑜
𝑇𝑣𝑐) + ෍

𝑖=1

𝑘

𝔼𝑖~𝑃(𝑤)[log 𝜎(−𝑣𝑖
𝑇𝑣𝑐)]

Unigram dist.

CSC401/2511 – Fall 2024

https://doi.org/10.18653/v1/d17-1308

RECURRENT NEURAL NETWORKS

35CSC401/2511 – Fall 2024

Statistical language models

36

• Probability is conditioned on (window of) n previous words*

*From Lecture 2

• A necessary (but incorrect) Markov assumption: each
observation only factors through a short linear history of
length L.

• Probabilities are estimated by computing unigrams and
bigrams

𝑃 𝑠 = ෑ

𝑖=2

𝑡

𝑃(𝑤𝑖|𝑤𝑖−2𝑤𝑖−1)𝑃 𝑠 =ෑ

𝑖=1

𝑡

𝑃(𝑤𝑖|𝑤𝑖−1)

𝑃(𝑤𝑛|𝑤1: 𝑛−1) ≈ 𝑃(𝑤𝑛|𝑤 𝑛−𝐿+1 : 𝑛−1)

bigram trigram

CSC401/2511 – Fall 2024

Statistical language models

37

• Using higher n-gram counts (with smoothing) improves
performance*

*From Lecture 2

• RNN intuition:
• Use as much history as we need to use
• Use the same set of weight parameters for each word

(or across all time steps) to keep the size of the network
down

• Memory requirement now scales with number of words

CSC401/2511 – Fall 2024

Recurrent neural networks (RNNs)

38

• An RNN has feedback connections in its structure so that it
‘remembers’ previous states, when reading a sequence.

Elman network feed hidden units back

Jordan network (not shown) feed output units back

h

ො𝑦

x

Whx

Whh

Why

𝑙𝑜𝑠𝑠

𝑦 Ground Truth

Backpropagate

Why

Whh

Whx

CSC401/2511 – Fall 2024

RNNs: Unrolling the 𝒉𝒊

39

• Copies of the same network can be applied (i.e., unrolled) at
each point in a time series.

• Now we can use an approximation: backpropagation through
time (BPTT).

𝑦0

ℎ0

𝑥0

→

𝑦1

ℎ1

𝑥1

𝑦2

ℎ2

𝑥2

You lovely person

PRP ADJ NN

ℎ𝑡 = 𝑔 𝑊𝐼[𝒉𝒕−𝟏; 𝒙] + 𝑐
𝒚𝒕 = 𝑊𝑂𝒉𝒕 + 𝑏

CSC401/2511 – Fall 2024

RNNs: One time step snapshot

40

• Given a list of word vectors 𝑿: 𝑥1, 𝑥2, …, 𝑥𝑡 , 𝑥𝑡+1, … , 𝑥𝑇

were

ℎ𝑡 = 𝑔 [𝑊ℎℎ𝒉𝒕−𝟏 +𝑊ℎ𝑥𝒙𝒕] + 𝑐

ℎ𝑡

ෝ𝑦𝑡

𝑥𝑡

approaching

ℎ𝑡−1 ℎ𝑡+1

Whx

Whh

Why

Two riders .. approaching horses...

• At a single time-step:

𝑃 𝑥𝑡+1 = 𝑣𝑗 𝑥𝑡 , … , 𝑥1) = ෞ𝑦𝑡,𝑗

ℎ𝑡 = 𝑔 𝑊𝐼[𝒉𝒕−𝟏; 𝒙𝒕] + 𝑐 (equivalent notation)

ෝ𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊ℎ𝑦𝒉𝒕 + 𝑏)

CSC401/2511 – Fall 2024

RNNs: Training

41

• Given a list of word vectors 𝑿: 𝑥1, 𝑥2, …, 𝑥𝑡 , 𝑥𝑡+1, … , 𝑥𝑇

were

ℎ𝑡

ෝ𝑦𝑡

𝑥𝑡

approaching

ℎ𝑡−1 ℎ𝑡+1

Whx

Whh

Why

Two riders .. approaching horses...

𝑃 𝑥𝑡+1 = 𝑣𝑗 𝑥𝑡 , … , 𝑥1) = ෞ𝑦𝑡,𝑗

ෝ𝑦 ∈ ℝ|𝑉| is a probability distribution
over the vocabulary

The output ෞ𝑦𝑡,𝑗 is the word (index) prediction

of the next word (xt+1)

Evaluation
- Same cross-entropy loss function

𝐽 𝑡 𝜃 = − ෍

𝑗=1

|𝑉|

𝑦𝑡,𝑗 log ො𝑦𝑡,𝑗

- Perplexity: 2J (lower is better)

prediction

Ground truth

CSC401/2511 – Fall 2024

ℎ𝑡 = 𝑔 [𝑊ℎℎ𝒉𝒕−𝟏;𝑊ℎ𝑥𝒙𝒕] + 𝑐
ෝ𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊ℎ𝑦𝒉𝒕 + 𝑏)

Sampling from a RNN LM

42

• If ℎ𝑖 < |𝑉|, we’ve already reduced the number of
parameters relative to trigrams.

• Good news: NN encodings tend to be very compact.

𝑦0

ℎ𝑡−1

𝑥𝑡−1

𝑦1

ℎ𝑡

𝑥𝑡

riders were

were approaching

Karpathy (2015),
The Unreasonable Effectiveness of Recurrent Neural Networks

CSC401/2511 – Fall 2024

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNNs and retrograde amnesia

43

• Bad news: gradients don’t multiply out well over long
distances (gradient decay).

• Can we spend some parameters to store extra information?

Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Here, ‘A’ represents identical recurrent cell blocks.

CSC401/2511 – Fall 2024

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs and retrograde amnesia

44

• Catastrophic forgetting is common.
• E.g., the relevant context in “The teacher taught

transformers terribly telling tiring, tortuous theories …”
has likely been overwritten by the time ℎ13 is produced.

𝑦0

ℎ0

𝑥0

𝑦1

ℎ1

𝑥1

𝑦13

ℎ13

𝑥13

The teacher theories

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent
is Difficult. IEEE Trans. Neural Networks.;5:157–66. doi:10.1109/72.279181

…

CSC401/2511 – Fall 2024

𝑥𝑡

ℎ𝑡−1 ℎ𝑡

45

• Within each recurrent unit or cell:
• Self-looping recurrence for cell state using vector C

𝐶𝑡−1 𝐶𝑡

• Information flow regulating structures called gates

Sigmoid neural net layer

Pointwise multiplication

Long short-term memory (LSTM)

CSC401/2511 – Fall 2024

LSTM – core ideas

46

• In each cell (i.e. recurrent unit) in an LSTM, there are four
interacting neural network layers.

The cell state is a special vector stream that
runs through the entire chain and stores
long-term information.

CSC401/2511 – Fall 2024

LSTM – core ideas

47

• In each cell (i.e. recurrent unit) in an LSTM, there are four
interacting neural network layers.

Gates decide what information should be withheld in the cell state.
They are a sigmoid followed by a pointwise ×.
Values near 0 block information; values near 1 pass information.

CSC401/2511 – Fall 2024

LSTM step 1: decide what to forget

48

• The forget gate layer compares ℎ𝑡−1 and the current input 𝑥𝑡
to decide which elements in cell state 𝐶𝑡−1 to keep and which
to turn off.
• E.g., the cell state might ‘remember’ the number (sing./plural) of the

current subject, in order to predict appropriately conjugated verbs,
but decide to forget it when a new subject is mentioned at 𝑥𝑡.
• (There’s scant evidence that such information is so readily interpretable.)

CSC401/2511 – Fall 2024

LSTM step 2: decide what to store

49

• The input gate layer has two steps.
• First, a sigmoid layer 𝝈 decides which cell units to update.
• Next, a tanh layer creates new candidate values ෩𝐶𝑡.
• E.g., the 𝜎 can turn on the ‘number’ units, and the tanh can push

information on the current subject.
• The 𝜎 layer is important – we don’t want to push information on

units (i.e., latent dimensions) for which we have no information.

CSC401/2511 – Fall 2024

LSTM step 3: update the cell state

50

• Update 𝐶𝑡−1 to 𝐶𝑡.
• First, forget what we want to forget: multiply 𝐶𝑡−1 by 𝑓𝑡.
• Then, create a ‘mask vector’ of information we want to store, 𝑖𝑡 ×
෩𝐶𝑡.

• Finally, write this information to the new cell state 𝐶𝑡.

→...

𝐶t−1

→...

× 𝑓𝑡

→...

...

𝑖𝑡 × ෩𝐶𝑡

+

...

𝐶t

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × ෩𝐶𝑡

CSC401/2511 – Fall 2024

LSTM step 4: output and feedback

51

• Output something, 𝑜𝑡, based on the current 𝑥𝑡 and ℎ𝑡−1.

• Combine the output with the cell to give your ℎ𝑡.
• Normalize cell 𝐶𝑡 on [-1,1] using tanh and combine with 𝑜𝑡

• In some sense, 𝐶𝑡 is long-term memory and ℎ𝑡 is the short-term
memory (hence the name).

𝑜𝑡 = 𝜎 𝑊𝑜 ℎ𝑡−1, 𝑥𝑡 + 𝑏𝑜

ℎ𝑡 = 𝑜𝑡 × tanh(𝐶𝑡)

CSC401/2511 – Fall 2024

Variants of LSTMs

52

• There are many variations on LSTMs.
• ‘Bidirectional LSTMs’ (and bidirectional RNNs generally),

learn. (Similar: Multi-stack RNNs)

Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. Signal
Processing, IEEE Transactions on 45(11) (1997): 2673-2681.2.

CSC401/2511 – Fall 2024

Variants of LSTMs

53

• Gers & Schmidhuber (2000) add ‘peepholes’ that allow
all sigmoids to read the cell state.

• We can couple the ‘forget’ and ‘input’ gates.
• Joint decisioning is more efficient.

CSC401/2511 – Fall 2024

• Which of these variants is best? Do the differences matter?
• Greff, et al. (2015) do a nice comparison of popular variants,

finding that they’re all about the same

• Jozefowicz, et al. (2015) tested more than ten thousand RNN
architectures, finding some that worked better than LSTMs on
certain tasks.

Aside - Variants of LSTMs

54

Reset gate (0: replace units in ℎ𝑡−1
with those in 𝑥𝑡)

Update gate

• Gated Recurrent units (GRUs; Cho et al (2014)) go a step
further and also merge the cell and hidden states.

CSC401/2511 – Fall 2024

http://arxiv.org/pdf/1503.04069.pdf
http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf
https://arxiv.org/pdf/1406.1078v3.pdf

CONTEXTUAL WORD EMBEDDINGS

55CSC401/2511 – Fall 2024

Deep contextualized representations

56

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations.
Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

• What does the word play mean?

CSC401/2511 – Fall 2024

http://arxiv.org/abs/1802.05365

● BERT

57towardsdatascience.com

●Training task 1: Masking

58towardsdatascience.com

●Training task 2: Next Sent.

59Modified from towardsdatascience.com

●Transformers

60jalammar.github.io

o1
o2

●Self-attention

61jalammar.github.io

o

●Multiheaded Self attention

62jalammar.github.io

o1
o2 o

o0

o1

o7

●Positional encodings

63kazemnejad.com

64

● Encodings of any two distinct positions are

distinct

● Each position maps to only one encoding

● Test sentences may be longer than training

● Distance between two positions should be

constant across sentences (of varying

lengths).

●Huh?

●Training task 1: Masking

65towardsdatascience.com

66

● Real easy to do well on MASKed position and

nothing else

● Real easy to learn to copy the context-

independent embedding

● So…

● 80% of the time: MASK

● 10% of the time: correct word

● 10% of the time: another random word

●The truth about masking

