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LMs and Information Theory

• LMs may be evaluated extrinsically through their 
embedded performance on other tasks

• An LM may be evaluated intrinsically according to 
how accurately it predicts language

• Information Theory was developed in the 1940s for 
data compression and transmission

• Many of the concepts, chiefly entropy, apply directly 
to LMs
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Information

• Imagine Darth Vader is about to say either “yes” or 
“no” with equal probability.  
• You don’t know what he’ll say.

• You have a certain amount of uncertainty – a lack of 
information.

Darth Vader is © Disney
And the prequels and Rey/Finn Star Wars suck
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Information

• Imagine you then observe Darth Vader saying “no”
• You’d be surprised: he could’ve said “yes”
• Your uncertainty is gone; you’ve received information.
• How much information do you receive about event 𝑥

when you observe it?
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Information

• Imagine communicating the outcome in binary
• The amount of information is the size of the message
• What’s the minimum, average number of bits needed 

to encode any outcome?
• Answer: 1
• Example:

“NO”“YES”

10
𝑆 𝑥 = 1 𝑏𝑖𝑡
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Information

• What about 4 equiprobable words?

• In general 𝑆 𝑥 = log2
1

𝑃 𝑥
= −log2𝑃 𝑥

“NO”“YES”

10

𝑆 𝑥 = 2 𝑏𝑖𝑡𝑠
10 10

“Sure”“Maybe”
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Information

• Imagine Darth Vader is about to roll a fair die.
• You have more uncertainty about an event because 

there are more (equally probable) possibilities.
• You receive more information when you observe it.
• You are more surprised by any given outcome.

𝑆 𝑥 = log2
1

𝑃(𝑥)

= log2
1

Τ1 6
≈ 2.58 bits
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Information can be additive

• One property of S 𝑥 = log2
1

𝑃(𝑥)
is additivity.

• From k independent events 𝑥1…𝑥𝑘:
• Does 𝑆 𝑥1…𝑥𝑘 = 𝑆 𝑥1 + 𝑆 𝑥2 +⋯+ 𝑆(𝑥𝑘) ?

• The answer is yes!

𝑆 𝑥1…𝑥𝑘 = log2
1

𝑃 𝑥1…𝑥𝑘

= log2
1

𝑃 𝑥1)…𝑃(𝑥𝑘
= log2

1

𝑃(𝑥1)
+⋯+ log2

1

𝑃(𝑥𝑘)
= 𝑆 𝑥1 + 𝑆 𝑥2 +⋯+ 𝑆(𝑥𝑘)
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Events with unequal information

• Events are not always equally likely
• Surprisal will therefore be dependent on the event
• How surprising is the distribution overall?

Yes (0.1) No (0.7)

Maybe (0.04) Sure (0.03)

Darkside (0.06) Destiny (0.07)

• Suppose you still have 6 
outcomes that are possible – but
you’re fairly sure it will be ‘No’.

• We expect to be less surprised on 
average
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Entropy

• Entropy: n. the average uncertainty/information/surprisal of 
a (discrete) random variable 𝑋.

• A lower bound on the average number of bits necessary to 
encode 𝑋 (more on this later)

𝐻 𝑋 =

𝑥

𝑃 𝑥 log2
1

𝑃(𝑥)

Expectation over 𝑋
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Entropy – examples

Yes (0.1) No (0.7)

Maybe (0.04) Sure (0.03)

Darkside (0.06) Destiny (0.07)

𝐻 𝑋 =

𝑖

𝑝𝑖 log2
1

𝑝𝑖

= 0.7 log2(1/0.7) + 0.1 log2(1/0.1) + ⋯
= 1.542 bits

1 2 3 4 5 6

𝐻 𝑋 =

𝑖

𝑝𝑖 log2
1

𝑝𝑖
= 6

1

6
log2

1

1/6

= 2.585 bits

There is less average uncertainty when the 
probabilities are ‘skewed’.
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Entropy characterizes the distribution

• Flatter distributions ⇒ higher entropy ⇒ hard to predict
• Peaky distributions ⇒ lower entropy ⇒ easy to predict
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Bounds on entropy
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• Maximum: uniformly distributed 𝑋1. Given 𝑉 choices, 

𝐻 𝑋1 =

𝑖

𝑝𝑖 log2
1

𝑝𝑖
=

𝑖

1

𝑉
log2

1

1/𝑉
= 𝐥𝐨𝐠𝟐 𝑽

• Minimum: only one choice, 𝐻 𝑋2 = 𝑝𝑖 log2
1

𝑝𝑖
= 1 log2 1 = 𝟎

0
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Coding with fewer bits is better
• If we want to transmit Vader’s words efficiently, we can 

encode them so that more probable words require fewer bits.
• On average, fewer bits will need to be transmitted. 

Yes (0.1) No (0.7)

Maybe (0.04) Sure (0.03)

Darkside (0.06) Destiny (0.07)

Word
(sorted)

Linear 
Code

Probabil
ity

Huffman 
Code

No 000 0.7 0

Yes 001 0.1 100

Destiny 010 0.07 101

Darkside 011 0.06 110

Maybe 100 0.04 1111

Sure 101 0.03 1110

Average codelength (Huffman) = 1*0.7+3*(0.1+.07+.06)+ 
4*(.04+.03) = 1.67 bits > 1.54 bits ≈ 𝐻(𝑋)
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The entropy rate of language

• Can we use entropy to measure how predictable language is?
• Imagine that language follows an LM 𝑃 which infinitely 

generates one word after another: 𝑋 = 𝑋1, 𝑋2, …
• A corpus 𝑐 is a prefix of 𝑥

• Uh oh: as N → ∞,𝐻 𝑋 = ∞
• Instead, we take the per-word entropy rate

𝐻𝑟𝑎𝑡𝑒 𝑋 = lim
𝑁→∞

1

𝑁
𝐻 𝑋1, … , 𝑋𝑁 ≤ log2𝑉

• How do we handle more than one variable?
• How do we evaluate 𝑃 𝑥 ?
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Entropy of several variables

• Consider the vocabulary of a meteorologist describing 
Temperature and Wetness.
• Temperature ∈ {hot, mild, cold}
• Wetness ∈ {dry, wet}

17
Example from Roni Rosenfeld 

𝑃 𝑊 = dry = 0.6, 
𝑃 𝑊 = wet = 0.4

𝑃 𝑇 = hot = 0.3, 
𝑃 𝑇 = mild = 0.5, 
𝑃 𝑇 = cold = 0.2

𝑯 𝑾 = 0.6 log2
1

0.6
+ 0.4 log2

1

0.4
= 𝟎. 𝟗𝟕𝟎𝟗𝟓𝟏 bits

𝑯 𝑻 = 0.3 log2
1

0.3
+ 0.5 log2

1

0.5
+ 0.2 log2

1

0.2
=𝟏. 𝟒𝟖𝟓𝟒𝟖 bits

But 𝑊 and 𝑇 are not independent, 
𝑃(𝑊, 𝑇) ≠ 𝑃 𝑊 𝑃(𝑇)

𝑇 ∈ 1,2,3
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Joint entropy

• Joint Entropy: n. the average amount of information needed 
to specify multiple variables simultaneously.

𝐻 𝑋, 𝑌 = 

𝑥



𝑦

𝑝(𝑥, 𝑦) log2
1

𝑝(𝑥, 𝑦)

• Hint: this is very similar to univariate entropy – we just replace 
univariate probabilities with joint probabilities and sum over 
everything.



CSC401/2511 – Fall 2024 19

Entropy of several variables

• Consider joint probability, 𝑃(𝑊, 𝑇)

19

cold mild hot

dry 0.1 0.4 0.1 0.6

wet 0.2 0.1 0.1 0.4

0.3 0.5 0.2 1.0

• Joint entropy, 𝐻(𝑊, 𝑇), computed as a sum over the space 
of joint events (𝑊 = 𝑤, 𝑇 = 𝑡)

𝐻 𝑊,𝑇 = 0.1 log2 Τ1 0.1+ 0.4 log2 Τ1 0.4+ 0.1 log2 Τ1 0.1

+0.2 log2 Τ1 0.2+ 0.1 log2 Τ1 0.1+ 0.1 log2 Τ1 0.1 = 𝟐. 𝟑𝟐𝟏𝟗𝟑 bits

Notice 𝐻 𝑊,𝑇 ≈ 2.32 < 2.46 ≈ 𝐻 𝑊 +𝐻(𝑇)
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Entropy given knowledge

• In our example, joint entropy of two variables together is 
lower than the sum of their individual entropies

• 𝐻 𝑊, 𝑇 ≈ 2.32 < 2.46 ≈ 𝐻 𝑊 +𝐻(𝑇)

• Why?

• Information is shared among variables
• There are dependencies, e.g., between temperature and 

wetness.
• E.g., if we knew exactly how wet it is, is there less 

confusion about what the temperature is … ?
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Conditional entropy

• Conditional entropy: n. the average amount of information 
needed to specify one variable given 
that you know another.

𝐻 𝑌|𝑋 = 

𝑥∈𝑋

𝑝 𝑥 𝐻(𝑌|𝑋 = 𝑥)

• Comment: this is the expectation of H(Y|X), w.r.t. x.
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Entropy given knowledge

• Consider conditional probability, 𝑃(𝑇|𝑊)

𝑷(𝑾, 𝑻) 𝑻 = cold mild hot

𝑊 = dry 0.1 0.4 0.1 0.6

wet 0.2 0.1 0.1 0.4

0.3 0.5 0.2 1.0

𝑷(𝑻 |𝑾) 𝑻 = cold mild hot

𝑾 = dry 0.1/0.6 0.4/0.6 0.1/0.6 1.0

wet 0.2/0.4 0.1/0.4 0.1/0.4 1.0

𝑃 𝑇 𝑊 = 𝑃(𝑊, 𝑇)/𝑃(𝑊)
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Entropy given knowledge

• Consider conditional probability, 𝑃(𝑇|𝑊)

𝑷(𝑻 |𝑾) 𝑻 = cold mild hot

𝑾 = dry 1/6 2/3 1/6 1.0

wet 1/2 1/4 1/4 1.0

• 𝑯 𝑻 𝑾 = 𝒅𝒓𝒚 = 𝐻
1

6
,
2

3
,
1

6
= 𝟏. 𝟐𝟓𝟏𝟔𝟑 bits

• 𝑯 𝑻 𝑾 = 𝒘𝒆𝒕 = 𝐻
1

2
,
1

4
,
1

4
= 𝟏. 𝟓 bits

• Conditional entropy combines these:
𝑯 𝑻 𝑾
= 𝑝 𝑊 = 𝑑𝑟𝑦 𝐻 𝑇 𝑊 = 𝑑𝑟𝑦 + 𝑝 𝑊 = 𝑤𝑒𝑡 𝐻 𝑇 𝑊 = 𝑤𝑒𝑡
= 𝟏. 𝟑𝟓𝟎𝟗𝟕𝟖 bits

0.6 0.4
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Equivocation removes uncertainty

• Remember 𝐻 𝑇 = 1.48548 bits
• 𝐻 𝑊, 𝑇 = 2.32193 bits
• 𝐻 𝑇 𝑊 = 1.350978 bits

• How much does 𝑊 tell us about 𝑇?
• 𝐻 𝑇 − 𝐻 𝑇 𝑊 = 1.48548 − 1.350978 ≈ 0.1345 bits
• Well, a little bit!

Entropy (i.e., confusion) about 
temperature is reduced if we know
how wet it is outside.
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Perhaps 𝑻 is more informative?

• Consider another conditional probability, 𝑃(𝑊|𝑇)

• 𝐻 𝑊 𝑇 = 𝑐𝑜𝑙𝑑 = 𝐻
1

3
,
2

3
= 0.918295 bits

• 𝐻 𝑊 𝑇 = 𝑚𝑖𝑙𝑑 = 𝐻
4

5
,
1

5
= 0.721928 bits

• 𝐻 𝑊 𝑇 = ℎ𝑜𝑡 = 𝐻
1

2
,
1

2
= 1 bit

• 𝑯 𝑾 𝑻 = 𝟎. 𝟖𝟑𝟔𝟒𝟓𝟐𝟖 bits

𝑷(𝑾|𝑻) 𝑻 = cold mild hot

𝑾 = dry 0.1/0.3 0.4/0.5 0.1/0.2

wet 0.2/0.3 0.1/0.5 0.1/0.2

1.0 1.0 1.0
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A little bit of knowledge still removes 
uncertainty, but …
• 𝐻 𝑇 = 1.48548 bits
• 𝐻 𝑊 = 0.970951 bits
• 𝐻 𝑊, 𝑇 = 2.32193 bits
• 𝐻 𝑇 𝑊 = 1.350978 bits
• 𝑯 𝑻 −𝑯 𝑻 𝑾 ≈ 𝟎. 𝟏𝟑𝟒𝟓 bits

• How much does 𝑇 tell us about 𝑊 on average?
• 𝑯 𝑾 −𝑯 𝑾 𝑻 = 0.970951 − 0.8364528

≈ 𝟎. 𝟏𝟑𝟒𝟓 bits

• Interesting … is that a coincidence?

Previously 
computed
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Mutual information

• Mutual information: n. the average amount of information 
shared between variables.

𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋

= σ𝑥,𝑦 𝑝(𝑥, 𝑦) log2
𝑝(𝑥,𝑦)

𝑝 𝑥 𝑝(𝑦)

• Hint: The amount of uncertainty removed in variable 𝑋 if you know 𝑌.
• Hint2: If 𝑋 and 𝑌 are independent, 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝(𝑦), then 

log2
𝑝(𝑥,𝑦)

𝑝 𝑥 𝑝(𝑦)
= log2 1 = 0 ∀𝑥, 𝑦 – there is no mutual information!
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Relations between entropies

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐼(𝑋; 𝑌)
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Returning to language

• Recall 𝐻𝑟𝑎𝑡𝑒 𝑋 = lim
𝑁→∞

1

𝑁
𝐻 𝑋1, 𝑋2, … , 𝑋𝑁

• Now we have

𝐻 𝑋1, 𝑋2, … , 𝑋𝑁 = 
𝑥1,…,𝑥𝑁

𝑃 𝑥1, … , 𝑥𝑁 log2
1

𝑃 𝑥1… , 𝑥𝑁
• But we still don’t know how to compute 𝑃(… )
• We will approximate the log terms with our trained LM 𝑄
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Cross-entropy

• Cross-entropy measures the uncertainty of a 
distribution 𝑄 of samples drawn from 𝑃

𝐻 𝑋;𝑄 =

𝑥

𝑃(𝑥) log2
1

𝑄(𝑥)

• As 𝑄 nears 𝑃, cross-entropy nears entropy
• We pay for this mismatch with added uncertainty
• More on this shortly
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Estimating cross-entropy

• We can evaluate 𝑄 but not 𝑃
• But corpus c = 𝑥1, … , 𝑥𝑁 is drawn from 𝑃!
• Let 𝑠1, 𝑠2, … , 𝑠𝑀 be 𝑐’s sentences where σ𝑚 𝑠𝑚 = 𝑁

𝐻𝑟𝑎𝑡𝑒 𝑋 ≈
1

𝑁
𝐻 𝑋1, …𝑋𝑁 ← (large N)

≈
1

𝑁
𝐻 𝑋1, …𝑋𝑁; 𝑄 ← (Q ≈ 𝑃)

≈
1

𝑁
log2

1

𝑄 𝑐
← (it happened!)

≈
1

𝑁
σ𝑚=1
𝑀 log2

1

𝑄 𝑠𝑚

• Aside: With time invariance, ergodicity, and 𝑄 = 𝑃, 
NLL approaches 𝑁 × 𝐻𝑟𝑎𝑡𝑒 as 𝑁 → ∞

= Negative Log Likelihood (NLL)
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Quantifying the approximation

• How well does cross-entropy approximate entropy?
• Well if 𝑃 and 𝑄 are close
• Poorly if 𝑃 and 𝑄 are far apart

• If we can quantify the “closeness” of 𝑃 and 𝑄, we 
can quantify how good/bad our NLL estimate is
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Relatedness of two distributions

• How similar are two probability distributions?
• e.g., Distribution P learned from Kylo Ren

Distribution Q learned from Darth Vader

P Q

Words Words
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Relatedness of two distributions

• An optimal code based on Vader (Q) instead of Kylo (P) will 
be less efficient at coding symbols that Kylo will say.

• What is the average number of extra bits required to code 
symbols from P when using a code based on Q?

P Q

Words Words
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Kullback-Leibler divergence

• KL divergence: n. the average log difference between the 
distributions P and Q, relative to Q.
a.k.a. relative entropy.
caveat: we assume 0 log 0 = 0
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Kullback-Leibler divergence

𝐷𝐾𝐿(𝑃||𝑄) =

𝑥

𝑃 𝑥 log2
𝑃(𝑥)

𝑄(𝑥)

• It is somewhat like a ‘distance’ :
• 𝐷𝐾𝐿(𝑃||𝑄) ≥ 0 ∀𝑃, 𝑄
• 𝐷𝐾𝐿(𝑃||𝑄) = 0 iff 𝑃 and 𝑄 are identical.  

• It is not symmetric, 𝐷𝐾𝐿(𝑃||𝑄) ≠ 𝐷𝐾𝐿(𝑄||𝑃)
• Aside: normally computed in base 𝑒
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KL and cross-entropy

• Manipulating KL, we get
𝐷𝐾𝐿(𝑃||𝑄)

=
𝑥
𝑃 𝑥 log2

1

𝑄 𝑥
−

𝑥
𝑃 𝑥 log2

1

𝑃 𝑥
= 𝐻 𝑋;𝑄 − 𝐻 𝑋 ≥ 0

• Therefore,
Hrate X ≈ 𝐻 𝑋1, …𝑋𝑁

≤ 𝐻 𝑋1, …𝑋𝑁; 𝑄 ≈ 𝑁𝐿𝐿(𝑐; 𝑄)
• The NLL is an approximate upper bound on Hrate X



CSC401/2511 – Fall 2024 38

Perplexity

• The intrinsic quality of an LM is often quantified by its 
perplexity on held-out data 𝑐 by exponentiating its NLL

𝑃𝑃 𝑐; 𝑄 = 2
1
𝑁
σ𝑚=1
𝑀 log2

1
𝑄 𝑠𝑚 = ෑ

𝑚=1

𝑀
1

𝑄 𝑠𝑚

1/𝑁

• A uniform 𝑄 over a vocabulary of size 𝑉 gives 𝑃𝑃 𝑐; 𝑄 = 𝑉
• PP is sort of like an “effective” vocabulary size

• If an LM 𝑄 has a lower PP than 𝑄′ (for large 𝑁), then
• 𝑄 better predicts 𝑐
• 𝐷𝐾𝐿(𝑃| 𝑄 < 𝐷𝐾𝐿(𝑃||𝑄

′)

• 𝑃𝑃(𝑐; 𝑄) is a tighter bound on 2𝐻𝑟𝑎𝑡𝑒(𝑋)
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Perplexity (per token)

• The intrinsic quality of an LM is often quantified by its 
perplexity on held-out data 𝑐 by exponentiating its NLL

𝑃𝑃 𝑐; 𝑄 = 2
1
𝑁
σ𝑚=1
𝑀 log2

1
𝑄 𝑠𝑚 = ෑ

𝑚=1

𝑀
1

𝑄 𝑠𝑚

1/𝑁

• A uniform 𝑄 over a vocabulary of size 𝑉 gives 𝑃𝑃 𝑐; 𝑄 = 𝑉
• PP is sort of like an “effective” vocabulary size

• If an LM 𝑄 has a lower PP than 𝑄′ (for large 𝑁), then
• 𝑄 better predicts 𝑐
• 𝐷𝐾𝐿(𝑃| 𝑄 < 𝐷𝐾𝐿(𝑃||𝑄

′)

• 𝑃𝑃(𝑐; 𝑄) is a tighter bound on 2𝐻𝑟𝑎𝑡𝑒(𝑋)
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Deciding what we know

• (Cross-)entropy, KL divergence, and perplexity can all be 
used to justify a preference for one method/idea over 
another
• “𝑄 is a better language model than 𝑄′”

• Engineering statistics are often not enough to be truly 
meaningful.
• “My ASR system is 95% accurate on my test data. Yours is 

only 94.5% accurate! Heh heh heh”
• What if the test data was biased somehow?
• What if our estimates were inaccurate due to simple 

randomness?
• We need tests to increase our confidence in our results.
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Statistical significance testing

Step 1: State a hypothesis (and choose a test)
• Decide on the null hypothesis 𝐻0

Step 2: Compute some test statistics and associated p-value
• Such as the 𝑡-statistic

Step 3: Reject 𝐻0 if 𝑝 ≤ 𝛼, otherwise do not reject it
• Significance level 𝛼 usually ≤ 0.05
• If you can reject 𝐻0, then the result is significant
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Null hypothesis and p-value

• Null hypothesis 𝐻0 usually states that “there is no effect”.
• It is the negation of what you hope for
• The phrasing of “there is no effect” dictates the 

appropriate test (and its negation)
• “The sample is drawn from a normal distribution with 

some fixed mean”
• You want to cast doubt on the plausibility of 𝐻0

• It’s very unlikely that this measurement would be 
observed randomly under the 𝐻0

• The 𝒑-value of is the probability that the measured effect 
occurs under 𝐻0 by chance
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Statistical tests

• Here are some popular tests (no need to memorize)

• ത𝑋 =
1

𝑁
σ𝑛𝑋𝑛 is the sample mean

Test 𝑯𝟎 Example use case

Two-sided, one-
sample 𝑡 test

ത𝑋 ∼ 𝒩 𝜇, 𝜎 for known 𝜇, 
unknown 𝜎

Whether Elon’s average tweet 
length is different from the 
average user’s (𝜇 = 100)

One-sided, two-
sample 𝑡 test

ҧ𝐴 ∼ 𝒩 𝜇𝐴, 𝜎 , ത𝐵 ∼ 𝒩 𝜇𝐵 , 𝜎
for unknown 𝜇𝐴, 𝜇𝐵 , 𝜎 where
𝜇𝐴 ≤ 𝜇𝐵 (or 𝜇𝐴 ≥ 𝜇𝐵)

Whether ASR system A (trained 
𝑁 times) makes fewer mistakes 
than B (trained 𝑁 times)

One-way ANOVA ത𝑋1, ത𝑋2, … ∼ 𝒩 𝜇, 𝜎 for 
unknown 𝜇, 𝜎

Whether network architecture 
predicts accuracy

One-sided Mann 
Whitney U test

𝑃 𝐴𝑛 > 𝐵𝑛′ ≤ 0.5 (or ≥ 0.5) Whether ASR system A (trained 
𝑁 times) makes fewer mistakes 
than B (trained 𝑁 times)
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Pitfall 1: parametric assumptions

• Parametric tests make assumptions about the parameters
and distribution of RVs
• Often normally distributed with some fixed variance

• If untrue, 𝐻0 could be rejected for spurious reasons
• Must first pass tests of normality – difficult with small N
• If non-normal, must use non-parametric tests

• Tend to be less powerful (𝑝-values are higher)
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Pitfall 2: multiple comparisons

• Imagine you’re flipping a coin to see if it’s fair. You claim 
that if you get ‘heads’ in 9/10 flips, it’s biased.

• Assuming 𝐻0, the coin is fair, the probability that one fair 
coin would come up heads ≥ 9 out of 10 times is

𝑝1 = 11 × 0.510 ≈ 0.01

• But the probability that any of 173 coins hits ≥
9

10
is

𝑝173 = 1 − 1 − 𝑝1
173 ≈ 0.84

• The more tests you conduct with a statistical test, the more 
likely you are to accidentally find spurious (incorrect) 
significance accidentally.
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Pitfall 3: effect size

• Just because an effect is reliably measured doesn’t make it 
important
• Even 𝜇1 = 1 and 𝜇2 = 1.00000000000001 can be 

significantly different
• One must decide whether the purported difference is worth 

the extra attention
• There are various measures of effect size to support this
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More information

• This is a cursory introduction to experimental statistics and 
hypothesis testing

• You should be aware of their key concepts and some of 
their pitfalls

• Before you run your own experiments:
• Take STA248 “Statistics for computer scientists”
• Look up stats packages for R, Python
• Read a book, e.g.:

• Using multivariate statistics, 7th ed., Tabachnick, 
Pearson; 2019.

• Categorical Data Analysis, 3rd ed., Agresti, Wiley, 2013.

• Ask a statistician for help

https://librarysearch.library.utoronto.ca/permalink/01UTORONTO_INST/14bjeso/alma991106135775306196
https://librarysearch.library.utoronto.ca/permalink/01UTORONTO_INST/14bjeso/alma991106421830806196
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Appendix

Everything beyond this slide is not on the exam.
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Samples, events, and probabilities

• Samples are the unique outcomes of an experiment
• The set of all samples is the sample space
• Examples:

• What DV could say (“yes” or “no”)
• The face-up side of a die (1..6)

• Events are subsets of the sample space assigned a probability
• This is usually any subset of the sample space
• Examples:

• {“yes”}, {“no”}, {“yes”, “no”}, ∅
• The face-up side is even

• The function assigning probabilities to events is the probability 
function
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Random variables

• Random variables (RVs) are real-valued functions on 
samples/outcomes of a probability space

• The RV is usually upper-case 𝑋 while its value is lower 𝑥
• Examples:

• A function returning the sum of face-up sides of 𝑁 dice
• A function counting a discrete sample space

• E.g. “Yes” = 1, “No” = 2
• Like a programming variable, but with uncertainty

• Let 𝑋 be defined over samples 𝜔 and 𝑎, 𝑏 real
• 𝑍 = 𝑎𝑋 + 𝑏 means ∀𝜔: 𝑍 𝜔 = 𝑎𝑋 𝜔 + 𝑏
• 𝑋 = 𝑥 occurs with some probability 𝑃 𝑥
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PMFs and laziness

• A probability mass function (pmf) sums the probabilities of 
samples mapped to a given RV value

𝑃 𝑋 = 𝑥 =
𝜔∈Ω𝑥

𝑃( 𝜔 ) , Ω𝑥 = 𝜔:𝑋 𝜔 = 𝑥

• It is often expressed as 𝑃(𝑥) or 𝑝(𝑥)
• If the values of 𝑋 are 1-to-1 with samples, the pmf is easily 

confused with the probability function
• 𝑃(𝑥) could be either
• 𝑃(𝑋 = 𝑥) is the pmf
• 𝑃 𝑋 = yes is an abuse of notation
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Expected value

• The expected value of an RV is its average (or mean) value 
over the distribution

• More formally, the expected value of 𝑋 is the arithmetic mean 
of its values weighted by the pmf

𝐸𝑋 𝑋 =
𝑥
𝑃 𝑋 = 𝑥 𝑥

• 𝐸⋅ ⋅ is a linear operator
• 𝐸𝑋,𝑌 𝑎𝑋 + 𝑌 + 𝑏 = 𝑎𝐸𝑋 𝑋 + 𝐸𝑌 𝑌 + 𝑏
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Expected value - examples

• What is the average sum of face-up values of 2 fair, 6-sided 
dice?

• Let 𝑋2 be the sum

• 𝐸 𝑋2 = σ𝑥=2
12 𝑃 𝑋2 = 𝑥 𝑥 =

1

36
2 +

2

36
3 +⋯ = 7

• Alternatively, let 𝑋2 = 2𝑋1
• 𝐸 2𝑋1 = 2𝐸 𝑋1 = 2 × 3.5 = 7

2 3 4 5 6 7 8 9 10 11 12

{1,1} {2,1}
{1,2}

{3,1}
{2,2}
{1,3}

{4,1}
{3,2}
{2,3}
{1,4}

{5,1}
{4,2}
{3,3}
{2,4}
{1,5}

{6,1}
{5,2}
{4,3}
{3,4}
{2,5}
{1,6}

{6,2}
{5,3}
{4,4}
{3,5}
{2,6}

{6,3}
{5,4}
{4,5}
{3,6}

{6,4}
{5,5}
{4,6}

{6,5}
{5,6}

{6,6}


