Features and classification

CSC401/2511 – Natural Language Computing –Fall 2024 Lecture 3 Gerald Penn University of Toronto

Lecture 3 overview

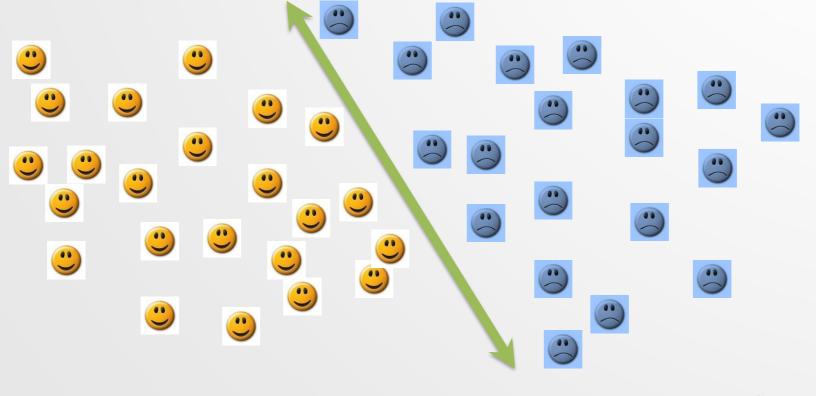
- Today:
- Classification overview
- Quick introduction to Text Classification
- Feature extraction from text.
 - How to pick the right features?
 - Grammatical 'parts-of-speech'.
 - (even when nobody is speaking)
- Some slides may be based on content from Bob Carpenter, Dan Klein, Roger Levy, Josh Goodman, Dan Jurafsky, and Christopher Manning.

Classification

CSC 401/2511 - Fall 2024

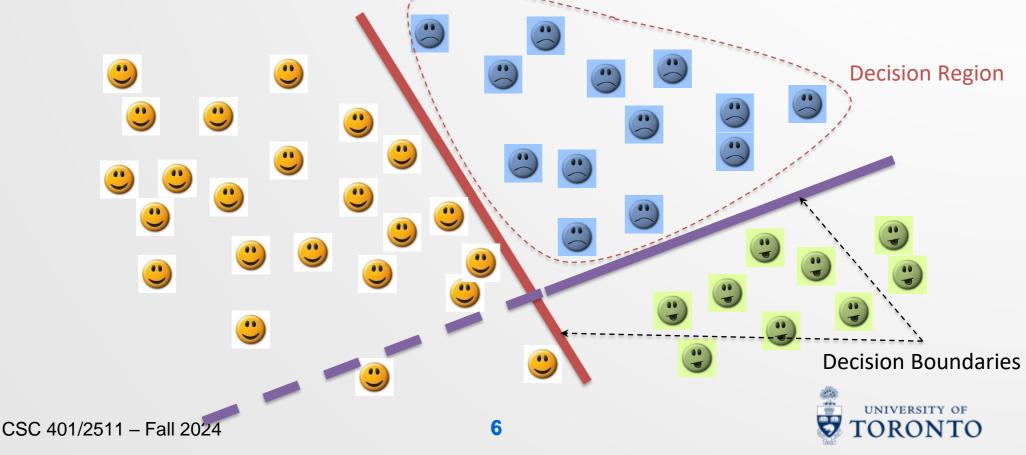
Binary and linearly separable

- Perhaps the easiest case.
 - Extends to dimensions $d \ge 3$, line becomes (hyper-)plane.



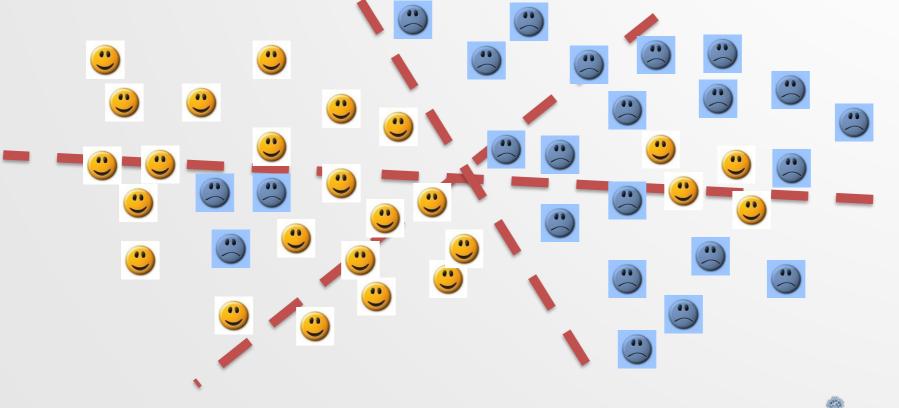
N-ary and linearly separable

- A bit harder random guessing gives $\frac{1}{N}$ accuracy (given equally likely classes).
 - We can **logically combine** N 1 binary classifiers.



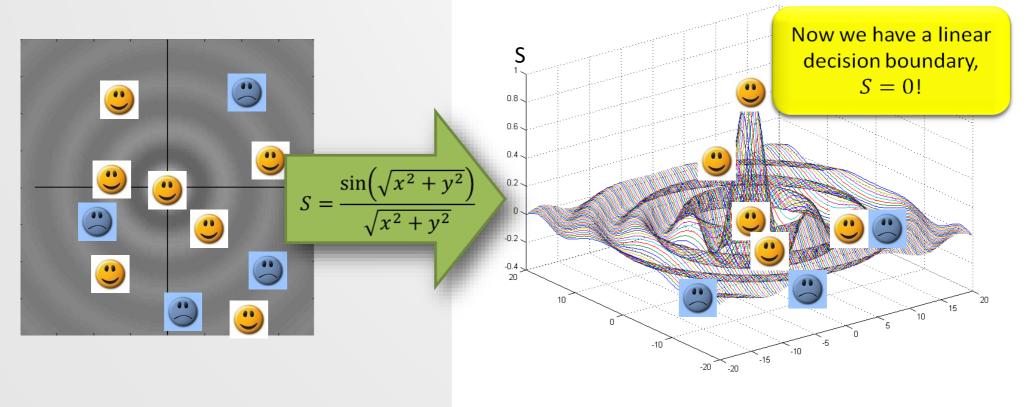
Class holes

- Sometimes it can be impossible to draw any lines through the data to separate the classes.
 - Are those troublesome points noise or real phenomena?



The kernel trick

 We can sometimes linearize a non-linear case by moving the data into a higher dimension with a kernel function.
 E.g.,



Precision and Recall

Precision: $\frac{N_{\text{relevant & retrieved}}}{N_{\text{retrieved}}}$

- Among all retrieved documents, how many are relevant?
- Precision in machine learning: $\frac{TP}{P}$
- **Recall**: $\frac{N_{\text{relevant & retrieved}}}{N_{\text{relevant}}}$
- Among all relevant documents, how many are retrieved?
- Recall in machine learning: $\frac{TP}{T}$

Note: Precision and recall has some tradeoff.

F-measure

F-measure is the weighted harmonic mean of precision and recall:

$$F = \frac{1}{\alpha \frac{1}{p} + (1 - \alpha) \frac{1}{r}}$$

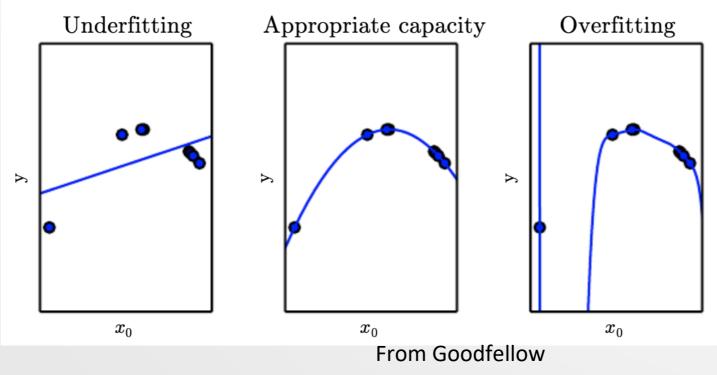
Where *p* is precision, *r* is recall, and $\alpha \in [0,1]$. Notes:

When
$$\alpha = \frac{1}{2}$$
, we have $F_1 = \frac{2pr}{p+r}$

If either of precision or recall is 0 (i.e., true positive count TP = 0), then *F* is arbitrarily set to 0.

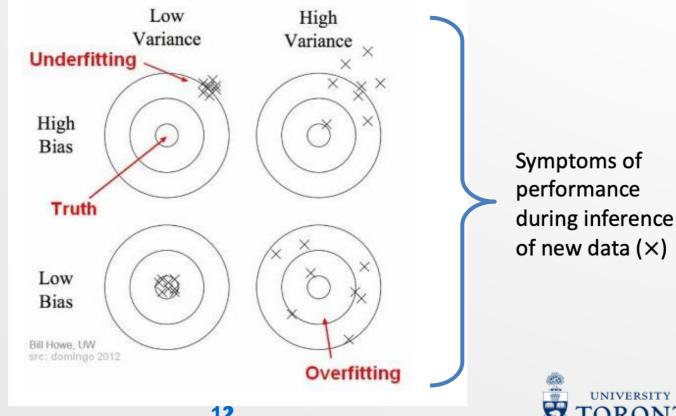
Capacity and over/under-fitting

 A central challenge in machine learning is that our models should generalize to unseen data, so we need to set our (hyper-)parameters appropriately.

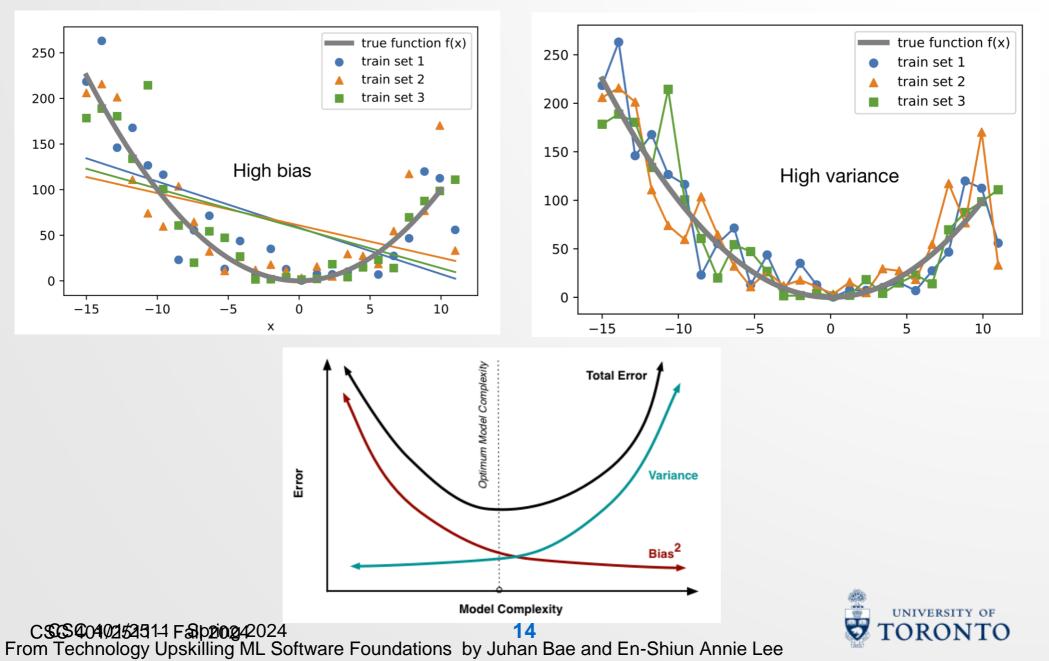


Capacity and over/under-fitting

 A central challenge in machine learning is that our models should generalize to unseen data, so we need to set our (hyper-)parameters appropriately.

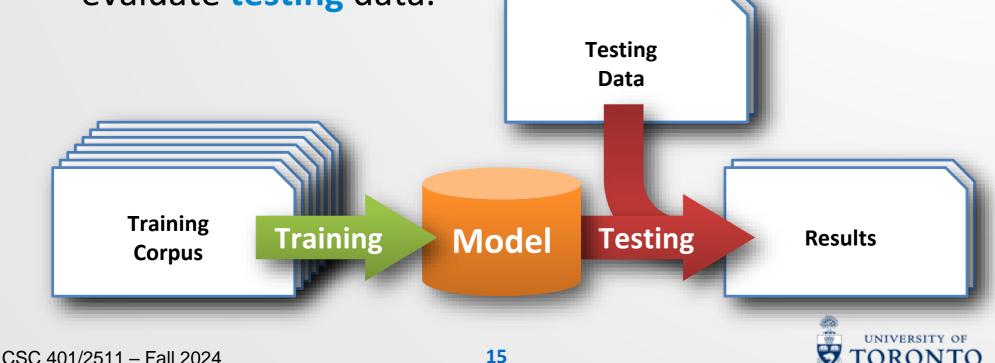


Bias and Variance



General process

- 1. We gather a big and relevant training corpus.
- 2. We learn our **parameters** (e.g., probabilities) from that corpus to build our **model**.
- 3. Once that model is fixed, we use those probabilities to evaluate testing data.

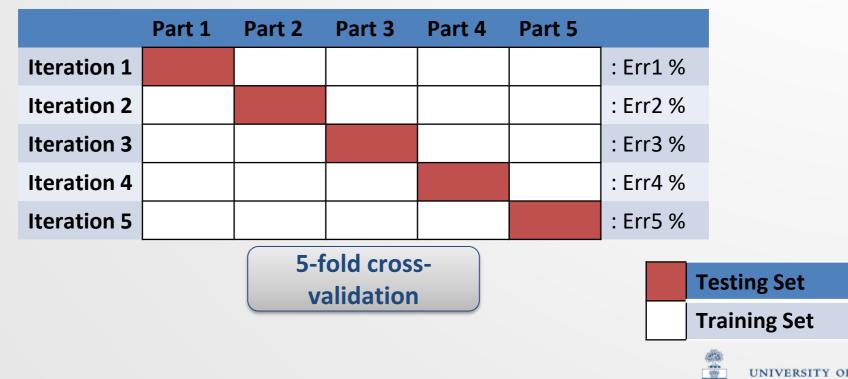


General process

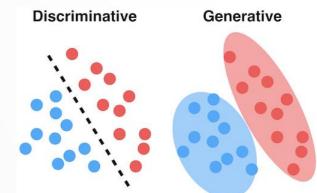
- Often, training data consist of 80% to 90% of the available data.
 - Often, some subset of *this* is used as a validation/development set.
- Testing data are <u>not</u> used for training but often come from the same corpus.
 - It often consists of the remaining available data.
 - Sometimes, it's important to partition speakers/writers so they don't appear in both training and testing.
 - But what if we just partitioned (un)luckily??

Better process: *K*-fold cross-validation

 K-fold cross validation: n. splitting all data into K partitions and iteratively testing on each after training on the rest (report means and variances).



(Some) Types of classifiers



- Generative classifiers model the data.
 - Parameters set to maximize likelihood of training data.
 - We can *generate* new observations from these.
 - e.g., hidden Markov models

Vs.

- **Discriminative** classifiers emphasize **class boundaries**.
 - Parameters set to minimize error on training data.
 - e.g., support vector machines, decision trees.
- ...What do class boundaries look like in the data?

Quick Intro to Text Classification

From Technology Upskilling Machine Learning Software Foundations by En-Shiun Annie Lee

Features

- Feature: *n*. A measurable variable that is (or *should be*) distinctive of something we want to model.
- We often choose features to classify something.
 - e.g., an emotional, whiny **tone** is likely to indicate that the speaker is not professional, scientific, nor political.
 - Note that in neural networks, e.g., 'features' refer to something distinctive but often not *nameable*.
- We often need various, heterogeneous features to adequately model something,

e.g. tone plus aspects of grammar.

Example: Feature vectors

Values for several features of an observation can be put into a single vector. # proper # 1st person # commas

	nouns	pronouns	
Damien Fahey Image: Second s			
Rush Limbaugh looks like if someone put a normal human being in landscape mode. ▲ Reply ▲ Reply ▲ Reply ▲ Reply ▲ Reply ▲ Reply 	2	0	0
Faux John Madden			
BREAKING: Apple Maps projecting Barack Obama to win Brazil.	5	0	0
Jim Gaffigan 📀 💽 🖌 🕑 Follow			
If there was an award for most pessimistic, I probably wouldn't even be nominated.	0	1	1
▲ Reply 1 Retweet ★ Favorite ••• More C 401/2511 - Fall 2024	21		

Feature vectors

Features should be useful in discriminating between categories.

Table 3: Features to be computed for each text

- Counts:
 - First person pronouns
 - Second person pronouns
 - Third person pronouns
 - Coordinating conjunctions
 - Past-tense verbs
 - Future-tense verbs
 - Commas
 - Colons and semi-colons
 - Dashes
 - Parentheses
 - Ellipses
 - Common nouns
 - Proper nouns
 - Adverbs
 - wh-words
 - Modern slang acroynms
 - Words all in upper case (at least 2 letters long)
- Average length of sentences (in tokens)
- · Average length of tokens, excluding punctuation tokens (in characters)
- Number of sentences

Higher values \rightarrow this person is referring to themselves (to their opinion, too?)

Higher values → looking forward to (or dreading) some future event?

Lower values \rightarrow this tweet is more formal. Perhaps not overly sentimental?

Different features for different tasks

- Alzheimer's disease involves atrophy in the brain.
 - Excessive pauses (acoustic disfluencies),
 - Excessive word type repetition, and
 - Simplistic or short sentences.
 - 'function words' like *the* and *an* are often dropped.
- To **diagnose** Alzheimer's disease, one might measure:
 - Proportion of utterance spent in silence.
 - Entropy of word type usage.
 - Number of word tokens in a sentence.
 - Number of prepositions and determiners (explained shortly).

Explainability/Interpretability!

Features in Sentiment Analysis

What does this mean?

- Sentiment analysis can involve detecting:
 - Stress or frustration in a conversation.
 - Interest, confusion, or preferences. Useful to marketers.
 - e.g., 'got socks for xmas wanted #ps5 fml'
 - Deceipt. e.g., 'Let's watch Netflix and chill.'
- Complicating factors include sarcasm, implicitness, and a subtle spectrum from negative to positive opinions.
- Useful features for sentiment analyzers include:
 - Trigrams.
 - First-person pronouns.
 - Passive voice.

Pronouns? Voice?

Pre-processing

• Pre-processing involves preparing your data to make feature extraction easier or more valid.

- E.g., punctuation likes to press up against words. The sequence "example," should be counted as two tokens – not one.
 - We separate the punctuation, as in "example,".

There is no perfect pre-processor.

Mutually exclusive approaches can often **both** be justified.

- E.g., Is Newfoundland-Labrador one word type or two?
 Each answer has a unique implication for splitting the dash.
- Often, noise-reduction removes *some* information.
- Being **consistent** is important.

Parts of Speech

CSC 401/2511 - Fall 2024

Parts-of-speech (PoS)

- Linguists like to group words according to their structural function in building sentences.
 - This is similar to grouping Lego by their shapes.
- Part-of-speech: *n*. lexical category or morphological class.

Nouns collectively constitute a part-of-speech (called *Noun*)

Example parts-of-speech

Part of Speech	Description	Examples		
Noun	is usually a person, place, event , or entity .	chair, pacing, monkey, breath.		
Verb	is usually an action or predicate .	run, debate, explicate.		
Adjective	modifies a noun to further describe it.	orange, obscene, disgusting.		
Adverb	modifies a verb to further describe it.	lovingly, horrifyingly, often		

Example parts of speech

Part of Speech	Description	Examples	
Preposition	Often specifies aspects of space, time, or means .	around, over, under, after, before, with	
Pronoun	Substitutes for nouns; referent typically understood in context.	I, we, they	
Determiner	logically quantify words, usually nouns.	the, an, both, either	
Conjunction	combines words or phrases.	and, or, although	

Content categories

- Some PoSs convey content labels more than function or linguistic structure.
 - Usually nouns, verbs, adjectives, adverbs.
 - **Content** categories are usually multifarious.
 - e.g., there are more **nouns** than **prepositions**.
 - New content words are continually added
 - e.g., an app, to google, to misunderestimate.
 - Some archaic content words go extinct.
 - e.g., fumificate, v., (1721-1792), frenigerent, adj., (1656-1681), melanochalcographer, n., (c. 1697).

Functional parts-of-speech

- Some PoS are 'glue' that holds others together.
 - E.g., prepositions, determiners, conjunctions.
 - Functional PoS usually cover a small and fixed number of word types (i.e., a 'closed class').
 - Their **semantics** depend on the contentful words with which they're used.
 - E.g., I'm on time vs. I'm on a boat

Grammatical features

- There are several **grammatical features** that can be associated with words:
 - Case
 - Person
 - Number
 - Gender
- These features can restrict other words in a sentence.

Other features of nouns

• Proper noun: named things (e.g., "they've killed Bill!")

 Common noun: unnamed things (e.g., "they've killed the bill!")

Mass noun: divisible and uncountable

 (e.g., "butter" split in two gives two piles of butter – not two 'butters')

 Count noun: indivisible and countable.

 (e.g., a "pig" split in two does not give two pigs)

- Parts-of-speech *should* match (i.e., agree) in certain ways.
- Articles 'have' to agree with the number of their noun
 - e.g., "<u>these</u> pretzels are making me thirsty"
 - e.g., "<u>a</u> <u>winters</u> are coming"

• Verbs 'have' to agree (at least) with their subject (in English)

- e.g., "the <u>dogs</u> <u>eats</u> the gravy" no number agreement
- e.g., "<u>Yesterday</u>, all my trouble <u>em</u> so far away"

bad tense – should be past tense seemed

• e.g., "in you handle me the way <u>I</u> are?"

Tagging

CSC 401/2511 - Fall 2024

PoS tagging

• Tagging: v.g. the process of assigning a part-of-speech to each word in a sequence.

• E.g., using the 'Penn treebank' tag set (see appendix):

Word	The	nurse	put	the	sick	patient	to	sleep
Tag	DT	NN	VBD	DT	IJ	NN	IN	NN

Ambiguities in parts-of-speech

- Word types can have many parts-of-speech.
 - E.g., back:
 - The **back**/JJ door
 - On its back/NN
 - Win the voters **back**/RB
 - Promise to back/VB you in a fight
- (adjective) (noun) (adverb) (verb)
- We want to determine the appropriate tag for a given token in its context.

Why is tagging useful?

First step towards many practical purposes.

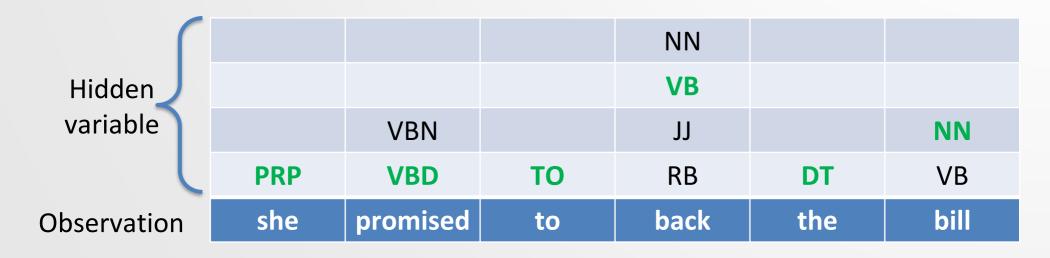
- Speech synthesis: how to pronounce text
 - I'm conTENT/JJ
 - I obJECT/VBP

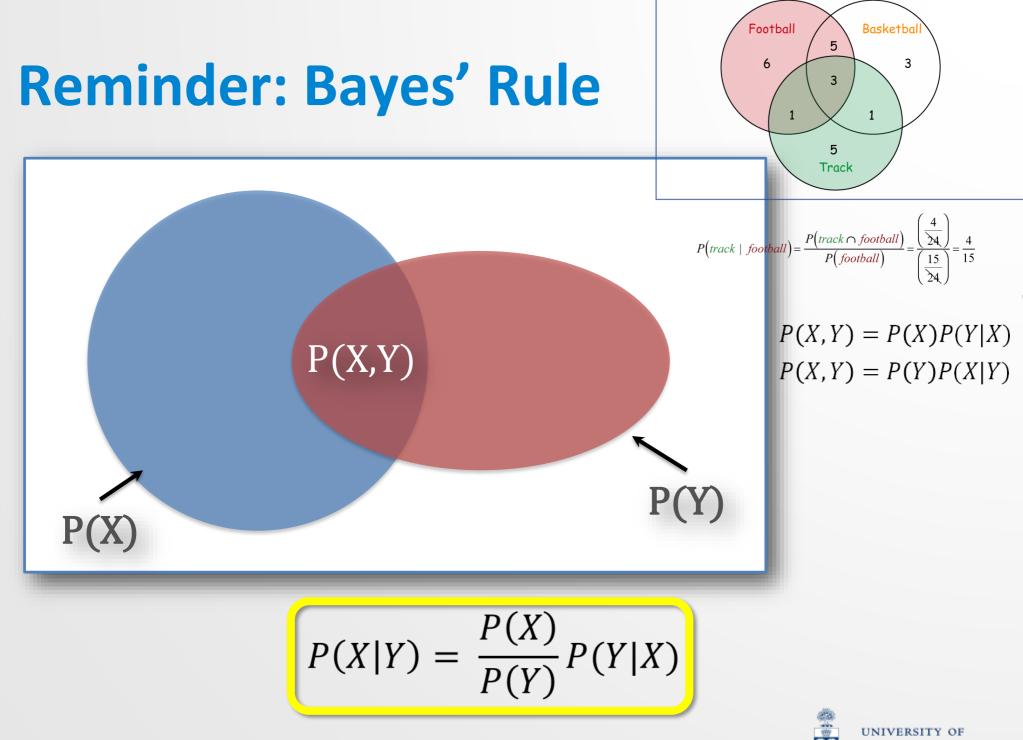
vs. the **CONtent**/NN

- vs. the **OBJect**/NN
- I lead/VBP ("I iy d") vs. it's lead/NN ("I eh d")
- Information extraction:
 - Help to find names and relations.
- Machine translation:
 - Help todentify phrase boundaries
- Explainability?

Tagging as classification

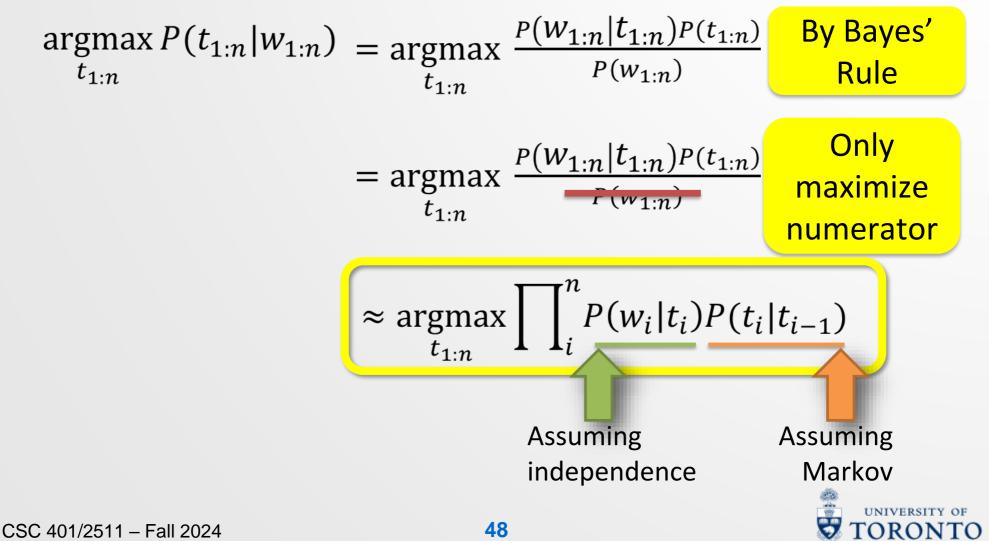
 We have access to a sequence of observations and are expected to decide on the best assignment of a hidden variable, i.e., the PoS





Statistical PoS tagging

• Determine the **most likely** tag sequence $t_{1:n}$ by:



Those are hidden Markov models!

• We'll see these soon...

Image sort of from 2001:A Space Odyssey by MGM pictures

Word likelihood probability $P(w_i|t_i)$

- VBZ (verb, 3rd person singular present) is likely is.
- Compute P(*is*|VBZ) by counting in a corpus that has already been tagged:

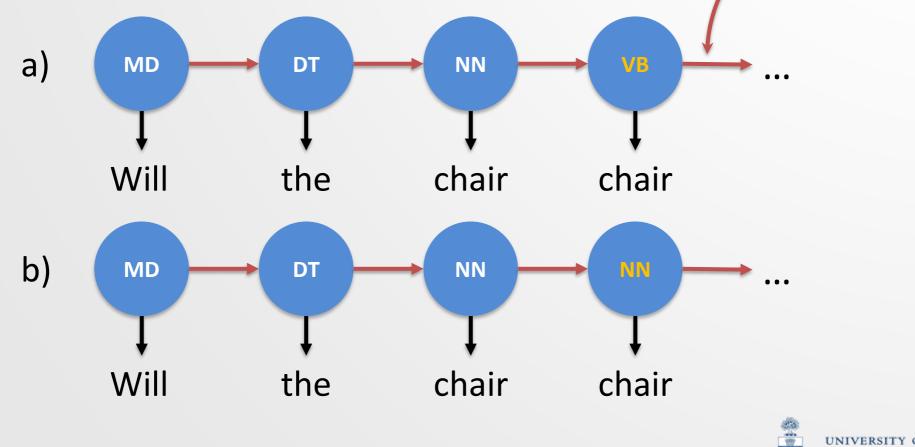
$$P(w_i|t_i) = \frac{Count(w_i \text{ tagged as } t_i)}{Count(t_i)}$$

e.g.,

$$P(is|VBZ) = \frac{Count(is \text{ tagged as } VBZ)}{Count(VBZ)} = \frac{10,073}{21,627} = 0.47$$

Tag-transition probability $P(t_i | t_{i-1})$

 Will/MD the/DT chair/NN chair/?? the/DT meeting/NN from/IN that/DT chair/NN?



Lecture Review Slide

- What are some examples of Text Classification
- What are features?
 - What are unique features for the specific tasks of sentiment analysis versus spam detection?
 - What are some words with multiple POS tags?
 - Compute Baye's rule for the POS tagging for an example.

Let's summarize a few of the classifiers from Assignment 1

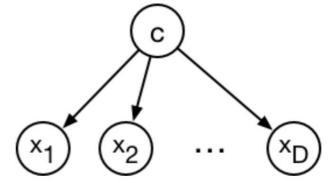
Naïve Bayes and SoftMax

- Broadly, Bayesian probability conceives of probability not as frequency of some phenomenon occurring, but rather as an expectation related to our own certainty.
- Given an observation x, Naïve Bayes simply chooses the class $c \in C$ that maximizes P(c | x).
 - This can be done in many ways.

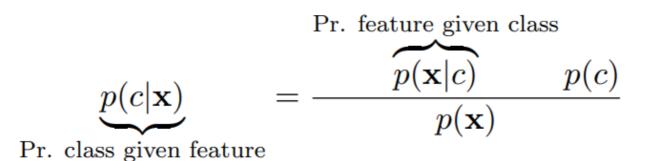
$$\underset{c}{\operatorname{argmax}} P(c|x) = \frac{P(c)}{P(x)} P(x|c)$$

Estimate the $P(\cdot)$ using Gaussians, or...

Bayesian Classifier



Given features $\mathbf{x} = [x_1, x_2, \cdots, x_D]^T$ (1) want to compute class probabilities using Bayes Rule:



In words,

 $Posterior for class = \frac{Pr. of feature given class \times Prior for class}{Pr. of feature}$

To compute $p(c|\mathbf{x})$ we need: $p(\mathbf{x}|c)$ and p(c).

Independence Assumption

- Naive assumption: The features x_i are conditionally independent given the class c.
- Allows us to decompose the joint distribution:

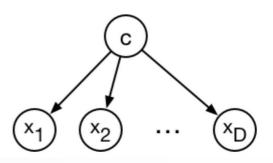
 $p(c, x_1, \ldots, x_D) = p(c) p(x_1|c) \cdots p(x_D|c).$

- Compact representation of the joint distribution.
 - Prior probability of class: $p(c=1) = \pi$

• Conditional probability of feature given class:

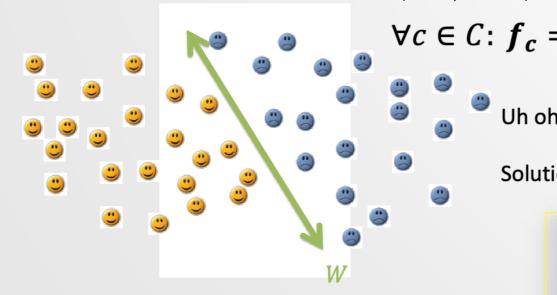
$$p(x_j = 1|c) = \theta_{jc}$$

Naïve Bayes and SoftMax



• Assume $x \in \mathbb{R}^d$, learning a linear decision boundary is tantamount to learning $W \in \mathbb{R}^{C \times d}$.

72



 Naive Bayes: https://www.youtube.com/watch?v=O2L2Uv9pdDA
 P(

 SoftMax: https://www.youtube.com/watch?v=8ps_JEW42xs

 Example on Text: https://www.youtube.com/watch?v=temQ8mHpe3k

 Naive Bayes on Spam: https://www.youtube.com/watch?v=8NEfN3JbINA

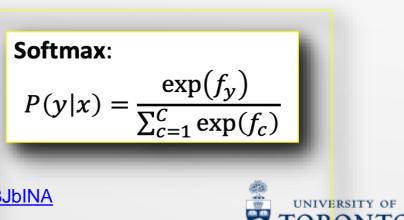
 Why Naive Bayes are Cool: https://www.youtube.com/watch?v=8NEfN3JbINA

CSC 401/2511 - Fall 2024

$$P(\text{Class}|\text{features}) = P(\text{features}|\text{Class})^* P(\text{Class}) \quad d$$

$$\forall c \in C: f_c = W[c, \cdots] \cdot x = \sum_{i=1}^d W[c, i] \cdot x[i]$$

Uh oh – f_c can be negative and we want something on [0,1], to be a probability. Solution: Just raise it with an exponent



Naive Bayes Properties

- An amazingly cheap learning algorithm!
- Training time: Estimate parameters using maximum likelihood.
 - Compute co-occurrence counts of each feature with the labels. I Requires only one pass through the data!
- Test time: Apply Bayes' Rule.
 - Cheap because of the model structure. For more general models, Bayesian inference can be very expensive and/or complicated.
- Analysis easily extends to prob. distributions other than Bernoulli.
- Less accurate in practice compared to discriminative models CSCS 404925911-Form Technology Upskilling ML Software Foundations by Juhan Bae and En-Shiun Annie Lee

Readings

- J&M: 5.1-5.5 (2nd edition)
- M&S: 16.1, 16.4

Appendix – prepositions from CELEX

of	540,085	through	14,964	worth	1,563	pace	12
in	331,235	after	13,670	toward	1,390	nigh	9
for	142,421	between	13,275	plus	750	re	4
to	125,691	under	9,525	till	686	mid	3
with	124,965	per	6,515	amongst	525	o'er	2
on	109,129	among	5,090	via	351	but	0
at	100,169	within	5,030	amid	222	ere	0
by	77,794	towards	4,700	underneath	164	less	0
from	74,843	above	3,056	versus	113	midst	0
about	38,428	near	2,026	amidst	67	ο'	0
than	20,210	off	1,695	sans	20	thru	0
over	18,071	past	1,575	circa	14	vice	0

Appendix – particles

aboard	aside	besides	forward(s)	opposite	through
about	astray	between	home	out	throughout
above	away	beyond	in	outside	together
across	back	by	inside	over	under
ahead	before	close	instead	overhead	underneath
alongside	behind	down	near	past	up
apart	below	east, etc.	off	round	within
around	beneath	eastward(s),etc.	on	since	without

Appendix – conjunctions

and	514,946	yet	5,040	considering	174	forasmuch as	0
that	134,773	since	4,843	lest	131	however	0
but	96,889	where	3,952	albeit	104	immediately	0
or	76,563	nor	3,078	providing	96	in as far as	0
as	54,608	once	2,826	whereupon	85	in so far as	0
if	53,917	unless	2,205	seeing	63	inasmuch as	0
when	37,975	why	1,333	directly	26	insomuch as	0
because	23,626	now	1,290	ere	12	insomuch that	0
SO	12,933	neither	1,120	notwithstanding	3	like	0
before	10,720	whenever	913	according as	0	neither nor	0
though	10,329	whereas	867	as if	0	now that	0
than	9,511	except	864	as long as	0	only	0
while	8,144	till	686	as though	0	provided that	0
after	7,042	provided	594	both and	0	providing that	0
whether	5,978	whilst	351	but that	0	seeing as	0
for	5,935	suppose	281	but then	0	seeing as how	0
although	5,424	cos	188	but then again	0	seeing that	0
until	5,072	supposing	185	either or	0	without	0

Appendix – Penn TreeBank PoS tags

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	or "
POS	possessive ending	's	"	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off			1995

Example – Hero classification

		Hero	Hair length	Height	Age	Hero Type
		Aquaman	2″	6'2"	35	Hero
æ	-	Batman	1"	5'11"	32	Hero
data		Catwoman	7"	5'9"	29	Villain
		Deathstroke	0″	6'4"	28	Villain
Training	2	Harley Quinn	5″	5′0″	27	Villain
Tra		Martian Manhunter	0″	8'2"	128	Hero
	2	Poison Ivy	6″	5′2″	24	Villain
	2	Wonder Woman	6″	6'1"	108	Hero
C		Zatanna	10"	5'8"	26	Hero
Test data 🐠 Red Hood		2″	6'0"	22	?	
CSC 401/2511 – Fall 2024			81	Characters © DC	e	UNIVERSITY OF

Training data