

What is natural language computing?

Getting computers to understand everything we say and write.

In this class (and in the field generally), we are interested in learning the <u>statistics of language</u>.

Increasingly, computers give insight into how humans process language, or generate language themselves.

BLAH

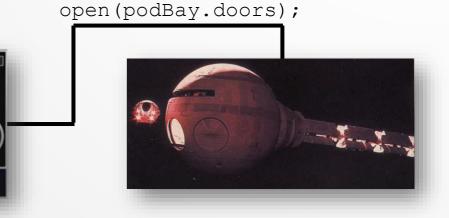
What is Natural Language Computing?

- The computer science (and statistics) behind natural language processing (NLP), also known as computational linguistics (CL).
- Applications
 - Text Classification
 - Automatic translation between languages
 - Automatic speech transcription
 - Spoken language understanding
 - Information Retrieval
 - Text/speech Summarization

Examples

What can natural language do?

A key component of human-computer interaction.


"translate Also Sprach Zarathustra"

"take a memo..."

"how far until Jupiter?"

"Can you summarize 2001: A Space Odyssey?"

We've made progress, but why are these things *still* hard to do?

-

A little deeper

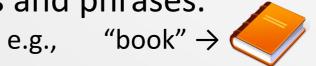
- Language has *hidden structures*, e.g.,
 - How are sounds and text related?
 - e.g., why is this:

not a 'ghoti' (enou<u>gh</u>, w<u>o</u>men, na<u>ti</u>on)?

- How are words combined to make sentences?
 - e.g., what makes 'colourless green ideas sleep furiously' correct in a way unlike 'furiously sleep ideas green colourless'?
- How are words and phrases used to produce meaning?
 - e.g., if someone asks 'do you know what time it is?', why is it inappropriate to answer 'yes'?
- We need to organize the way we think about language...

Categories of linguistic knowledge

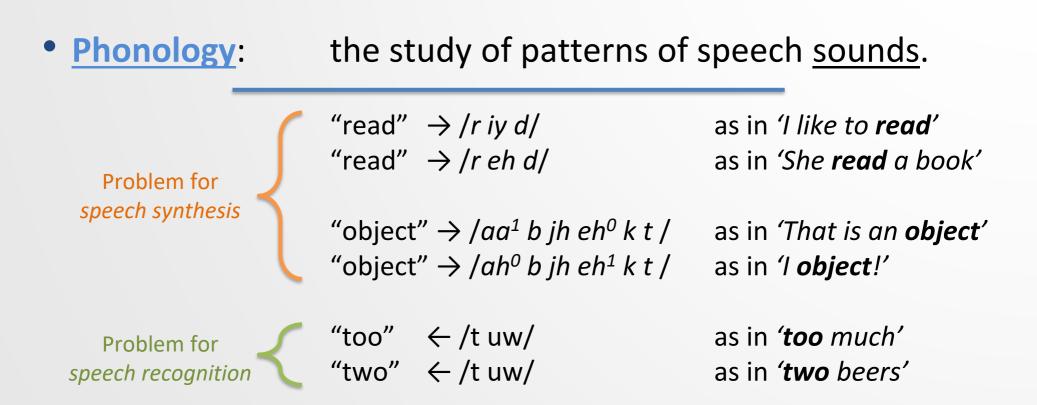
- <u>Phonology</u>:
- Morphology:


Syntax:

• Semantics:

Pragmatics:

- the study of patterns of speech <u>sounds</u>.
 e.g., "read" → /r iy d/
 how words can be <u>changed</u> by inflection
 or derivation.
 - e.g., "read", "reads", "reader", "reading", ...
 - the ordering and structure between
 - words and phrases (i.e., grammar).
 - e.g., NounPhrase \rightarrow article adjective noun
 - the study of how meaning is created by


words and phrases.

the study of meaning in contexts.

e.g., explanation span, refutation span

Ambiguity – Phonological

- Ambiguities can often be **resolved** in context, but not always.
 - e.g., /h aw t uw r eh¹ k ah ?? n ay² z s (b|p) iy ch/
 - \rightarrow 'how to recognize speech'
 - \rightarrow 'how to wreck a nice beach'

Resolution with syntax

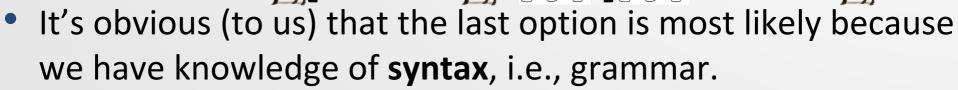
• If you hear the sequence of speech sounds

/bahfaelowbahfaelowbahfaelowbahfaelow... bahfaelow bahfaelow bahfaelow bahfaelow/

which word sequence is being spoken?

- \rightarrow "Buff a low buff a lobe a fellow Buff a low buff a lobe a fellow..."
- \rightarrow "Buffalo buff aloe buff aloe buff aloe buff aloe buff aloe ..."
- \rightarrow "Buff aloe buff all owe Buffalo buffalo buff a lobe ..."
- \rightarrow "Buff aloe buff all owe Buffalo buff aloe buff a lobe ..."
- \rightarrow "Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo" noun




noun

NLP as artificial intelligence

NLP involves resolving ambiguity at all levels.

- Reasoning with linguistic knowledge
- Reasoning with **world** knowledge
- We sometimes represent the former with *grammars*

We tend to use numerical parameters (probabilities?) to distinguish competing hypotheses.

- E.g., is Google a noun or a verb?
- Examples where Google is a noun ("Google makes Android") does not mean Google is never a verb ("Google his name").
- P(noun|Google) > P(verb|Google) > 0.

Aside – Chatbots

- ELIZA (Weizenbaum, 1966): simple pattern matching to imitate a psychiatrist.
- Surprisingly effective despite unsophisticated methods.

• e.g.,

User: Men are all alike. ELIZA: In what way? User: They're always bugging us about something or other. ELIZA: Can you think of a specific example? User: My boyfriend made me come here. ELIZA: Your boyfriend made you come here. (Jurafsky and Martin, 2009)

Course outline (approximate)

- Introduction, lexical distributions, language modelling, lexical embeddings (3 lectures)
- Features and classification (2 lecture) *
- Entropy and information theory (2 lectures) *
- Neural language models (2 lectures) *
- Machine translation (3 lectures) **
- Large language models (3 lectures) *
- Acoustics and signal processing (3 lectures) *
- Automatic speech recognition (2 lectures) **
- Speech Synthesis (1 lecture) **
- Information retrieval (1 lecture) **
- Summarization (1 lecture) **
- Ethics for NLP (2 lectures)

applicat

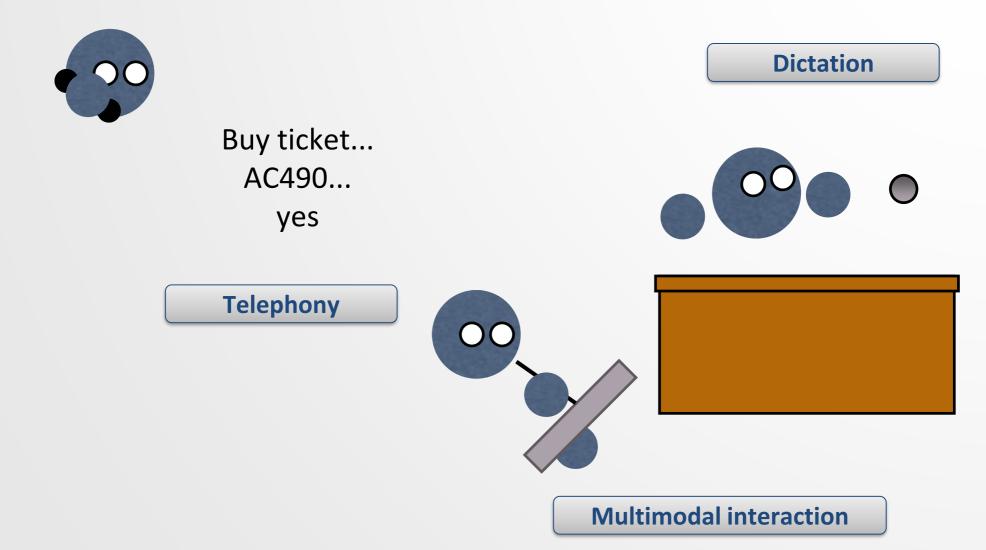
What we will not cover

- Interpretability of language models...*
- Advanced lexical semantics*
- Question answering (including ChatGPT (a))*
- Information extraction*
- Parsing/generation of natural language*%
- Advanced speech recognition and synthesis[¶]
- Cognitively based methods[§]^
- Semantic inference,[%] semantic change/drift[^]
- Understanding dialogues and conversations[¶]
- Advanced ethics for NLP^{\$}

* csc 485 / 2501. [%] csc 2517. [¶] csc 2518. [§] csc 2540. ^ csc 2611. ^{\$}csc 2528.

Preview: Machine translation

美国关岛国际机场及其办公室均接获一 名自称沙地阿拉伯富商拉登等发出的电 子邮件,威胁将会向机场等公众地方发 动生化袭击後,关岛经保持高度戒备。



The U.S. island of Guam is maintaining a high state of alert after the Guam airport and its offices both received an e-mail from someone calling himself the Saudi Arabian Osama bin Laden and threatening a biological/chemical attack against public places such as the airport.

- For years, the holy grail of NLP.
- Requires both interpretation and generation.
- Over \$60B spent annually on human translation in 2022 – projected to reach \$96B by 2032
- Machine translation: \$1.1B. \$3B by 2027.
- 1 in every 4M words of content is translated into at least one other language.

Preview: Speech recognition

Preview: Information retrieval Google

what	woman	won more	than one r	obel prize				Q	
All	News	Videos	Images	Shopping	More	S	ettings	Tools	
About	4,000,000	results (0.49	econds)						

Marie Curie won the Nobel prize in 1903 for Physics and 1911 in Chemistry; Linus Pauling in 1954 (for Chemistry) and 1962 (for Peace); John Bardeen in 1956 (for Physics) and 1972; Frederick Sanger in Chemistry in 1958 and 1980. Who has won more than one Nobel prize? Apr 1, 2007

Who has won more than one Nobel prize? - Times of India timesofindia.indiatimes.com/home/...won-more-than-one-Nobel-prize/.../1839923.cms

> About this result Feedback

People also ask	
Who has won Nobel Prize twice?	\sim
What women won the Nobel Prize?	\sim
How many women have won the Nobel Prize?	\sim
How many women have been awarded the Nobel Peace Prize?	\sim
	Feedback

WolframAlpha[®] computational_{*} knowledge engine which woman has won more than 1 nobel prize? B

Using closest WolframAlpha interpretation: nobel prize

?

☆ 日

อ

WolframAlpha^{*} computational knowledge engine.

what woman won more than one nobel prize?

🔤 🖸 🇮 🏹

Using closest Wolfram Alpha interpretation: won more than one

More interpretations: nobel prize woman

Assuming Korean won for "won" | Use North Korean won instead

2010	Richard F. Heck	chemistry	United States	United States
2010	Christopher A. Pissarides	economics	United Kingdom	Cyprus
2010	Dale T. Mortensen	economics	United States	United States
2010	Peter A. Diamond	economics	United States	United States
2010	Mario Vargas Llosa	literature	Peru	Peru

UNIVERSITY OF

CSC401/2511 - Fall 2024

Aside – Spoken Information Retrieval

I found a number of restaurants] 3 miles) 4 miles

🕈 6% 🛤

FY OF

Know your meme at FAILKING COM

Overview: NLP

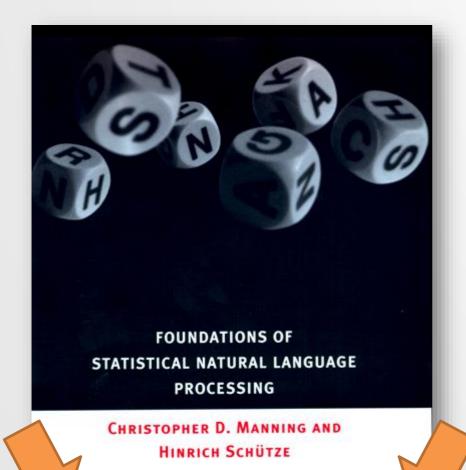
- Is natural language processing (the discipline) hard?
 - Yes, because natural language
 - is highly ambiguous at all levels,
 - is complex and subtle,
 - is fuzzy and probabilistic,
 - involves real-world reasoning.
 - No, because computer science
 - gives us many powerful statistical techniques,
 - allows us to break the challenges down into more manageable features.
- Is Natural Language Computing (the course) hard?
 - More on this soon...

Natural language computing

- Instructor: Gerald Penn (gpenn@cs, M 4-6 in PT 283A)
- Meetings: MW (lecture), F (tutorial) at 10h and 11h
- Languages: English, Python.
- <u>Website</u>: Quercus, www.cs.toronto.edu/~gpenn/csc401/
- You: Understand basic probability, can program, or (grads) can pick these up as we go.
- Syllabus: Key theory and methods in statistical natural language computing. Focus will be on *neural models, language models,* and their *applications*.

Evaluation policies

- General: Three assignments : 20% (each) Final exam: 39% Two ethics surveys : 0.5% (each)
- Lateness: 10% deduction applied to electronic submissions that are 1 minute late.
 Additional 10% applied every 24 hours up to 72 hours total, at which point grade is zero.
- <u>Final</u>: If you fail (< 50%) the final exam, then you fail the course.
- <u>Ethics</u>: Plagiarism and unauthorized collaboration can result in a grade of **zero** on the homework, **failure** of the course, or **suspension** from the University.


Assignments

- Assignment 1: Corpus statistics, sentiment analysis
 task: analyze sentiment of financial reportage
 learn: statistical techniques, features, classification.
- Assignment 2: Neural machine translation
 task: translate between languages
 learn: neural seq2seq and neural anguage models.
- Assignment 3: Automatic speech recognition

 task: detect lies in speech
 learn: signal processing, phonetics, dynamic algo's.

Reading

http://tinyurl.com/shshhcvm

SPEECH AND LANGUAGE PROCESSING

DANIEL JURAFSKY & JAMES H. MARTIN

Assignment 1 – Financial sentiment

- Involves:
 - Working with real news data

(e.g., Wall Street Journal),

- Part-of-speech tagging (more on this later),
- Large Language Models
- Classification.
- Announcements: Piazza forum, email.
- Start early.

Assignment 1 and reading

Assignment 1 available soon (on course webpage)

- Due 24 September / 8 October
- TA:

Winston Wu winstonyt.wu@mail.utoronto.ca

• First tutorial: this Friday, 6th September

• Reading:

Manning & Schütze: Sections 1.3—1.4.2,

Sections 6.0-6.2.1.

