k Nearest Neighbours Algorithm

Given:

- similarity metric (like cosine),
- parameter k,
- reference set $X = \{\vec{x}_1, \vec{x}_2, \dots \vec{x}_m\},\$
- query \vec{y} ,
- target classes, $c_1, \ldots c_d$, and assignments to X.

- 1. Initialise $L(c_j) := 0$ for each class j
- 2. For all $\vec{x}_i \in k$ closest training vectors to \vec{y} :
 - For each class c_{ii} to which \vec{x}_i belongs:

$$-L(c_{ji}) += \sin(\vec{x}_i, \vec{y})$$
 [or 1]

3. Choose c_j with largest $L(c_j)$

k Nearest Neighbours Algorithm

Advantages:

- no training phase,
- guaranteed error bounds (with enough data): when k=1, it converges to 2 x Bayes error rate
 - the optimal error rate attainable by maximising $P(c_i|\vec{y}, X)$
 - distances must also have been standardised (mean = 0, variance = 1)
- fairer weighting of evidence than cosine.

k Nearest Neighbours Algorithm

Disadvantages:

- must choose k,
- must choose similarity metric,
- time/space complexity not good: $\mathcal{O}(n \cdot |X|)$ $(n = \text{dimension of } \vec{y} \text{ and } \vec{x}_i),$
- performance not good if variances of classes are different.

But there are fast approximations: choose k that are pretty close, but perhaps not closest $(\epsilon-NN)$.