Gaussian Mixture
Models in Speech

CSC401/2511 2024 A3 Tutorial 01.
Presenter: Yushi Guan, Slides: Ken Shi
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Assignment Breakdown

Part 1: Sequence Classifications [35/70]
- Implement GMMs for speaker identifications [30/35]
- Implement and train a GRU for lie detection [5/35]
Part 2: Dynamic Programming in Speech [35/70]
- Implement Levenshtein Word Error Rate for ASR Evaluation [15/35]
- Implement Dynamic Time Warping for Speaker Verification [20/35]
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Applications of Speech Technology

Speech! Very useful stuff!
..' Hey Siri

“Hi, I'm calling to book a
women'’s haircut for a client.”

Aut ti
Speech 2
e = Recognition ,  Text: “What's
® @ /M\/\P\N\/\/ ‘ the weather?” ‘OAOF

——
Speech
Synthesis

at 3 degrees.
_ Today’s high is 5 — UNIVERSITY OF

degrees.” %/ TORONTO

Text: “It’s cloudy
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Tasks in A3

Speaker Identification (via GMM)
- Speech data -> Speaker Information
Lie Detection (via GRU)
- Speech data -> Truth or Lie
ASR Evaluation (via WER)
- ASR result -> Evaluation of ASR system
Speaker Verification (via DTW)
- Speech data (pairs) -> Same speaker or not
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Dataset: CSC Deceptive Speech

Descriptions can be found in the assignment handout:

The data come from the CSC Deceptive Speech corpus, which was developed by Columbia Univer-
sity, SRI International, and University of Colorado Boulder. It consists of 32 hours of audio interviews
from 32 native speakers of Standard American English (16 male, 16 female) recruited from the Columbia
University student population and the community. The purpose of the study was to distinguish deceptive
speech from non-deceptive speech using machine learning techniques on extracted features from the corpus.

Data are in /u/cs401/A3/data/; each sub-folder represents speech from one speaker and contains raw
audio, pre-computed MFCCs, and orthographic transcripts. Further file descriptions are in Appendix
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Speaker Data

32 speakers, labeled as “S-{number}{group}”
Each speaker has up to 12 utterances
Each utterances are represented by 3 files:
- .wav file: raw audio
- .mfcc.npy: MFCCs in numpy format
- .Ixt: transcripts
For the purpose of this assignment, you are also given 2 transcripts from two
different APIs: Kaldi and Google
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Speaker
Recognition

with GMMs
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Speaker Recognition: Task Description

The data is randomly split into training and testing utterances. We don’t know which
speaker produced which test utterance.
Every speaker occupies a characteristic part of the acoustic space.

$

Learn a probability distribution for each speaker that describes their acoustic behaviour!

$

Gaussian Mixture Model (GMM) Distribution!
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GMM: 1D Gaussians

L E=nE
p(z) = - (\/%2;2 )
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GMM: Maximum Likelihood Estimation (MLE)

Given: X = {37173:27' . '7377’11} 0 = </L,0'>

Want: Find optimal set @ that maximizes the likelihood of the data:
n
L(X,0) = p(X | 0) = p(z1,22,...,2n | 0) = [ [ p(: | 6)
1=1

We will do so by making the derivative of this likelihood function O:

3,
g L(X.0) =0
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GMM: MLE cont’d

Estimate optimal average U :

L(X, ) = p(X | ) = [ oo | ) ﬁexp(_%;g))
() =P )= || P\ | B) =
i=1 i=1 V2mo
Zi(wi_ﬂ)z
log L(X, pu) = — 53 —nlogV2mo

9 1og L(X, 1) =
8[}; g 7[‘1’ —

=
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GMM: Multidimensional Gaussians

How about Gaussian of higher dimensions? & = (z[1],z[2],..., z[d])

exp (—%) e (_(f—mTzQ—I(f—m)
p(z) = Jono p(Z) = O EE
4= E(z) = / 2p(x)dz ) = E(@) = (1], pl2], ..., puld)

S = B(@ - /)& — )7

o= Bl ) = [ = wptayi with 3,3} = Balilzlj}) - ulilul
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GMM: Gaussian Mixtures

Weighted Linear Combination of M component Gaussians: (Fl, ces ,FM)

( (@E-@)T5" (F-i) M
P\~ 2 ) — p(@) = pT;)p&|T;)
2 = J J
p(fL') (27T)d/2|2|1/2 s

wm = p(I'm ) LoLddehetep(z; | T'yy)
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GMM: MLE for GMM

Follow the convention from last page: W, = p(Fm), bm(f:‘,) & p(f% | Fm)

. exp (—§
bm (Ql't) =

©®  VelogL(X,0)=0

where:

Estimate (2&)(1/2 (
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GMM: MLE for GMM cont’d

N
Odlog L(X,0)
We know that 0
Opim ;1!!’@!!%@5@@

Oy i) — b gy @l = il
e AT

dlog L(X,©) ZNJ Wm (t):ct[nJ m 1)

Oumll 2 pol) " 2]

) [n] — Et p(rm | SU_%, @)xt[n] bm(.f;) _
) 2.t P(L'm | 22, 0) p(Tp | %1, 0) = ———
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GMM: Recipe for MLE Training:

For each speaker:
1. Initialize: Guess © = (W, iy, Xm), m=1,..., M

with M random vectors in the data, or by performing M-means clustering.
2. Compute likelihood: Compute by, (Z:) andP(T'y, | 23, ©)
3. Update parameters:

5 th(rm | :E;,@)f} 5:2 . th(rm |ﬁa®)$_%2
m =

- 2
m

Hm = 5 (T | &1, ©) S, p(Cm | 72, ©)

logp(X | ©i41) —logp(X | ©;) < e

Repeat 2&3 until converges
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GMM: Takeaways!!

Probability of observing x, in the mt" Gaussian: b, (2) = p(z; | T'm)

d z¢[i]—pm [1])2
50 (_%Zizl( []crf,ﬁz'][]) )

bm (335) -
(2m) (T4 o21)

Prior probability of the mt Gaussian: wWm = p(C)

Probability of the m®* Gaussian, given x, : p(Tp | 73,0) = —~bm(T})
P@(xt)

M
Probability of x, in the GMM: po(Ti) = Z Winbm (T1)
m=1
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GMM: Initialization

We want to estimate the parameter set:

0= <w17/1'17217w27,u’27227'"7wM7)U’M72M>

Um, : Random vector from data
Zm : Random diagonal matrix or identity matrix
Wm, : Random value with following constraints:
0<w, <1
E W = 1 _
..orsimplyuse1/m
™m iy
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GMM: Overfitting

When one of your GM is centred at a data point...
d S " 182
exp (_% Zz’;l (mt[zl,.zpfi] [4) )
C A

m

log L(X,0) =

= T t=1

i = Tn N(zp|zn, U?I) = W%I ag; — 0

Solution: use a smaller M so that it's impossible to have spare clusters!
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GMM: Practical Tips

Assumption: Diagonal Covariance Matrices
For Numerical Stability: Compute likelihoods in the log domain:

d

log by, (23) = — Z (2} [7;]0: 5[ _i:][n]) 621 log 21 — % log H ?[n]

n=1

- Pre-compute some terms for efficiency!

. Z (GitPon™ln] — i felilnlor, o]

d 0
(g ml dlog27r—|—2logHam n])

=
m
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GMM: Practical Tips cont’d

How do we get the b, (%)  pel®:) = Z Winbm
from m=1?

Incorrect Approach

log Zn: x; = log Zn: elo8 i
i=1 i1

This is not the correct approach. If one of log x; is extremely large, you
would be just calculating log oo in the computer program. On the other
hand, if all the log z; are extremely small, you would be just calculating
log 0 in the computer program. In either case, there would be a problem.

Correct Approach

n N
log Z x; = log Z eloBT — log(e” x Z elos®i= ) =a+log Z glogsi—e
i=1 n=1

n=1

where a = max(log z1, log xa, . . ., log z,).

23

$t)

log by, (2%)

A good module that does this:
scipy.special.logsumexp
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Lie Detection

with GRU
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Truth/Lie Detection: ToDo List

Finish the __ init __ method of the class LieDetector by filling in the code to create a
unidirectional GRU with one hidden layer

Also, initialize a linear layer to project the GRU’s output to prediction space. What
should the number of output features be?

Following the instructions from the handout, run experiments by varying the size of
the hidden layer and record the performance of the model. Comment on these results
as asked in the handout.

Note : the model most likely won’t perform very well, that’'s okay ! Truth/lie detection
is a hard task, and we have limited data.
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