Computer Science 401 10 Oct. 2024
St. George Campus University of Toronto

Homework Assignment #2
Due: Tuesday, 5 Nov. 2024 at 23h59m (11.59 PM),

Neural Machine Translation (MT) using Transformers

Email: csc401-2024-09-a2@cs.toronto.edu. Please prefix your subject with [CSC401_F24-A2].
Lead TAs: Arvid Frydenlund and Yunshun Zhong.

Instructor: Gerald Penn.

Building the Transformer from Scratch

The transformer architecture is the building block that has fueled nearly every headline innovation in
NLP for the last six years. But despite the very large number of people who work with neural NLP, only
relatively few understand its internal workings. In this assignment, you will build a transformer model
from beginning to end, and train it to do some basic but effective machine translation tasks using the
Canadian Hansards data. In we will guide you through the process of implementing all the components
of a transformer model. In you will put together a transformer with those components. discusses
greedy and beam search decoders for target sentence generation. In you will train and evaluate the
model. Finally, in you will use the trained mode to do some real machine translation and write up a
report that analyzes your output.

Goal By the end of this assignment, you will have acquired a low-level understanding of the transformer
architecture and implementation techniques of the entire data processing — training — evaluation pipeline
of an MT application.

Starter Code The starter code of this assignment is distributed through MarkUs. The training data
are located at /u/cs401/A2/data/Hansard on teach.cs.

We use Python version 3.10.13 on teach.cs. That is, just run everything with the python3.10 command.
You may need to add srun commands to request computational resources — please follow the instructions
in the following sections to proceed. You should not need to set up a new virtual environment or install
any packages on teach.cs. You can work on the assignment on your local machine, but you must make
sure that your code works on teach.cs. Any test cases that fail due to incompatibility issues will not
receive partial marks.

Copyright (©) 2024 University of Toronto. All rights reserved.

csc401-2024-09-a2@cs.toronto.edu
https://markus.teach.cs.toronto.edu/markus/courses

1 Transformer Building Blocks and Components [12 Marks]

We begin with the three basic building blocks of a transformer: the layer norm, multi-head attention and
feed-forward modules (a.k.a. MLP weights).

LayerNorm The normalization layer computes the following. Given an input representation h, the
normalization layer computes its mean p and the standard deviation o. Then, it outputs the normalized

y(h — p)
o+¢€

features.

h «

+5 (1)
Using the instructions, please complete the LayerNorm. forward method.

FeedForwardLayer The feed-forward layer is a two-layer fully connected feed-forward network. As
shown in the following equation, the input representation h is fed through two layers of fully connected
layers. Dropout is applied after each layer, and ReLU is the activation function.

h + dropout(ReLU(W1h + by))

2
h <+ dropout(W3h + by) @)

Using the instructions, please complete the FeedForwardLayer . forward method.

MultiHead Attention Finally, you need to implement the most complicated but important component
of the transformer architecture: the multi-head attention module. For the base case where there’s only
H =1 head, the attention score is calculated using the regular cross-attention algorithm:

T

Vdy,

dropout(softmax(

)V 3)

Using the instructions, please complete the MultiHeadAttention.attention method.

Then, you need to implement the part where the query, key and value are split into H heads, and then
pass them through the regular cross-attention algorithm you have just implemented. Next, you should
combine the results. Don’t forget to apply the linear combination and dropout when you output the final
attended representations.

Using the instructions, please complete the MultiHeadAttention.forward method.

2 Putting the Architecture (Enc-Dec) Together [20 Marks|

Once you have the building blocks, put everything together and create the full transformer model. We
will start from a single transformer encoder layer and a single decoder layer. Next, we build the complete
encoder and the complete decoder together by stacking the layers together. Finally, we connect the encoder
with the decoder and complete the final transformer encoder—decoder model.

TransformerEncoderLayer You need to implement two types of encoder layers. Pre-layer (Figure
and post-layer (Figure , as their names suggest, apply layer normalization before/after the representa-
tion is fed into the following multi-head attention module.

Using the instructions, please complete the pre_layer norm_forward and the post_layer norm_forward
methods of the TransformerEncoderLayer class.

output: h

1
Layer Norm J

T(—

output: h] [
[
(| Feed-Forward |+
[
(

e
Feed-Forward

(

()
1

[Layer Norm J
(

(

T(:

Multi-head Attention]

Ti

Layer Norm J

1 —

Layer Norm] Multi-head AttentionJ
) 1

[input: h } [input: h }

(a) Pre-layer normalization for encoders. (b) Post-layer normalization for encoders.

Figure 1: Two types of TransformerEncoderLayer.

TransformerEncoder You don’t need to implement the encoder class yourself; the starter code already
contains the implementation. You read it, however, as it will a good reference for the following tasks.

TransformerDecoderLayer Again, implement both pre- and post-layer normalization. Recall from
lecture that there are two multi-head attention blocks for decoders. The first one is a self-attention block
and the second one is a cross-attention block.

Using the instructions, complete the pre_layer norm_forward and the post_layer norm_forward methods
of the TransformerDecoderLayer class.

[output: h]
[—
Feed-Forward

)
1
Layer Norm]

b

Cross Attention

1

Layer Norm

b
Self Attention J

1

Layer Norm J

output: h

)

Layer Norm

e
Feed-Forward J +

Ti

Layer Norm]

?(—

Cross Attention J +

Ti

Layer Norm]

T(i

Self Attention J

—

Y MY MY MY MY M
Y Y Y Y M MY M

+ +
1 1
[input: h } (input: h }
(a) Pre-layer normalization for decoders. (b) Post-layer normalization for decoders.

Figure 2: Two types of TransformerDecoderLayer.

TransformerDecoder Similar to TransformerEncoder, you should pass the input through all the de-
coder layers. Make sure to add the LayerNorm module in the correct place depending if the model is pre-
or post-layer normalization. Finally, don’t forget to use the logit projection module on the final output.

Using the instructions, please complete the TransformerDecoder.forward method.

TransformerEncoderDecoder After ensuring that the encoder and the decoder have both been built
properly, it is time to put them together. You need to implement the following methods:

e The method create_pad mask, a helper function to pad a sequence to a specific length.

e The method create_causal mask, a helper function to create a so-called ”causal” (upper) triangular
mask.

e After finishing the two helper methods, you can implement the forward method that connects ev-
erything. In particular, you first create all of the appropriate masks for the inputs. Then, you feed
them through the encoder. And, finally, you obtain the final result by feeding everything through
the decoder.

You will need to determine the tensor shapes for all functions yourself, given their inputs and outputs.
The shapes of the tensors returned from the masking functions are a hint towards this, but you may need
to reshape tensors (see torch.reshape).

3 MT with Transformers: Greedy and Beam-Search [20 Marks|

The a2_transformer_model.py file contains all of the functions that must be completed along with detailed
instructions (with hints). Here, we list the high-level methods/functions that you need to complete.

3.1 Greedy Decode

You can warm up with the greedy algorithm. At each decoding step, compute the (log) probability over
all the possible tokens. Then, choose the output with the highest probability and repeat the process until
all the sequences in the current mini-batch terminate.

Using the instructions, complete the TransformerEncoderDecoder.greedy_decode method.

3.2 Beam Search

The hardest part of the assignment is probably beam search. But don’t worry: we have broken everything
down into smaller, and much simpler chunks. We will guide you step by step to complete the entire
algorithm.

Beam search is initiated by a call to the TransformerEncoderDecoder.beam_search_decode method. Re-
call from lecture that its job is to generate partial translations (or, hypotheses) from the source tokens
during the decoding phase. So, the beam_search_decode method i called whenever you try to decode can-
didate translations (e.g. from TransformerRunner. [translate, compute_average bleu over_dataset]
etc.).

Complete the following functions in the TransformerEncoderDecoder class:

1. initialize beams_for_beam_search: This function will initialize the beam search by taking the first
decoder step and using the top-k outputs to initialize the beams.

2. expand_encoder_for _beam search: Beam search will process ‘batches‘ of size ‘batch_size * k‘ so we
need to expand the encoder outputs so that we can process the beams in parallel. (Tip: You should
call this from within the preceding function).

3. repeat_and_reshape_for_beam search: this is a relatively simple expand and reshaping function.
See how it is called from the .beam_search_decode method and read the instructions in the function’s
comments. (7Tip: Review Torch.Tensor.expand).

4. score_sequence_for_beam search: This function will get the score of each sequence by summing
the log probabilities. See how it is called from the .beam_search decode method and read the
instructions in the function’s comments.

5. finalize beams_for_beam _search: Finally, this functions as its name - it will take a list of top
beams of length batch_size, where each element is a tensor of some length and return a padded tensor
of the top beams. It returns the ultimate result of the .beam_search_decode method — see how the
return value is consumed by the calling functions (e.g. ‘translate’).

4 MT with Transformers: Training and Testing [20 Marks|

4.1 Calculating BLEU scores

Modify a2 _bleu_score.py to be able to calculate BLEU scores on single reference and candidate strings.
We will be using the definition of BLEU scores from the lecture slides:

BLEU = BP¢ x (p1p2 - - 'pn)(l/n)

To do this, you will need to implement the functions grouper(...), n_gram precision(...),
brevity_penalty(...), and BLEU_score(...). Make sure to carefully follow the doc strings of each
function. Do not re-implement functionality that is clearly performed by some other function.

Your functions will operate on sequences (e.g., lists) of tokens. These tokens could be the words themselves
(strings) or integer IDs corresponding to the words. Your code should be agnostic to the type of token
used, though you can assume that both the reference and candidate sequences will use tokens of the same

type.
Please scale the BLEU score by 100.

4.2 The Training Loop

Before you start working on this part of the assignment, have a good look at the train function. It
describes how the training loop works. For each epoch, we first train the model using all the data from
the training set. Then, we evaluate the model’s performance upon the completion of the epoch. We repeat
the process until we reach the specified maximum epoch number. For this part of the assignment, you will
need to implement the following methods:

train for_epoch The training of one epoch contains seven steps:
1. We iterate through the training dataloader to obtain the current mini-batch.
. Then, we send the data tensors to the appropriate devices (CPU or GPU).
. Call train_input_target_split to prepare the data for teacher-forcing training.

2
3
4. Feed the data through the transformer model and collect the logits.
5. Compute the loss value using the loss function.

6

. Call 1loss.backward() to compute the gradients.

https://pytorch.org/docs/stable/generated/torch.Tensor.expand.html

7. Call train_step_optimizer_and scheduler to update the model using the optimizer, and step the
scheduler.
Note: You should handle gradient accumulation (using the accum_iter parameter) for full marks.

train_input_target_split This method splits target tokens into input and target for maximum likeli-
hood training (teacher forcing).

train step_optimizer_and scheduler This method steps the optimizer, zeros out the gradient, and
steps the scheduler.

compute_batch_total bleu This function computes the total BLEU score for each n-gram level over
elements in a batch. Note: You need to clean up the sequences by removing ALL special tokens (sos_idx,
eos_idx, pad-idx).

4.3 Run Model, Run!

OK, enough coding - time for some model training and deployment. In this part of the assignment, you
will (1) train models with different settings, (2) evaluate those models on the hold-out test set, and (3)
deploy the model and do some actual translation.

4.3.1 Training the Models

Debugging and Development We provide a —-tiny-preset option to make your model train only
on a tiny sliver of the dataset. You should use this option with a smaller, toy model for debugging during
your development phase. Training this toy model using the CPU on teach.cs will take approximately 10
seconds to complete. Note: this is for developing the initial code only and you cannot expect
good performance by training the tiny model. We advise using the real dataset to debug problems
related to training. The following command is just an example. You should modify the command to test
different components of your code.

srun -p csc401 --pty \
python3 a2_main.py train \

model_test.pt \
-—tiny-preset \
--source-lang f \
--with-transformer \
--encoder-num-hidden-layers 2 \
—--word-embedding-size 20 \
—-—transformer-ff-size 31 \
--with-post-layer-norm \
--batch-size 5 \
--gradient-accumulation 2 \
—--skip-eval 0 \
--epochs 2 \
-—device cpu

The srun -p csc401 --pty part of the command requests a compute node on teach.cs. This will provide
you with dedicated CPUs and reduce congestion during peak times. The --pty flag enables pseudo-
terminal mode, which allows your breakpoints to work properly. But if you want to run the assignment
locally, you should remove this.

Debugging Tips and Hints We have provided the functions nan_check and inf_check in a2_utils.py
to help you catch NAN and INF errors. NANs are common issues that you may encounter during training.
These are often the result of accidentally calculating an INF value (often as a final loss or incorrectly masked
attention value). This then results in a parameter update with an INF value, which in turn causes the
parameters to become NAN in the next training step. These will then propagate any time those parameters
are used. Thus if you encounter NAN values, you should check for INF values in the previous step.

There are two separate stages: training and evaluation. These can be hard to debug as they depend on
each other; the training stage does intermediate evaluations and the evaluation stage requires a trained
model. To help you determine where potential bugs are, first consider the log-loss. If the loss is very high
or not decreasing, more often than not, the bug will be in a) the attention mechanism or b) the training
loop. If the loss looks good but the BLEU score does not, the issue is likely to be in the inference functions.

We will not tell you acceptable ranges of the log-loss and BLEU score in terms of grading, however - you
need to determine those for yourself. Ask yourself: hat would a very low or high BLEU score mean? What
would the log-loss be for a random guess (given the vocabulary size)? But we will provide you some output
from our own development to guide you. These values will obviously not be the same values that your
model produces.

[Device:cuda] Epoch 1 Training ====

Forward Step: 1/ 1086 | Accumulation Step: O | Loss: 9.88 | Learning Rate: 8.5e-06
Forward Step: 201/ 1086 | Accumulation Step: 20 | Loss: 9.21 | Learning Rate: 1.8e-04
Forward Step: 1001/ 1086 | Accumulation Step: 100 | Loss: 6.50 | Learning Rate: 8.6e-04

[Device:cuda] Epoch 1 Validation ====
Epoch 1: loss=6.307405866312059, BLEU: skipped until epoch 4, time=00:02:05
[Device:cudal Epoch 2 Training ====

Forward Step: 1/ 1086 | Accumulation Step: O | Loss: 3.87 | Learning Rate: 9.4e-04
Forward Step: 201/ 1086 | Accumulation Step: 20 | Loss: 3.56 | Learning Rate: 1.1e-03
Forward Step: 1001/ 1086 | Accumulation Step: 100 | Loss: 2.85 | Learning Rate: 1.8e-03

[Device:cuda] Epoch 2 Validation ====
Epoch 2: loss=2.798794230923029, BLEU: skipped until epoch 4, time=00:04:12
[Device:cudal Epoch 3 Training ====

Forward Step: 1/ 1086 | Accumulation Step: O | Loss: 1.99 | Learning Rate: 1.9e-03
Forward Step: 201/ 1086 | Accumulation Step: 20 | Loss: 2.03 | Learning Rate: 2.0e-03
Forward Step: 1001/ 1086 | Accumulation Step: 100 | Loss: 1.95 | Learning Rate: 2.5e-03

[Device:cuda] Epoch 3 Validation ====

Epoch 3: loss=1.9403861648030922, BLEU: skipped until epoch 4, time=00:06:22

[Device:cudal Epoch 4 Training ====

Forward Step: 1/ 1086 | Accumulation Step: O | Loss: 1.53 | Learning Rate: 2.4e-03
Forward Step: 201/ 1086 | Accumulation Step: 20 | Loss: 1.58 | Learning Rate: 2.4e-03
Forward Step: 1001/ 1086 | Accumulation Step: 100 | Loss: 1.58 | Learning Rate: 2.1e-03
[Device:cuda] Epoch 4 Validation ====

Epoch 4: loss=1.5846078365108145, BLEU-4: 35.4983 BLEU-3: 42.2861, time=00:09:06
[Device:cudal Epoch 5 Training ====

Forward Step: 1/ 1086 | Accumulation Step: O | Loss: 1.37 | Learning Rate: 2.1e-03
Forward Step: 201/ 1086 | Accumulation Step: 20 | Loss: 1.30 | Learning Rate: 2.1e-03
Forward Step: 1001/ 1086 | Accumulation Step: 100 | Loss: 1.34 | Learning Rate: 1.9e-03
[Device:cuda] Epoch 5 Validation ====

Epoch 5: loss=1.3434471010503188, BLEU-4: 36.0997 BLEU-3: 42.8254, time=00:11:48

Finished 5 epochs

N

Gradient accumulation is correctly implemented when the model produces the same results after having
halved the batch size and doubling the amount of accumulated steps. We advise that this be implemented
after the model and basic training loop have been correctly implemented.

Training the Final Models with GPUs After ensuring that your code works properly, you should
train your model using both the pre- and post-layer normalization settings. Fach epoch of training should
take approximately 2 minutes. This time may vary depending on GPU availability, however.

Note: You are not required to train the model with post-layer normalization, but you must ensure that
post-layer normalization is implemented correctly. The correctness of both pre- and post-layer normaliza-
tion will have equal importance during the evaluation of the code. For the analysis and training, only the
pre-layer normalization setting is required.

Train the model using pre-layer-norm
srun -p csc401 --gres gpu \
python3 -u a2_main.py train \
transformer_model.pt \
--device cuda

Then, include a printout of the the training logs in analysis.pdf. You have the option to use WandB for
this part of the assignment. See Appendix [B| for more information.

4.3.2 Evaluate the Models
Now, evaluate the models using the following commands:

Test the model using pre-layer-norm
srun -p csc401 --gres gpu \
python3 -u a2_main.py test \
transformer_model.pt \
--device cuda

5 Analysis [8 Marks]

You are done! Now that you have completed all the parts needed for training your transformer end-to-end,
as well as testing it, you're ready to finish this assignment with some analysis. Report the evaluation
results from the preceding section in your latex report file: analysis.pdf.

Is there a difference between BLEU-3 and BLEU-47 What do you think could be the reason behind the
differences? Write your answer in analysis.pdf.

5.1 Translate Some Sentences

In the TransformerRunner.translate method, you are tasked with processing a “raw” input sentence
through several stages to obtain its translation. You need to (1) tokenize the sentence, (2) convert tokens
into ordinal IDs, (3) feed the IDs into your model, and (4) finally, convert the output of the model into an
actual sentence. You can load your trained model with the following commandE]

srun -p csc401 --pty python3 a2_main.py interact transformer_model.pt

An interactive Python prompt will start and your can begin translating with the function translate. You
can then utilize the model by interacting with it in the prompt as shown.

Trained model from path Your Model.pt loaded as the object ‘model‘
Python 3.10.13 (main, Sep 19 2023, 12:09:15) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)

t’s OK to run the model with the greedy decoder if you haven’t completed the implementation of beam search. You
won’t incur any penalty for doing so. To enable greedy decoding, simply add a --greedy flag at the end of the command.

>>> translate("Mon nom est Frank.")
’<g> frank is frank frank frank </s>’

For this part of the assignment, you will translate a few sentences from French into English using your
model, using a fine-tuned, pre-trained transformer model (T5 MT model or Bart MT model), and using a
large, established model (Google Translate or ChatGPT). First, you need to translate the eight sentences
in a2_sentences.txt E] into English using your model.

Then, translate the same sentences into English using your choice of the T5 MT model or the Bart MT
model. Next, translate the same eight sentences into English using your choice of |Google Translate or
ChatGPT.

In Section 2, “Translation Analysis,” of analysis.pdf, list all the translations and answer the following
questions.

1. Describe the overall quality of the three types of models. Which one is the best and which one is
the worst?

2. What attributes and factors of the models do you think play a role in determining the quality?

3. Now, focus on the quality of your model’s translations of individual sentences. Which sentences does
your model translate better, and which does it translate worse? Can you identify a pattern? Describe
the pattern of quality across different types of sentences.

4. What about the fine-tuned, pre-trained model and Google Translate/ChatGPT’s quality for individ-
ual sentences? Does the previous pattern still persist? Why or why not?

Submission Requirements

This assignment is submitted electronically via MarkUs. You should submit a total of five (“5”) required
files as follows:

1. Your code: a2_transformer _model.py, a2_transformer_runner.py, and a2_bleu_score.py.

2. Your analysis: analysis.pdf. N.B. a later template for this file has been provided to you in the
starter code as a2_report.zip.

3. ID.txt: Provide pertinent information as per the ID.txt| template on the course’s website, including
this statement:

“By submitting this file, I declare that my electronic submission is my own work, and
accords with the University of Toronto Code of Behaviour on Academic Matters and the
Code of Student Conduct, as well as the collaboration policies of this course.”

You do not need to hand in any files other than those specified above.

*French accent marks (6,6,3,6,i) are removed in the Canadian Hansards dataset and, therefore, you should too. Use
francaise, Universite and etudiants instead of francaise, Université and étudiants.

https://huggingface.co/raeidsaqur/mt_fr2en_hansard_t5-small
https://huggingface.co/raeidsaqur/bart-base
https://translate.google.ca/
https://chat.openai.com/
https://huggingface.co/raeidsaqur/mt_fr2en_hansard_t5-small
https://huggingface.co/raeidsaqur/bart-base
https://huggingface.co/raeidsaqur/bart-base
https://translate.google.ca/
https://chat.openai.com/
https://www.cs.toronto.edu/~raeidsaqur/csc401/assignments/ID.txt

Appendices

A Canadian Hansards

The main corpus for this assignment comes from the official records (Hansards) of the 36! Canadian
Parliament, including debates from both the House of Representatives and the Senate. This corpus is
available at /u/cs401/A2/data/Hansard/ and has been split into Training/ and Testing/ directories.

This data set consists of pairs of corresponding files (*.e, the English equivalent of the French *.f) in
which every line is a sentence. Here, sentence alignment has already been performed for you. That is, the
nt" sentence in one file corresponds to the n* sentence in its corresponding file. Note that these data only
consist of sentence pairs; no alignments, many-to-one, many-to-many, or one-to-many, are included.

B Visualizing and logging training with WandB

You have the option to use ¢ Weights and Biases’ [W&B| to visualize and log your model training. Go
to the W&B siteﬂ and sign-up, then create a new project space named: ‘csc401-W24-a2’. We refer to
your W&B username as $WB_USERNAME hereafter. Then, add the --viz-wandb $WB_USERNAME flag to your
model training commands (3.3.1).

C Suggestions

C.1 Check Piazza regularly

Updates to this assignment as well as additional assistance outside tutorials will be distributed primarily
through Piazza (https://piazza.com/class/mOhmhakihyc4sz). It is your responsibility to check
Piazza regularly for updates.

C.2 Run cluster code early and at irregular times

Because GPU resources are shared with your classmates, your srun job may end up on a weaker machine
or even postponed until more resources are available, if too many students are training at once. To help
balance resource usage over time, we recommend that you finish this assignment as early as possible. You
might find that your peers are more likely to run code at certain times in the day. To check how many
jobs are currently queued or running on our partition, please run squeue -p csc401.

If you decide to run your models right before the assignment deadline, please be aware that we will be
unable to request more resources or run your code sooner. We will not grant extensions for this
reason.

3https://wandb.ai/

10

https://wandb.ai/
https://piazza.com/class/m0hmhakihyc4sz

	Transformer Building Blocks and Components [12 Marks]
	Putting the Architecture (Enc-Dec) Together [20 Marks]
	MT with Transformers: Greedy and Beam-Search [20 Marks]
	Greedy Decode
	Beam Search

	MT with Transformers: Training and Testing [20 Marks]
	Calculating BLEU scores
	The Training Loop
	Run Model, Run!
	Training the Models
	Evaluate the Models

	Analysis [8 Marks]
	Translate Some Sentences

	Appendices
	Canadian Hansards
	Visualizing and logging training with WandB
	Suggestions
	Check Piazza regularly
	Run cluster code early and at irregular times

