
Neural Machine Translation

using Transformers
CSC401/2511 A2 Tutorial 2

Winter 2024

Overview

Decoding: what is it all about?

• At each time step t, our model computes a vector of scores for each token in our
vocabulary for given all previous token y<t, S ∈ ℝ𝑉:

• Then, we compute a probability distribution 𝑃 over these scores with a softmax
function:

• Our decoding algorithm defines a function to select a token from this distribution:

𝑆
= 𝑓

𝑦< 𝑡

𝑃 𝑦 𝑡 = 𝑤 𝑦< 𝑡 =
exp(𝑆w)

∑w!∈ 𝑉 exp(𝑆w!)

𝑓 (.) isyourmodel

𝑔(.) isyourdecoding
algorithm

Decoding: Greedy decoding

• Generate (or “decode”) the target sentence by taking argmax on each step of the
decoder

he hit me with a pie <END>

<START> he hit me with a pie

• This is greedy decoding (take most probable word on each step)

ar
gm

ax

ar
gm

ax

ar
gm

ax

ar
gm

ax

4

ar
gm

ax

ar
gm

ax

ar
gm

ax

5

Greedy Decode

TransformerEncoderDecoder.greedy_decode()

● Greedy approach to generating the translated sentence: Until each sentence

in the batch has a finished translation, generate a new token.

● Methods to use: all_finished, torch.argmax(),

concatenate_generation_sequence, pad_generation_sequence

Problems with greedy decoding

6

• Greedy decoding has no way to undo decisions!

• Input: il a m’entarté

• → he

• → he hit

• → he hit a

(he hit me with a pie)

(whoops! no going back now…)

• How to fix this?

Exhaustive search decoding

• Ideally, we want to find a (length T) translation y that maximizes

• We could try computing all possible sequences y

• This means that on each step t of the decoder, we’re tracking Vt possible partial
translations, where V is vocab size

• This O(VT) complexity is far too expensive!

7

Beam search decoding

• Core idea: On each step of decoder, keep track of the k most probable partial
translations (which we call hypotheses)

• k is the beam size (in practice around 5 to 10, in NMT)

• A hypothesis has a score which is its log probability:

• Scores are all negative, and higher score is better

• We search for high-scoring hypotheses, tracking top k on each step

• Beam search is not guaranteed to find optimal solution

• But much more efficient than exhaustive search!

Beam search decoding: example

Beam size = k = 2. Blue numbers =

<START>

Calculate prob
dist of next word

<START>

he

I

-0.7 = log PLM(he|<START>)

-0.9 = log PLM(I|<START>)

Take top k words and
compute scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =

hit

struck

was

got

<START>

he

I

-0.7

-0.9

-2.9 = log PLM(struck|<START> he) + -0.7

-1.6 = log PLM(was|<START> I) + -0.9

-1.8 = log PLM(got|<START> I) + -0.9

-1.7 = log PLM(hit|<START> he) + -0.7

For each of the k hypotheses, find
top k next words and calculate scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =

hit

struck

was

got

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

Of these k2 hypotheses,
just keep k with highest scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5 = log PLM(me|<START> he hit) + -1.7

-2.9 = log PLM(hit|<START> I was) + -1.6

-2.8 = log PLM(a|<START> he hit) + -1.7

-3.8 = log PLM(struck|<START> I was) + -1.6

For each of the k hypotheses, find
top k next words and calculate scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

Of these k2 hypotheses,
just keep k with highest scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

For each of the k hypotheses, find
top k next words and calculate scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

Of these k2 hypotheses,
just keep k with highest scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

-4.5

-3.7

-4.3

-4.8

For each of the k hypotheses, find
top k next words and calculate scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

-4.5

-3.7

-4.3

-4.8

Of these k2 hypotheses,
just keep k with highest scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

-4.5

-3.7

-4.3

-4.8

-4.3

-4.6

-5.0

-5.3

For each of the k hypotheses, find
top k next words and calculate scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

-4.5

-3.7

-4.3

-4.8

-4.3

-4.6

-5.0

-5.3

This is the top-scoring hypothesis!

Beam search decoding: example

Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

-4.5

-3.7

-4.3

-4.8

-4.3

-4.6

-5.0

-5.3

Backtrack to obtain the full hypothesis

Beam search decoding: example

Beam size = k = 2. Blue numbers =

Beam search decoding: stopping criterion

• In greedy decoding, usually we decode until the model produces an <END> token

• For example: <START> he hit me with a pie <END>

• In beam search decoding, different hypotheses may produce <END> tokens on
different timesteps

• When a hypothesis produces <END>, that hypothesis is complete.

• Place it aside and continue exploring other hypotheses via beam search.

• Usually we continue beam search until:

• We reach timestep T (where T is some pre-defined cutoff), or

• We have at least n completed hypotheses (where n is pre-defined cutoff)

Beam search decoding: finishing up

• We have our list of completed hypotheses.

• How to select top one?

• Each hypothesis on our list has a score

• Problem with this: longer hypotheses have lower scores

• Fix: Normalize by length. Use this to select top one instead:

Summarize

21

• Beam Search

• Also aims to find strings that maximize the log-prob, but with wider exploration of
candidates

• Greedy Decoding

• Selects the highest probability token in 𝑃 (𝑦 𝑡 | 𝑦< 𝑡)

25

Beam search helper methods

You need to complete 5 TransformerEncoderDecoder methods:

initialize_beams_for_beam_search()

● Takes first decoder step and uses the top-k outputs to initialize beams

● There are several steps listed in the docstring -- follow them carefully

● Tip: you need to call the encoder first (look at how this is done in

decode_greedy())

expand_encoder_for_beam_search()

● This is a helper method called at the end of the previous method.

● Goal: Expands source embeddings and mask to have shape [batch_size * k,

...] instead of [batch_size, ...]

● This gives the src embeddings (encoder output) a similar shape to the

decoder beams, letting us process things in parallel

● Relevant pytorch method: expand()

Beam search helper methods

repeat_and_reshape_for_beam_search()

● We expand [batch_size * k, cur_len] -> [batch_size * k, expan, cur_len] so we

can get n=expan completions for each of the current k translations per beam.

● We reshape [batch_size * k, expan, cur_len] -> [batch_size, k * expan,

cur_len], so that (later) we can select the best k per sentence in the batch.

● Relevant pytorch method: expand()

score_sequence_for_beam_search()

● You only need to do the second step (scoring) the sentences by summing log

probabilities.

finalize_beams_for_beam_search()

● This pads the generated sequences so they are all the same length.

● We need to do this because beam search removes finished beams at each

step (so the generated sequences can have different lengths)

22

Overview

27

BLEU evaluation

CSC401/2511 – Winter

2024

87

• BLEU (BiLingual Evaluation Understudy) is an automatic
and popular method for evaluating MT.
• It uses multiple human reference translations, and

looks for local matches, allowing for phrase movement.

• Candidate: n. a translation produced by a machine.

• There are a few parts to a BLEU score…

1Papineni, Kishore, et al. "Bleu: a method for automatic evaluation of machine translation." Proceedings of the 40th ACL. 2002. [link]

https://aclanthology.org/P02-1040.pdf

Example of BLEU evaluation

• Reference 1: It is a guide to action that ensures that the
military will forever heed Party commands

• Reference 2: It is the guiding principle which guarantees the
military forces always being under command of the Party

• Reference 3: It is the practical guide for the army always to
heed the directions of the party

• Candidate 1: It is a guide to action which ensures that the
military always obeys the commands of the party

• Candidate 2: It is to insure the troops forever hearing the
activity guidebook that party direct

CSC401/2511 – Winter

2024

88

BLEU: Unigram precision

• The unigram precision of a candidate is
𝐶

𝑁
where𝑁 is the number of words in the candidate

and 𝐶 is the number of words in the candidate
which are in at least one reference.

• e.g., Candidate 1: It is a guide to action which ensures that the
military always obeys the commands of the party

• Unigram precision =
17

89

18

(obeys appears in none of the three references).

BLEU: Modified unigram precision

• Reference 1: The lunatic is on the grass
• Reference 2: There is a lunatic upon the grass
• Candidate: The the the the the the the

• Unigram precision =

• Capped unigram precision:
A candidate word type w can only be correct a
maximum
of 𝑐𝑎𝑝(w) times.
• e.g., with c𝑎𝑝 (𝑡ℎ𝑒) = 2 , the above gives

𝑝1 =

CSC401/2511 – Winter

2024

90

7

7
= 1

2

7

BLEU: Generalizing to N-grams

CSC401/2511 – Winter

2024

91

the military always obeys the commands of the party
• Candidate 2: It is to insure the troops forever hearing

the activity guidebook that party direct 2𝑝 = 1/13

𝑝2 = 10/17

• Generalizes to higher-order N-grams.

• Reference 1: It is a guide to action that ensures that
the military will forever heed Party commands

• Reference 2: It is the guiding principle which
guarantees the military forces always being under
command of the Party

• Reference 3: It is the practical guide for the army
always to heed the directions of the party

Bigram precision, 𝑝2

• Candidate 1: It is a guide to action which ensures that

BLEU: Precision is not enough

• Reference 1: It is a guide to action that ensures that themilitary will
forever heed Party commands

• Reference 2: It is the guiding principle which guarantees themilitary forces

always being under command of the Party

• Reference 3: It is the practical guide for the army always to heed the

directions of the party

• Candidate 1: of the

Bigram precision, 𝑝2 =
1

1
=1

CSC401/2511 – Winter

2024

92

Unigram precision, 𝑝1 =
2

2
=1

BLEU: Brevity

• Solution: Penalize brevity.
• Step 1:

• Step 2:

for each candidate,
find the reference most similar in length.
c𝑖 is the length of the 𝑖𝑡ℎ candidate, and
𝑟 𝑖 is the nearest length among the references,

𝑖𝑏𝑟𝑒𝑣𝑖𝑡𝑦 =
𝑟𝑖
𝑐𝑖

• Step 3: multiply precision by the brevity penalty:
(𝑟𝑖 < 𝑐𝑖)

(𝑟𝑖≥ 𝑐𝑖)

Bigger = too brief

93

BLEU: Final score

• On slide 87, 𝑟1 = 16, 𝑟2 = 17, 𝑟3 = 16, and
𝑐1 = 18 and 𝑐2 = 14,

181 1𝑏𝑟𝑒𝑣𝑖𝑡𝑦 =
17

𝐵𝑃 = 1

16
𝐵𝑃2 = 𝑒1– 8

7 = 0.8669𝑏𝑟𝑒𝑣𝑖𝑡𝑦2 =

14

• Final score of candidate 𝐶:

CSC401/2511 – Winter

2024

94

Example: Final BLEU score

• Reference 1:
Reference 2:
Reference 3:
Candidate:

I am afraid Dave
I am scared Dave
I have fear David
I fear David

Assume 𝑐𝑎𝑝 =
2 for all N-grams

Also assume BLEU
order 𝑛= 2

CSC401/2511 – Winter

2024

95

BLEU: summary

CSC401/2511 – Winter

2024

97

• BLEU is a geometric mean over 𝑛-gram precisions.
• These precisions are capped to avoid strange cases.
• E.g., the translation “the the the the” is not favoured.

• This geometric mean is weighted (brevity penalty) so as not
to favour unrealistically short translations, e.g., “the”

• Initially, evaluations showed that BLEU predicted human
judgements very well, but:

• People started optimizing MT systems to maximize BLEU.
Correlations between BLEU and humans decreased.

When an evaluation metric becomes the target of optimization, it ceases to be an evaluation metric.

38

BLEU Score

grouper()

● Extract all n-grams from a sequence

● Use a sliding window approach to generate n-grams

n_gram_precision()

● Calculates the precision for a given order of n-gram

● First generate n-grams for both reference and candidate sequences

● Then count how many candidate n-grams in the reference n-grams

and divide by the total

brevity_penality()

● Calculates the brevity penalty between a reference and candidate

BLEU_score()

● Compute the n-gram precisions for all orders from 1 to n

● Apply the formula

39

Training loop

train_for_epoch()

● Follow the instructions in the docstring

● Don’t forget to normalize loss!

● tqdm: easy progress bar

train_input_target_split()

● Split target tokens into input and target for maximum likelihood training

(teacher forcing)

● model inputs exclude the last token in each sequence, and outputs exclude

the first token in each sentence

train_step_optimizer_and_scheduler()

● Step the optimizer, zero out the gradient, and step scheduler

compute_batch_total_bleu()

● Computes bleu score for a batch of sentences

● tip: don’t pass sos, eos, and pad tokens to bleu_score_func

40

teach.cs with GPU: srun

● First make sure your code works in cpu mode! Debugging in

CUDA mode is much more difficult

● Basic usage:

srun -p csc401 --gres gpu your_regular_command

○ srun -p csc2511 --gres gpu if you enrolled in CSC 2511

● Check current queue: squeue -p csc401

● Keep training after disconnecting: Use screen

41

Analysis

42

Let’s translate some sentences!

Here, you translate 8 sentences from French to English, using the following

models:

● The model you trained

● A fine-tuned pre-trained transformer model (T5 MT model or Bart MT model)

● A large, established model (Google Translate or ChatGPT)

Then, you answer four questions comparing them.

43

Q&A

Slides is from:

CSC401 Fall 2024 Lecture slides

CSC401 Fall 2024 Tutorial slides

Stanford CS 224N Winter 2023

