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Overview



Decoding: what is it all about?

• At each time step t, our model computes a vector of scores for each token in our 
vocabulary for given all previous token y<t, S ∈ ℝ𝑉:

• Then, we compute a probability distribution 𝑃 over these scores with a softmax 
function:

• Our decoding algorithm defines a function to select a token from this distribution:

𝑆
= 𝑓

𝑦< 𝑡

𝑃 𝑦 𝑡 = 𝑤 𝑦< 𝑡 =
exp(𝑆w )

∑w!∈ 𝑉 exp(𝑆w! )

𝑓 ( . ) isyourmodel

𝑔( . ) isyourdecoding
algorithm



Decoding: Greedy decoding

• Generate (or “decode”) the target sentence by taking argmax on each step of the
decoder

he hit me with a pie <END>

<START> he hit me with a pie

• This is greedy decoding (take most probable word on each step)
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Greedy Decode

TransformerEncoderDecoder.greedy_decode()

● Greedy approach to generating the translated sentence: Until each sentence 

in the batch has a finished translation, generate a new token.

● Methods to use: all_finished, torch.argmax(), 

concatenate_generation_sequence, pad_generation_sequence



Problems with greedy decoding
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• Greedy decoding has no way to undo decisions!

• Input: il a m’entarté

• → he 

• → he hit 

• → he hit a 

(he hit me with a pie)

(whoops! no going back now…)

• How to fix this?



Exhaustive search decoding

• Ideally, we want to find a (length T) translation y that maximizes

• We could try computing all possible sequences y

• This means that on each step t of the decoder, we’re tracking Vt possible partial 
translations, where V is vocab size

• This O(VT) complexity is far too expensive!
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Beam search decoding

• Core idea: On each step of decoder, keep track of the k most probable partial 
translations (which we call hypotheses)

• k is the beam size (in practice around 5 to 10, in NMT)

• A hypothesis has a score which is its log probability:

• Scores are all negative, and higher score is better

• We search for high-scoring hypotheses, tracking top k on each step

• Beam search is not guaranteed to find optimal solution

• But much more efficient than exhaustive search!



Beam search decoding: example

Beam size = k = 2. Blue numbers =

<START>

Calculate prob 
dist of next word



<START>

he

I

-0.7 = log PLM(he|<START>)

-0.9 = log PLM(I|<START>)

Take top k words and
compute scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =



hit

struck

was

got

<START>

he

I

-0.7

-0.9

-2.9 = log PLM(struck|<START> he) + -0.7

-1.6 = log PLM(was|<START> I) + -0.9

-1.8 = log PLM(got|<START> I) + -0.9

-1.7 = log PLM(hit|<START> he) + -0.7

For each of the k hypotheses, find 
top k next words and calculate scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =



hit

struck

was

got

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

Of these k2 hypotheses, 
just keep k with highest scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5 = log PLM(me|<START> he hit) + -1.7

-2.9 = log PLM(hit|<START> I was) + -1.6

-2.8 = log PLM(a|<START> he hit) + -1.7

-3.8 = log PLM(struck|<START> I was) + -1.6

For each of the k hypotheses, find 
top k next words and calculate scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

Of these k2 hypotheses, 
just keep k with highest scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

For each of the k hypotheses, find 
top k next words and calculate scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

Of these k2 hypotheses, 
just keep k with highest scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =
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was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

-4.5

-3.7

-4.3

-4.8

For each of the k hypotheses, find 
top k next words and calculate scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

-4.5

-3.7

-4.3

-4.8

Of these k2 hypotheses, 
just keep k with highest scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

-4.5

-3.7

-4.3

-4.8

-4.3

-4.6

-5.0

-5.3

For each of the k hypotheses, find 
top k next words and calculate scores

Beam search decoding: example

Beam size = k = 2. Blue numbers =



hit

struck

was

got

a

me

hit

struck

tart

pie

with
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in

with
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pie
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<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4

-3.3

-4.0

-4.5

-3.7

-4.3

-4.8

-4.3

-4.6

-5.0

-5.3

This is the top-scoring hypothesis!

Beam search decoding: example

Beam size = k = 2. Blue numbers =



hit
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was

got
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hit

struck

tart
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with
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a

one
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<START>
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I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9
-2.5

-2.8

-3.8

-2.9

-3.5

-3.4
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-5.3

Backtrack to obtain the full hypothesis

Beam search decoding: example

Beam size = k = 2. Blue numbers =



Beam search decoding: stopping criterion

• In greedy decoding, usually we decode until the model produces an <END> token

• For example: <START> he hit me with a pie <END>

• In beam search decoding, different hypotheses may produce <END> tokens on 
different timesteps

• When a hypothesis produces <END>, that hypothesis is complete.

• Place it aside and continue exploring other hypotheses via beam search.

• Usually we continue beam search until:

• We reach timestep T (where T is some pre-defined cutoff), or

• We have at least n completed hypotheses (where n is pre-defined cutoff)



Beam search decoding: finishing up

• We have our list of completed hypotheses.

• How to select top one?

• Each hypothesis on our list has a score

• Problem with this: longer hypotheses have lower scores

• Fix: Normalize by length. Use this to select top one instead:



Summarize
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• Beam Search

• Also aims to find strings that maximize the log-prob, but with wider exploration of 
candidates

• Greedy Decoding

• Selects the highest probability token in 𝑃 (𝑦 𝑡 | 𝑦< 𝑡 )
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Beam search helper methods

You need to complete 5 TransformerEncoderDecoder methods:

initialize_beams_for_beam_search()

● Takes first decoder step and uses the top-k outputs to initialize beams

● There are several steps listed in the docstring -- follow them carefully

● Tip: you need to call the encoder first (look at how this is done in

decode_greedy())

expand_encoder_for_beam_search()

● This is a helper method called at the end of the previous method.

● Goal: Expands source embeddings and mask to have shape [batch_size * k,

...] instead of [batch_size, ...]

● This gives the src embeddings (encoder output) a similar shape to the 

decoder beams, letting us process things in parallel

● Relevant pytorch method: expand()



Beam search helper methods

repeat_and_reshape_for_beam_search()

● We expand [batch_size * k, cur_len] -> [batch_size * k, expan, cur_len] so we 

can get n=expan completions for each of the current k translations per beam.

● We reshape [batch_size * k, expan, cur_len] -> [batch_size, k * expan, 

cur_len], so that (later) we can select the best k per sentence in the batch.

● Relevant pytorch method: expand()

score_sequence_for_beam_search()

● You only need to do the second step (scoring) the sentences by summing log 

probabilities.

finalize_beams_for_beam_search()

● This pads the generated sequences so they are all the same length.

● We need to do this because beam search removes finished beams at each

step (so the generated sequences can have different lengths)
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Overview
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BLEU evaluation

CSC401/2511 – Winter

2024
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• BLEU (BiLingual Evaluation Understudy) is an automatic 
and popular method for evaluating MT.
• It uses multiple human reference translations, and 

looks for local matches, allowing for phrase movement.

• Candidate: n. a translation produced by a machine.

• There are a few parts to a BLEU score…

1Papineni, Kishore, et al. "Bleu: a method for automatic evaluation of machine translation." Proceedings of the 40th ACL. 2002. [link]

https://aclanthology.org/P02-1040.pdf


Example of BLEU evaluation

• Reference 1: It is a guide to action that ensures that the 
military will forever heed Party commands

• Reference 2: It is the guiding principle which guarantees the 
military forces always being under command of the Party

• Reference 3: It is the practical guide for the army always to 
heed the directions of the party

• Candidate 1: It is a guide to action which ensures that the 
military always obeys the commands of the party

• Candidate 2: It is to insure the troops forever hearing the 
activity guidebook that party direct

CSC401/2511 – Winter

2024
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BLEU: Unigram precision

• The unigram precision of a candidate is
𝐶

𝑁
where𝑁 is the number of words in the candidate

and 𝐶 is the number of words in the candidate
which are in at least one reference.

• e.g., Candidate 1: It is a guide to action which ensures that the 
military always obeys the commands of the party

• Unigram precision =
17

89

18

(obeys appears in none of the three references).



BLEU: Modified unigram precision

• Reference 1: The lunatic is on the grass
• Reference 2: There is a lunatic upon the grass
• Candidate: The the the the the the the

• Unigram precision =

• Capped unigram precision:
A candidate word type w can only be correct a
maximum
of 𝑐𝑎𝑝(w) times.
• e.g., with c𝑎𝑝 ( 𝑡ℎ𝑒) = 2 , the above gives

𝑝1 =

CSC401/2511 – Winter

2024
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7

7
= 1

2
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BLEU: Generalizing to N-grams

CSC401/2511 – Winter

2024
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the military always obeys the commands of the party
• Candidate 2: It is to insure the troops forever hearing 

the activity guidebook that party direct 2𝑝 = 1/13

𝑝2 = 10/17

• Generalizes to higher-order N-grams.

• Reference 1: It is a guide to action that ensures that 
the military will forever heed Party commands

• Reference 2: It is the guiding principle which
guarantees the military forces always being under 
command of the Party

• Reference 3: It is the practical guide for the army 
always to heed the directions of the party

Bigram precision, 𝑝2

• Candidate 1: It is a guide to action which ensures that



BLEU: Precision is not enough

• Reference 1: It is a guide to action that ensures that themilitary will
forever heed Party commands

• Reference 2: It is the guiding principle which guarantees themilitary forces

always being under command of the Party

• Reference 3: It is the practical guide for the army always to heed the

directions of the party

• Candidate 1: of the

Bigram precision, 𝑝2 =
1

1
=1

CSC401/2511 – Winter

2024

92

Unigram precision, 𝑝1 =
2

2
=1



BLEU: Brevity

• Solution: Penalize brevity.
• Step 1:

• Step 2:

for each candidate,
find the reference most similar in length.
c𝑖 is the length of the 𝑖𝑡ℎ candidate, and
𝑟 𝑖 is the nearest length among the references,

𝑖𝑏𝑟𝑒𝑣𝑖𝑡𝑦 =
𝑟𝑖
𝑐𝑖

• Step 3: multiply precision by the brevity penalty:
(𝑟𝑖 < 𝑐𝑖 ) 

(𝑟𝑖≥ 𝑐𝑖 )

Bigger = too brief
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BLEU: Final score

• On slide 87, 𝑟1 = 16, 𝑟2 = 17, 𝑟3 = 16, and
𝑐1 = 18 and 𝑐2 = 14,

181 1𝑏𝑟𝑒𝑣𝑖𝑡𝑦 =
17

𝐵𝑃 = 1

16
𝐵𝑃2 = 𝑒1– 8

7 = 0.8669𝑏𝑟𝑒𝑣𝑖𝑡𝑦2 =

14

• Final score of candidate 𝐶:

CSC401/2511 – Winter

2024
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Example: Final BLEU score

• Reference 1:
Reference 2:
Reference 3: 
Candidate:

I am afraid Dave
I am scared Dave
I have fear David
I fear David

Assume 𝑐𝑎𝑝 = 
2 for all N-grams

Also assume BLEU 
order 𝑛= 2

CSC401/2511 – Winter

2024
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BLEU: summary

CSC401/2511 – Winter
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• BLEU is a geometric mean over 𝑛-gram precisions.
• These precisions are capped to avoid strange cases.
• E.g., the translation “the the the the” is not favoured.

• This geometric mean is weighted (brevity penalty) so as not 
to favour unrealistically short translations, e.g., “the”

• Initially, evaluations showed that BLEU predicted human 
judgements very well, but:

• People started optimizing MT systems to maximize BLEU. 
Correlations between BLEU and humans decreased.

When an evaluation metric becomes the target of optimization, it ceases to be an evaluation metric.
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BLEU Score

grouper()

● Extract all n-grams from a sequence

● Use a sliding window approach to generate n-grams

n_gram_precision()

● Calculates the precision for a given order of n-gram

● First generate n-grams for both reference and candidate sequences

● Then count how many candidate n-grams in the reference n-grams 

and divide by the total

brevity_penality()

● Calculates the brevity penalty between a reference and candidate

BLEU_score()

● Compute the n-gram precisions for all orders from 1 to n

● Apply the formula
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Training loop

train_for_epoch()

● Follow the instructions in the docstring

● Don’t forget to normalize loss!

● tqdm: easy progress bar

train_input_target_split()

● Split target tokens into input and target for maximum likelihood training 

(teacher forcing)

● model inputs exclude the last token in each sequence, and outputs exclude 

the first token in each sentence

train_step_optimizer_and_scheduler()

● Step the optimizer, zero out the gradient, and step scheduler

compute_batch_total_bleu()

● Computes bleu score for a batch of sentences

● tip: don’t pass sos, eos, and pad tokens to bleu_score_func
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teach.cs with GPU: srun

● First make sure your code works in cpu mode! Debugging in 

CUDA mode is much more difficult

● Basic usage:

srun -p csc401 --gres gpu your_regular_command

○ srun -p csc2511 --gres gpu if you enrolled in CSC 2511

● Check current queue: squeue -p csc401

● Keep training after disconnecting: Use screen
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Analysis
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Let’s translate some sentences!

Here, you translate 8 sentences from French to English, using the following 

models:

● The model you trained

● A fine-tuned pre-trained transformer model (T5 MT model or Bart MT model)

● A large, established model (Google Translate or ChatGPT)

Then, you answer four questions comparing them.
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Q&A
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