Neural Machine Translation

using Transformers

CSC401/2511 A2 Tutorial 2
Winter 2024



Overview

TransformerRunner
train_for_epoch()
train_input_target_split()

train_step_optimizer_and_scheduler()

compute_batch_total_bleu()

.model

.BLEU_score

BLEU score functions
grouper()
n_gram_precision()
brevity_penalty()
BLEU_score()

create_pad_mask()
create_causal_mask()
forward()

TransformerEncoderDecoder

greedy_decode()
helper functions for beam_search_decode()

.layers (list of)

TransformerEncoderLayer

.encoder .decoder
TransformerEncoder TransformerDecoder
(implemented for you) forward()

.layers (list of)

TransformerDecoderLayer

pre_layer_norm_forward()
post_layer_norm_forward()

pre_layer_norm_forward()
post_layer_norm_forward()

These classes both rely on building block classes:

LayerNorm | |FeedForwardLayer | |MultiHeadAttention
forward() forward() attention()
forward()

| Part 4: Training and
Testing

| Part 3: Greedy and
Beam Search

Part 2: Putting the
architecture together

\.

Part 1: Transformer

\. )J L\ J

building blocks




Decoding: what is it all about?

* At each time step t, our model computes a vector of scores for each token in our
vocabulary for given all previous tokeny,,, S € R:

S ({y<t}) <( f( .) isyourmodel J
* Then, we compute a probability distribution P over these scores with a softmax
function:

exp(Sw)
wle vV exp(SW!)

* Our decoding algorithm defines a function to select a token from this distribution:

P(y:= wl{y<) = 3

yt — g(P (ytl{y<t})) g( .) isyourdecoding

algorithm




Decoding: Greedy decoding

* Generate (or “decode”) the target sentence by taking argmax on each step of the
decoder

he hit me with a pie <END>

<START> he hit me with a pie

« Thisis greedy decoding (take most probable word on each step)



Greedy Decode

TransformerEncoderDecoder.greedy decode ()

e Greedy approach to generating the translated sentence: Until each sentence
in the batch has a finished translation, generate a new token.
e Methodstouse: all finished, torch.argmax(),

concatenate generation sequence, pad generation sequence



Problems with greedy decoding

* Greedy decoding has no way to undo decisions!
* Input: il a m’entarté (he hit me with a pie)
c >he__
« > hehit_____

« = hehita (whoops! no going back now...)

 How to fix this?



Exhaustive search decoding

 Ideally, we want to find a (length T) translation y that maximizes
P(y|$) - P(yllw) P(y2|y13 :E) P(y3|y11y23 :E) ey P(yT|yla re. JyT—].','w)

T
= [ Pwlvs,-- - pe-1,2)
t=1

* We could try computing all possible sequences y

* This means that on each step t of the decoder, we’re tracking Vt possible partial
translations, where Vis vocab size

* This O(VT) complexity is far too expensive!



Beam search decoding

Core idea: On each step of decoder, keep track of the k most probable partial
translations (which we call hypotheses)
 kis the beam size (in practice around 5 to 10, in NMT)

A hypothesis y1,...,%y: has ascore which is its log probability:

t
score(y1, - .., Yt) = log PLm(y1, - -, ¥t|z) = ZlogPLM(yi|y1, ooy Yie1,T)
i=1
 Scores are all negative, and higher score is better
* We search for high-scoring hypotheses, tracking top k on each step

Beam search is not guaranteed to find optimal solution

But much more efficient than exhaustive search!



Beam search decoding: example

t
Beam size = k = 2. Blue numbers = score(y, .. ., ye) = Y _log Pum(wilys, - - -, ¥i-1,2)

=1

<START>

Calculate prob
dist of next word




Beam search decoding: example

t
Beam size =k = 2. Blue numbers = score(ys,...,y) = Y _log Pm(uilys, - - -, ¥iz1,2)

=1

-0.7 = |Og PLM(hel <START>)

/P're

<START>

N\

J

-0.9 = log P u(l| <START>)

Take top k words and
compute scores




Beam search decoding: example

t
Beam size = k = 2. Blue numbers = score(y, .. .,Yt) = Z log PLm(¥ilys, - - - ¥i-1, %)

1=1

-1.7 = log Pyu(hit| <START> he) +-0.7

-0.7 hit
he <
struck
/ -2.9 = log P m(struck | <START> he) +-0.7
<START>
\ -1.6 = log P pm(was | <START> [) +-0.9

was
: <
got

-0.9

-1.8 = log Pw(got| <START> I) + -0.9

For each of the k hypotheses, find
top k next words and calculate scores




Beam search decoding: example

t
Beam size = k = 2. Blue numbers = score(y,..., %) = Y _log Pum(¥ilys, - -, ¥i-1,)

=1

-1.7

he <
struck
/ 2.9

<START>
-1.6
\ was

: <
got

-0.9

-1.8

Of these k2 hypotheses,
just keep k with highest scores




Beam search decoding: example

t
Beam size = k = 2. Blue numbers = score(y, .. .,Yt) = Z log PLm(¥ilys, - - - ¥i-1, %)

1=1

-2.8 = log P ,m(a| <START> he hit) +-1.7

-1.7

a
0.7 e K
he < N me
/’ struck 2.5 = log P,y(me| <START> he hit) +-1.7
-2.9
<START> -2.9 =log P m(hit| <START> | was) + -1.6

-1.6 hi
\, wes K -

| < struck
got

-0.9 -3.8 = log P um(struck| <START> | was) +-1.6
-1.8

For each of the k hypotheses, find
top k next words and calculate scores




Beam search decoding: example

t
Beam size = k = 2. Blue numbers = score(y1, ..., %) = » log Pum(uilys, - .-, Yi-1, %)

=1

2.8
-1.7
a
0.7 1
hit N
< me
struck

-2.5

he
/ -2.9
<START> -2.9
16 hit
was <
AN

| < struck
got

-0.9 -3.8
-1.8

Of these k2 hypotheses,
just keep k with highest scores




Beam search decoding: example

t
Beam size = k = 2. Blue numbers = score(y1, ..., %) = » log Pum(uilys, - .-, Yi-1, %)

=1

-4.0
tart
2.8 .

-1.7 B pie

0.7 eV 3.4

he < S me 3.3

/ struck 95 with
-2.9

<START> -2.9 on

\ e hit -3.5
was

I < struck
got

-0.9 -3.8
-1.8

N\

For each of the k hypotheses, find
top k next words and calculate scores




Beam search decoding: example

t
Beam size = k = 2. Blue numbers = score(y1, ..., %) = » log Pum(uilys, - .-, Yi-1, %)

=1

-4.0

tart

-2.8 _

-1.7 g pie

0.7 eV 3.4

he < N me 3.3

/ struck 95 with
-2.9

<START> -2.9 on

\ e hit -3.5
was

I < struck
got

-0.9 -3.8
-1.8

N\

Of these k2 hypotheses,
just keep k with highest scores




Beam search decoding: example

Beam size = k = 2. Blue numbers = score(yi, .. .

t
ayt) o ZIOgPLM(szyla si:#iie ayi~1a$)

=1
-4.0 -4.8
tart in
2.8 _ ,
17 pie »  with
: a
-0.7 eV -3.4 4.5
he N me 3.3 3.7
/ struck 5 with ‘ g
-2.9
<START> -2.9 on one
\ Lo A hit 3.5 4.3
was N
| struck
-0.9 got -3.8
-1.8

For each of the k hypotheses, find
top k next words and calculate scores




Beam search decoding: example

t
Beam size = k = 2. Blue numbers = score(y1, ..., %) = » log Pum(uilys, - .-, Yi-1, %)

=1

-4.0 -4.8

tart in

2.8 . ,
1.7 pie »  with

' a

07 hit v -3.4 -4.5
he < N me 3.3 3.7

/ struck 5 with ‘ ;

-2.9

<START> -2.9 on one

\ L6 hit -3.5 -4.3
was

I < struck
got

-0.9 -3.8
-1.8

AN

Of these k2 hypotheses,
just keep k with highest scores




Beam search decoding: example

t
Beam size = k = 2. Blue numbers = score(y1, ..., %) = » log Pum(uilys, - .-, Yi-1, %)

i=1
-4.0 -4.8
tart in
2.8
L % pie o with 43
. B ,
0.7 P 3.4 4.5 pie
he S me 3.3 3.7 tart
/' struck -2.5 with > a -4.6
2.9
<START> 2.9 on one -5.0
\ -1.6 A hit -3.5 -4.3 pie
was K
I struck tart
0.0 got 38 5.3
-1.8

For each of the k hypotheses, find
top k next words and calculate scores




Beam search decoding: example

t
Beam size =k = 2. Blue numbers = score(y1,...,y:) = Y _log Pm(uilya, - -, ¥iz1,2)

=1
-4.0 -4.8
tart in
-2.8
L % pie o with 43
. a :
0.7 P 3.4 4.5 pie
he S me 3.3 3.7 tart
/' struck -2.5 with > a -4.6
-2.9
<START> 2.9 on one -5.0
-1.6 hit 3.5 -4.3 ple
was a
AN
I struck tart
0.9 got 3.8 5.3
-1.8

This is the top-scoring hypothesis!




Beam search decoding: example

t
Beam size = k = 2. Blue numbers = score(y,..., %) = Y _log Pum(¥ilys, - -, ¥i-1,)

=1

-4.0 -4.8
tart in
2.8
L % pie with 43
. p :
0.7 P 3.4 4.5 pie
he < N me 3.3 3.7 tart
/' struck -2.5 with » a -4.6
2.9
<START> -2.9 on one -5.0

\ e hit -3.5 4.3 pie
was

N\

| < struck tart
got

-0.9 -3.8 -5.3
-1.8

Backtrack to obtain the full hypothesis




Beam search decoding: stopping criterion

* In greedy decoding, usually we decode until the model produces an <END> token
* For example: <START> he hit me with a pie <END>

* In beam search decoding, different hypotheses may produce <END> tokens on
different timesteps
* When a hypothesis produces <END>, that hypothesis is complete.
« Place it aside and continue exploring other hypotheses via beam search.

* Usually we continue beam search until:
* We reach timestep T (where T is some pre-defined cutoff), or
* We have at least n completed hypotheses (where n is pre-defined cutoff)



Beam search decoding: finishing up

We have our list of completed hypotheses.

How to select top one?

Each hypothesis 31, ...,y onour list has a score

t
score(yl, = 'ayt) = logPLM(y17 e v ,yt|$) = ZlogPLM(yl|y1) « o 7yi—17$)

i=1

Problem with this: longer hypotheses have lower scores

Fix: Normalize by length. Use this to select top one instead:

¢

1

n E log Pom(vilya,y - - - Yie1, @)
i=1



Summarize

* Greedy Decoding
- Selects the highest probability tokenin P (y¢| y<¢)

Y. = argmax P(y; = wl|y)
wev

« Beam Search

 Also aims to find strings that maximize the log-prob, but with wider exploration of
candidates

21



Beam search helper methods

You need to complete 5 TransformerEncoderDecoder methods:

initialize beams for beam search()

e Takes first decoder step and uses the top-k outputs to initialize beams
There are several steps listed in the docstring -- follow them carefully

e Tip: you need to call the encoder first (look at how this is done in
decode greedy())

expand encoder for beam search/()

This is a helper method called at the end of the previous method.

e Goal: Expands source embeddings and mask to have shape [batch_size * k,
...] iInstead of [batch_size, ...]

e This gives the src embeddings (encoder output) a similar shape to the
decoder beams, letting us process things in parallel

e Relevant pytorch method: expand ()

25



Beam search helper methods

repeat and reshape for beam search()

e \We expand [batch_size * k, cur_len] -> [batch_size * k, expan, cur_len] so we
can get n=expan completions for each of the current k translations per beam.

e \We reshape [batch_size * k, expan, cur_len] -> [batch_size, k * expan,
cur_len], so that (later) we can select the best k per sentence in the batch.

e Relevant pytorch method: expand ()

score sequence for beam search()

e You only need to do the second step (scoring) the sentences by summing log
probabilities.

finalize beams for beam search()

e This pads the generated sequences so they are all the same length.
e \We need to do this because beam search removes finished beams at each
step (so the generated sequences can have different lengths)

22



Overview

TransformerRunner
train_for_epoch()
train_input_target_split()

train_step_optimizer_and_scheduler()

compute_batch_total_bleu()

.model

.BLEU_score

BLEU score functions
grouper()
n_gram_precision()
brevity_penalty()
BLEU_score()

create_pad_mask()
create_causal_mask()
forward()

TransformerEncoderDecoder

greedy_decode()
helper functions for beam_search_decode()

.layers (list of)

TransformerEncoderLayer

.encoder .decoder
TransformerEncoder TransformerDecoder
(implemented for you) forward()

.layers (list of)

TransformerDecoderLayer

pre_layer_norm_forward()
post_layer_norm_forward()

pre_layer_norm_forward()
post_layer_norm_forward()

These classes both rely on building block classes:

| Part 4: Training and
Testing

| Part 3: Greedy and
Beam Search

Part 2: Putting the
architecture together

\.

Part 1: Transformer

LayerNorm | |FeedForwardLayer | |MultiHeadAttention
forward() forward() attention()
forward()
\ J J L\ J

building blocks

27



BLEU evaluation

* BLEU (BiLingual Evaluation Understudy) is an automatic
and popular method for evaluating MT.
* |t uses multiple human reference translations, and
looks for local matches, allowing for phrase movement.

* Candidate: n. a translation produced by a machine.

* There are a few parts to a BLEU score...

1Papineni, Kishore, et al. "Bleu: a metho£o$a9(%gyglggaaoﬁfmm5§ rranslation." Proceedings of the 40th ACL. 20%72. [link]
2024


https://aclanthology.org/P02-1040.pdf

Example of BLEU evaluation

* Reference 1: It is a guide to action that ensures that the
military will forever heed Party commands

* Reference 2: It is the guiding principle which guarantees the
military forces always being under command of the Party

* Reference 3: It is the practical guide for the army always to
heed the directions of the party

=) ®* Candidate 1: It is a guide to action which ensures that the
military always obeys the commands of the party

* Candidate 2: It is to insure the troops forever hearing the
activity guidebook that party direct

88



BLEU: Unigram precision

* The unigram precision of a candidate is
C

N
where N is the number of words in the candidate

and C is the number of words in the candidate
which are in at least one reference.

* e.g., Candidate 1: It is a guide to action which ensures that the
military always obeys the commands of the party

° Wigram precision = 75

(obeys appears in none of the three references). =



BLEU: Modified unigram precision

* Reference 1: The lunatic is on the grass
* Reference 2: There is a lunatic upon the grass
* Candidate: The the the the the the the

* Unigram precision = ; =1 \;‘})
* Capped unigram precision:
A candidate word type w can only be correct a
maximum
of cap(w) times. p1 =§
* e.g.,withcap (the) = 2, the above gives

CSC401/2511 — Winter 90
2024



BLEU: Generalizing to N-grams

* Generalizes to higher-order N-grams.

Reference 1: It is a guide to action that ensures that
the military will forever heed Party commands
Reference 2: It is the guiding principle which
guarantees the military forces always being under
command of the Party

Reference 3: It is the practical guide for the army
always to heed the directions of the party

Candidate 1: It is a guide to action which ensures that
the military always obeys the commands of the party

: It is to insure the troops forever hearing
the activity guidebook that party direct

CSC401/2511 — Winter
2024

Bigram precision, p»

py=10/17

91



BLEU: Precision is not enough

* Reference 1: It is a guide to action that ensures that the military will
forever heed Party commands

* Reference 2: It is the guiding principle which guarantees the military forces
always being under command of the Party

* Reference 3: It is the practical guide for the army always to heed the

directions of the party

Candidate 1: of the
: . 2 : . 1
Unigram precision, p; = > 1 = Bigram precision, py = Il =

92



BLEU: Brevity

* Solution: Penalize brevity.
* Step1: for each candidate,
find the reference most similar in length.
° Step2: ¢, isthe length of the it" candidate, and
r; is the nearest length among the references,

T
brevity, = — Bigger = too brief |
Ci

°* Step3: multiply precision by the brevity penalty:

1 if brevity; < 1 (ri <ci) )

e Prevtyi ifhrevity; = 1 (r; = ¢;) ’
. 93

BPl' —_



BLEU: Final score

* On slide 87, ri1 =10, =17,r3 =16, and
c1 = 18 and ,

brevity, = — BpP, =1

BLEU; = BPcX(p1P )"

where Pn is the n-gram pI‘ECiSiOH. (You can set n empirically)

CSC401/2511 — Winter 94
2024



Example: Final BLEU score

* Reference 1: | am afraid Dave
Reference 2: | am scared Dave
Refer.ence 3: | have SesE ) —
Candidate: I 2 for all N-grams

* brevity = => 1 so BP = et=() ' ’
3 =
Also assume BLEU
* p, = 1+;+1 _ | _ ordern =2 J
P2 =3

1

e BLEU = BP(p,p,)z = ¢*~G) () ~ 0.5067

95



BLEU: summary

* BLEU is a geometric mean over n-gram precisions.
* These precisions are capped to avoid strange cases.
* E.g., the translation “the the the the” is not favoured.

* This geometric mean is weighted (brevity penalty) so as not
to favour unrealistically short translations, e.g., “the”

* |nitially, evaluations showed that BLEU predicted human
judgements very well, but:

* People started optimizing MT systems to maximize BLEU.
Correlations between BLEU and humans decreased.

When an evaluation metric becémes theltarget of-optimization, it ceases to be an evaluation metric.

97



BLEU Score

grouper ()
e Extract all n-grams from a sequence
e Use a sliding window approach to generate n-grams
n _gram precision()
e Calculates the precision for a given order of n-gram
e First generate n-grams for both reference and candidate sequences

e Then count how many candidate n-grams in the reference n-grams
and divide by the total

brevity penality()

e Calculates the brevity penalty between a reference and candidate
BLEU score ()

e Compute the n-gram precisions for all orders from 1 to n

e Apply the formula

38



Training loop
train for epoch()

e Follow the instructions in the docstring
e Don’t forget to normalize loss!
e tqdm: easy progress bar

train input target split()

e Split target tokens into input and target for maximum likelihood training
(teacher forcing)

e model inputs exclude the last token in each sequence, and outputs exclude
the first token in each sentence

train step optimizer and scheduler ()

e Step the optimizer, zero out the gradient, and step scheduler

compute batch total bleu()

e Computes bleu score for a batch of sentences

e tip: don’t pass sos, eos, and pad tokens to bleu_score _func
39



teach.cs with GPU: srun

e First make sure your code works in cpu mode! Debugging in
CUDA mode is much more difficult

e Basic usage:
srun -p c¢sc40l --gres gpu your regular command

O srun -p csc2511 --gres gpu if you enrolled in CSC 2511
e Check current queue: squeue -p csc401

e Keep training after disconnecting: Use screen

40



Analysis

41



Let’s translate some sentences!

Here, you translate 8 sentences from French to English, using the following
models:

e The model you trained
e Afine-tuned pre-trained transformer model (TS5 MT model or Bart MT model)

e Alarge, established model (Google Translate or ChatGPT)

Then, you answer four questions comparing them.

42



Q&A



Slides is from:

CSC401 Fall 2024 Lecture slides
CSC401 Fall 2024 Tutorial slides
Stanford CS 224N Winter 2023



