
1/ 23

Neural Machine Translation, Transformers, and
Assignment 2

Arvid Frydenlund

October 11, 2024



2/ 23

Neural Machine Translation

Transformers

Assignment 2



3/ 23

Neural Machine Translation

▶ Task is to automatically translate a sentence in a source
language to a sentence in a target language.
▶ Terminology: ‘source-side’, ‘src-side’ ‘target-side’, ‘tgt-side’.

▶ Methodology is to set up the task so that we can solve it via a
neural network.

▶ Uses the sequence-to-sequence aka ‘seq-2-seq’ aka
‘encoder-decoder’ paradigm.
▶ Let X = x1, x2, . . . , xS be a src sequence of S tokens
▶ Let Y = y1, y2, . . . , yT be a tgt sequence of T tokens
▶ Learn mapping of X → Y with a neural net.



4/ 23

Probabilistic Model

▶ We wish to model the joint probability of Y conditioned on
X , i.e. P(y1, y2, . . . , yT | y0, X )

▶ Use chain rule to model this as a per-token conditional
distribution,

∏T
t=1 P(yt , | y<t , X )

▶ Y0 is a special Start-of-Sentence token (SOS).
▶ We also need a special End-of-Sentence token (EOS) for

inference/generation.

▶ This is a supervised learning problem where we are given
(X , Y ) pairs during training and Y acts as our targets.
▶ However, there is no per-token alignment supervision.

▶ Train the model by minimizing the log probability.
L = −

∑T
t=1 logP(yt , | y<t , X )



5/ 23

Neural Model Skeleton (Encoder)

Encode X via an encoder

▶ First convert discrete tokens into embeddings via a look-up
table.

▶ Since X is fully observed (provided as input), we can create a
holistic representation of X by considering all tokens in the
sequence.

▶ Let HX be a set of S hidden states representing X .
▶ These will be created by a transformer applied over X .
▶ Think BERT but without any masking.
▶ Each hX1 , . . . , h

X
S is contextualized by all tokens in X

▶ Then our model becomes
∏T

t=1 P(yt , | y<t , H
X )



6/ 23

Neural Model Skeleton (Decoder)

Decode or generate the predicted sequence Ŷ via a decoder.

▶ Where Y is the ground-truth sequence given during training
and Ŷ is the predicted sequence.

▶ The decoder implements the conditional distribution and is
used to generate Ŷ token-by-token autoregressively.
▶ Let the model output a token ŷt at step t given X and ŷ<t

▶ This then concatenates to form the input ŷ<t+1 at step t + 1.
▶ Thus each step corresponds to one term in the chain rule

decomposition.

▶ This is not done during training, but rather the ground-truth
tokens, Y , are used as input instead of the model’s
predictions, Ŷ .

▶ This is called teacher-forcing aka maximum likelihood
training.



7/ 23

Teacher-forcing

▶ The full ground-truth sequence Y is input during training.

▶ For a transformer model, the condition that tokens in Y can
only condition on prior tokens is achieved via a causal
attention mask.

▶ Note the training is defined as predicting the next-token
given prior tokens.
▶ This means we shift the inputted Y and the target Y by one

token.
▶ This is done via an input target split.
▶ So inputs = y0, y1, . . . , yT−1 and targets = y1, y2, . . . , yT .
▶ You can also think about this as inputs have SOS at the start

and targets have EOS at the end.
▶ Debugging tip: temporarily making the inputs and the targets

the same values should allow your model get a near-zero loss.



8/ 23

Neural Model Skeleton (Encoder-Decoder)

Figure: Autoregressive encoder-decoder model (fig. from here).

▶ Side note: language models are decoder-only models.

▶ Neural machine translation and other seq-2-seq models are
just conditional language models.

https://6chaoran.wordpress.com/2019/01/15/build-a-machine-translator-using-keras-part-1-seq2seq-with-lstm/


9/ 23

Encoder-Decoder Transformer

Figure: Autoregressive encoder-decoder model (fig. from here).

https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452


10/ 23

Transformers

The core building blocks:
▶ Embedding layer:

▶ Converts token IDs into embeddings (int to vector)

▶ Positional embedding layer:
▶ Adds a numerical ordinal bias to each embedding
▶ This is required because transformers only consider pair-wise

comparisons between tokens, and thus have no intrinsic
understanding of sequence order.

▶ Sequence order is, of course, critical for understanding
language.

These are given to you and you only have to know when to apply
them.



11/ 23

Transformers

The core building blocks:
▶ Feed-forward layer:

▶ Actually two linear projections, two dropouts, and an
activation function.

▶ Idea is to project to a higher dimension, apply the activation
function and dropout, project back down, and then apply
another dropout.

▶ This applies the same non-linear transformation to each
hidden-state.

▶ Layer norm:
▶ This normalizes each hidden-state across the features i.e. not

across the batch and not across the sequence.
▶ This normalizes the inputs (or outputs) of each layer.

▶ Multi-headed attention:
▶ The workhorse of transformers.
▶ Allows for pairwise considerations between tokens.



12/ 23

Encoder

Figure: Pre- and post-norm encoder layer.

▶ TransformerEncoderLayer

▶ Multiple layers get stacked to form TransformerEncoder

▶ You will be asked to implement both versions

▶ The performance between the two will be very similar, as the
differences only matter after a dozen-plus layers.

▶ Note the residual connections ‘+’. These are h = h + f (h).



13/ 23

Decoder

Figure: Pre- and post-norm decoder layer.

▶ TransformerDecoderLayer

▶ Multiple layers get stacked to form TransformerDecoder

▶ The same as the encoder but with cross attention as well.



14/ 23

Attention Mechanism

▶ Attention takes in a query (vector) sequence, Q, a key
sequence K , and a matching value sequence V .

▶ Two different kinds of attention: self-attention and
cross-attention.

▶ Self-attention assumes Q,K ,V are all the same sequence.
▶ This is used in the encoder where every token in X attends to

all other tokens in X .
▶ A causally masked version of this is used in the decoder

where every token attends to all prior tokens in Y .

▶ Cross-attention is used when Q is a different sequence from K
and V .
▶ This is used in the decoder where each token in Y attends to

all tokens in X in order to condition on the source-side
information.



15/ 23

Attention Calculation

▶ Each of the Q,K ,V has a linear projection applied to them.
▶ These are each then partitioned into h heads s.t. a

d-dimensional vector becomes h smaller d/h-denominational
vectors.
▶ This is done by reshaping the tensor.

▶ Attention scores are produced via the dot product between Q
and K (which is scaled by a constant

√
d/h)

▶ Attention ‘probabilities’ or normalized scores are produced via
the softmax function.

▶ These then are used to create a weighted average from V .

dropout(softmax(
QK⊤√
d/h

)) V (1)



16/ 23

Masked Attention

Some tokens need to be excluded from attending to each other.

▶ Our data is batched sequences which means they will not all
be the same length.

▶ They are padded to length in the batch with a special pad
token (sometimes called the ‘pad idx’ in the code).

▶ Call this the length mask or pad mask.

▶ These are masked from each other by setting their attention
probabilities to be zero.

▶ What is the proper way to do this for softmax? (It’s -inf for
those who missed the tutorial)



17/ 23

Causal Mask and Teacher-Forcing

Tokens in Y can only attend to prior tokens.

▶ During training we use teacher-forcing. This inputs the
ground-truth sequence Y

▶ However, we need to enforce the causal constraint that tokens
in Y can not ‘see into the future’.

▶ This is done via a triangular attention mask such that y1 can
only attend to y1 and y2 can only attend to y1 and y2 etc.

Note: the target sequence is also padded to length for batching,
however, this can be accounted for by masking the cost.



18/ 23

Causal Mask

Figure: Full attention and causal attention (fig. from here).

https://pdoom.org/causal_mask.html


19/ 23

Assignment 2

Five parts:

1. Implementing transformer building blocks

2. Implementing transformer model

3. Implementing greedy and beam search (inference/decoding)

4. Implementing the training and inference loops
(training/testing)

5. Experiments or analysis



20/ 23

Assignment 2

Figure: Assignment 2 code structure.



21/ 23

Assignment 2 Tips

▶ A lot of work:
▶ Don’t be overwhelmed, it’s not difficult but there are a lot of

things you need to consider at once which can be challenging.
▶ Start early. Minor errors in neural nets can be catastrophic and

hard to debug. Also, you don’t want to compete for GPUs.

▶ Star with a) training loop b) TransformerEncoderDecoder
forward c) building blocks, d) BLEU score

▶ Leave inference (greedy and beamseach decoding) until you
have the majority of the model and training loop done.

▶ Try only partially completing the function in order to get a
single training forward step working. That is, bypass parts of
the function when necessary or helpful.



22/ 23

Assignment 2 Tips

▶ Match tensor shapes like Lego and always comment and print
out the shapes of any given tensor.

▶ First thing you should do is look at how the dataloader gives
data. Print out tensors, tensor shapes and try to convert
sentences back to strings. This is not required but will help
you understand data.



23/ 23

Next Tutorial

▶ Inference
▶ Back-propagation and optimization in Torch

▶ Please see this image classification tutorial in Torch if you have
never done these before.

▶ Gradient accumulation

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

	Neural Machine Translation
	Transformers
	Assignment 2

