
Research Statement
Rati Gelashvili

Introduction

Distributed algorithms govern some of the most complex systems in the world, from data center clusters to
multicore computing devices to biological systems. One of the key obstacles that distributed systems face is
asynchrony : the nodes in distributed systems compute independently of each other, often at different speeds
or even with a possibility of crashing. In particular, the nodes cannot rely on a perfect shared source of time
(a "clock in the sky"), as is the case in synchronous computation.

Dealing with asynchrony in distributed algorithms introduces unique technical challenges, which are often
ignored by synchronous distributed models and high-level programming languages and frameworks. These
abstractions rely on clever synchronization algorithms to mask the underlying asynchrony. The existence
and efficiency of these synchronization algorithms is hence of profound importance and guides system design
decisions. For instance, in multicore architectures, the set of instructions that are supported atomically (i.e.
ones that take effect as a single indivisible step) in hardware is chosen to facilitate efficient synchronization.

Broadly speaking, my research is centered on the complexity of synchronization. It involves both under-
standing the power of synchronization instructions and determining the optimal complexity of important
synchronization tasks in given distributed environments. I do this by designing algorithms and proving lower
bounds. My work requires diverse mathematical tools ranging from probability theory and graph theory to
logic and combinatorial topology.

I will first describe the space hierarchy that we developed to quantify power of synchronization instructions
and new space lower bounds that we proved for important synchronization tasks. Then, I will outline results
in the biologically inspired population protocols model and list some other contributions including a time
complexity upper bound of leader election and a result related to neuroscience. I will conclude by discussing
future directions.

Distributed computing is a mature field with long standing questions, but also emerging areas. My work
so far makes considerable headway on long standing open questions such as space complexity bounds, the
space hierarchy, and the time complexity of leader election, and also in emerging areas such as population
protocols for biological modeling and computational neuroscience.

Preliminaries: In the standard asynchronous shared memory model, which captures the computation in
multicore systems, nodes are processors. Communication takes place using shared objects and registers. An
object is a memory location to which processors can apply a fixed set of synchronization operations and
a register is an object that supports only read and write operations. If an algorithm that a processor is
executing is wait-free, then the processor will return after performing a finite number of operations. If the
algorithm is lock-free, then one of the processors executing it will return after performing finitely many
operations. If the algorithm is obstruction-free, then the processor will return after performing some finite
number of operations while no other processors apply any operations. In the consensus task, processors
receive private inputs from {0, 1} and processors that do not crash must agree on one of the input values.

Contributions

The Space Hierarchy

A fundamental question in multicore systems is to characterize the relative power of synchronization in-
structions that processors apply to shared memory locations. For more than 25 years, the best scholarly
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explanation has been Herlihy’s consensus hierarchy [25]. Herlihy’s hierarchy classifies an object by its con-
sensus number, the maximum number of processors for which it is possible to solve consensus in a wait-free
way using instances of this object and registers. Consensus is universal: the ability to solve consensus among
a set of processors allows any (sequentially specified) object shared by those processors to be implemented.

In [8], in collaboration with Faith Ellen, Nir Shavit and Leqi Zhu, I showed that Herlihy’s hierarchy is
too simplistic a model for existing computer architectures. We showed that there are operations that have
consensus number 1 if applied to separate objects, i.e. they are at the lowest level in the hierarchy, yet can
be combined to solve consensus among any number of processors if both operations are applied to the same
object. This "operation" based modeling is more realistic since any instruction that is supported in hardware
can be applied to any of a computer’s memory locations. Our work has shown that, contrary to common
belief, shared-memory computability does not require multicore architectures to support synchronization
instructions like compare-and-swap, whose corresponding object sits at the top of Herlihy’s hierarchy. Instead,
from a pure computability standpoint, combinations of instructions like decrement and multiply , whose
corresponding objects are at the bottom of Herlihy’s hierarchy, will suffice.

In [8], we not only showed the limitations of Herlihy’s hierarchy, but also proposed an alternative new
hierarchy based on of sets of synchronization instructions (as opposed to objects) and classified by the
minimum number of memory locations required by such sets to solve consensus in an obstruction-free way.
Obstruction freedom is a natural progress measure used in state-of-the-art synchronization constructs, e.g.
hardware transactions [27] do not guarantee more than obstruction freedom. The key to our proof is is
proving tight space upper and lower bounds. The classification resulting from our hierarchy seems to fit
with one’s intuition about how useful some instructions are in practice, while questioning the effectiveness
of others.

Most efficient concurrent data-structures rely heavily on compare-and-swap for swinging pointers, and in
general, for conflict resolution. In [11], together with Idit Keidar, Alexander Spiegelman and Roger Watten-
hofer, I provided an alternative by designing a Log data-structure that can be used in a lock-free universal
construction of [25] to implement any concurrent object from its sequential specification. A Log supports
two operations: a lock-free append(item), which appends the item to the log, and a wait-free get-log(),
which returns the appended items so far, in order. Our implementation used atomic read , xor , decrement ,
and fetch-and-increment instructions (whose corresponding objects have consensus numbers one and two)
supported on X86 architectures, and provides similar performance to a compare-and-swap-based solution.
Our work raised a fundamental question about the minimal sets of synchronization instructions that shared-
memory multicore architectures must support to allow fully expressive computability.

Space Lower Bounds

As a part of developing the space hierarchy, one must understand how many memory locations (traditionally
called "registers") are required to solve consensus in an obstruction-free way. This was a long-standing open
question. It’s possible to solve consensus for n processors using n registers in an obstruction-free way or in a
randomized wait-free way. In randomized wait-free protocols non-faulty processors are required to terminate
with probability 1. A lower bound of Ω(

√
n) by Ellen et al. [21] dates back to 1993.

In [10], I proved an asymptotically tight Ω(n) lower bound for anonymous processors, which was the first
progress on the problem since [21]. Anonymous processors have no identifiers and run the same code: all
processors with the same input start in the same initial state and behave identically until they read different
values. On a technical side, [10] introduced new ideas that utilized the anonimity of processors for proving
space lower bounds.

This was followed by Zhu’s proof that any obstruction-free protocol solving consensus for n processors
requires at least n − 1 registers [33]. In our hierarchy paper [8], we generalized read and write instructions
to a family of buffered read and buffered write instructions B` for ` ≥ 1 and extended the techniques of [33]
to prove that dn−1

` e memory locations supporting B` are necessary. We showed that this is tight when n− 1
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is not divisible by `. Moreover, by way of an interesting combinatorial argument, we proved that the lower
bound holds within a factor of 2 even in the presence of atomic multiple assignment. Multiple assignment
can be implemented by simple transactions, so our results imply that such transactions cannot significantly
reduce space complexity.

In my most recent work with Faith Ellen and Leqi Zhu [9], we developed a novel method for proving space
lower bounds, enabling us to obtain strong results for classical synchronization tasks, for which previously
no good space lower bounds were known. In particular, in the k-set agreement problem, n processors, each
with an input value, are required to return at most k different input values. This is a generalization of
consensus, which is the case k = 1. The best known upper bound on the number of registers needed to solve
k-set agreement among n > k processors in an obstruction-free way is n − k + 1 registers, while no general
lower bound better than 2 was known. We proved that processors must use at least bn−1

k c+ 1 registers. In
particular, this gives a tight lower bound of n for consensus.

Our main technical contribution was a simulation that serves as a reduction from the impossibility of de-
terministic wait-free k-set agreement [26, 31], a celebrated result in distributed computing which relies on
a connection to combinatorial topology. Our simulation converted any obstruction-free protocol for k-set
agreement that uses too few registers to a protocol that solves wait-free k-set agreement, which is impossible.
We also used this new technique to prove a space lower bound of bn2 c + 1 for ε-approximate agreement for
sufficiently small ε, an important task that requires participating processors to return values within ε of each
other. This is within a factor of 2 of the best known known upper bound, while previously no general lower
bounds were known. A critical component of the simulation is the ability of simulating processors to revise
the past of simulated processors. We introduced a new augmented snapshot object, which facilitates this.

Obstruction freedom and randomized wait freedom are known to be closely related [24, 22]. In [9], we also
showed that any space lower bound on the number of registers used by obstruction-free protocols applies to
randomized wait-free protocols. Hence, our result for k-set agreement implies a tight lower bound of exactly
n registers for obstruction-free and randomized wait-free consensus.

Population Protocols

Population protocols [13] are a model of distributed computing consisting of n nodes which have little compu-
tational power and interact randomly. They were originally introduced to model animal populations equipped
with sensors [13], they have proved a useful abstraction for settings from wireless sensor networks [30, 20],
to gene regulatory networks [15], and chemical reaction networks [17]. There is an intriguing line of applied
research showing that population protocols can be implemented at the level of DNA molecules [18], and that
some natural protocols are equivalent to the computational tasks solved by living cells in order to function
correctly [16].

In the population protocol model, majority is a central task: each node starts in state A or B and the goal
is to collectively determine whether more nodes were initially in state A or B. Another key task is leader
election, which requires the system to stabilize to final configurations with exactly one node is in a special
leader state. Two complexity metrics are important: the time that a protocol requires to stabilize to an
output decision, and the size of the state space that each node requires to do so. The applications of the
model dictate that we would like protocols to use as few states as possible and be fast, i.e. stabilize in time
polylogarithmic in n.

Until a few years ago, the best known protocols for majority [20, 29] used only 4 states, but required a
superlinear time to stabilize when the initial discrepancy between the number of nodes in states A and B
was small. For leader election, the existence of a fast protocol with constant number of states was an open
question [14].

In [6], with Dan Alistarh and Milan Vojnovic, I designed the first fast protocol for majority. In [4], with Dan
Alistarh, I also designed a fast leader election protocol using O(log3 n) states. At the same time, Doty and
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Soloveichik [19] showed that fast leader election requires a superconstant number of states.

In [2], in collaboration with Dan Alistarh, James Aspnes, David Eisenstat and Ronald Rivest, I pushed
these results further. We gave fast algorithms for both majority and leader election using O(log2 n) states,
based on a novel synthetic coin flipping technique. The nodes are deterministic, but synthetic coin flipping
allows them to generate almost-uniform local coins within a constant number of interactions, by exploiting
the randomness in the scheduler. Proving this requires analyzing a random walk on the hypercube. This
technique is generally useful and has since been used in other contexts. In [2], we proved a lower bound of
Ω(log log n) states for fast protocols for both majority and leader election, extending the result of [19].

Finally, in [3], with Dan Alistarh and James Aspnes, I devised a new majority protocol that uses O(log n)
states, and stabilizes in O(log2 n) expected time. Central to the protocol is a new leaderless phase clock
technique, which allows agents to synchronize in phases of Θ(n log n) consecutive interactions. It exploits
a new connection between population protocols and load balancing mechanisms. On the negative side, we
provided a new lower bound of Ω(log n) states for any majority protocol which stabilizes in O(n1−c) expected
time, for any constant c > 0, conditional on a couple of assumptions, satisfied by all known protocols.

In [3], we also employed our phase clock to build a fast leader election algorithm with a state space of size
O(log n). Gąsieniec and Stachowiak [23] independently designed a leader election protocol using O(log log n)
states. This is optimal by our lower bound [2]. Combined, our results and [23] demonstrate a separation
between the state complexities of majority and leader election.

Other Contributions

In [5], we designed a leader election protocol in asynchronous message-passing system with O(log? k) time
complexity for k participants and proved that the message complexity of our protocol is optimal. This is a
progress on a long-standing open problem of determining the optimal time complexity of leader election in
asynchronous distributed systems. The best previously known protocol relied on a tournament-like structure
and had time complexity of Θ(log k).

In [1], with Dan Alistarh, James Aspnes, Michael Bender and Seth Gilbert, we provided the first asynchronous
shared-memory algorithm for the dynamic version of the classical task allocation problem, where a set of
potentially faulty nodes must cooperate to perform a set of tasks. We used competitive analysis to show
that the total amount of work performed by nodes is a polylogarithmic factor away from optimal on any
given sequence of inputs.

I am also interested in problems beyond the standard distributed models. The human brain is a prime
example of a distributed system that allows for rich computation to take place. Many models of neural
computation exist [28, 32]. In my work [7] with Zeyuan Allen-Zhu, Silvio Micali and Nir Shavit, we considered
a theoretical construction that neuroscientists had suggested as playing a role in information compression in
the brain. We showed how to make this construction neurobiologically plausible.

I have also amassed significant practical experience through industrial internships at Google, Facebook,
Akamai, Dropbox and the D.E. Shaw Group. My most notable achievements were at Akamai and Dropbox,
where I contributed to complex projects that have had large practical impact. At Akamai, I designed and
implemented a high-performance concurrent data structure in the Linux Kernel, that relies on fine-grained
synchronization (i.e. the read-copy-update mechanism) and efficiently serves a huge number of requests.
At Dropbox, I developed automatic targeted throttling of requests for a massive scale distributed database
service, powering all of Dropbox’s products.
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Future Research Directions

Concrete Problems: I would like to resolve a number of important and perplexing problems motivated by
the space hierarchy [8]: extending our hierarchy to involve time complexity, establishing the exact power of
certain conventional instructions, and determining whether there is a complexity-based version of universality,
i.e. whether it is possible to implement any (sequentially specified) object using the same amount of space
(to within a constant factor) as is used for solving consensus. We expect that new methods will likely be
needed to answer at least some of these questions.

The simulation technique introduced in [9] is a completely novel approach. It is conceivable that it can be
further extended to apply to other tasks or prove a tight lower bound for k-set agreement.

There are a number of interesting questions in population protocols. This includes getting rid of certain
assumptions in our majority lower bound [3], applying our techniques to different tasks, and considering
protocols that allow small probability of error or are robust to certain chemical phenomena called leaks [12].

General Directions: The topological framework for analyzing distributed algorithms currently has two
major limitations: it is not known how to represent algorithms that use randomization or multi-writer
registers. I would like to extend the state-of-the-art to overcome these limitations. This is a substantial
undertaking, but we may have a way to attack the multi-writer register case. Our intuition that led to
the results in [9] stemmed from the connection between shared-memory computability and combinatorial
topology. Understanding and properly formalizing what the simulation means in terms of the topological
framework is a great starting point.

I also intend to explore intersections with other fields, including more systems research and applications of
my expertise in other fields, such as optimization and machine learning, which are becoming increasingly
large-scale and thus, reliant on distributed platforms.

Finally, I am currently working on some problems related to neural network architectures.
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