
Monitoring the Execution of Optimal Plans

Christian Fritz
Department of Computer Science,

University of Toronto,
Toronto, Ontario. CANADA.

fritz@cs.toronto.edu

Introduction
When executing plans, the world may evolve differently than
predicted resulting in discrepancies between predicted and
observed states of the world. These discrepancies can be
caused by noisy sensors, unanticipated exogenous actions,
or by inaccuracies in the predictive model used to generate
the plan in the first place. Regardless of the cause, when a
discrepancy is detected, it brings into question whether the
plan being executed remainsvalid (i.e., projected to reach
the goal) and where relevant,optimal with respect to some
prescribed metric.

Effective execution monitoring requires a system to
quickly discern between cases where a detected discrep-
ancy is relevant to the successful execution of a plan and
those cases where it is not. Algorithms dating as far back as
PLANEX (1972, (Fikes, Hart, & Nilsson 1972)), Shakey the
Robot’s execution strategy, have exploited the idea of anno-
tating plans with conditions that can be checked at execution
time to confirm the continuedvalidity of a sequential plan.

We are interested in the more difficult and unsolved prob-
lem of monitoring planoptimality. Our work is moti-
vated in part by our practical experience with the fast-paced
RoboCup domain where teams of robots play soccer against
each other. In RoboCup, the state of the world is typically
observed 10 times per second, each time raising the ques-
tion of whether to continue with the current plan or to re-
plan. Verifying plan validity and optimality must be done
quickly because of the rapidly changing environment. Cur-
rently, there are no techniques to distinguish between rele-
vant and irrelevant discrepancies (w.r.t. optimality), and so
replanning is frequently done unnecessarily or discrepancies
are ignored altogether, ultimately resulting in plan failure or
sub-optimal performance.

We study the problem of monitoring the continued opti-
mality of a plan. We build on the ideas exploited in algo-
rithms for monitoring plan validity. To this end, we begin
by formally characterizing common approaches to monitor-
ing plan validity as found in the literature. We then out-
line how to generalize this characterization for monitoring
plan optimality of deterministic plans, and later also of con-
ditional plans in the context of decision-theoretic planning.
We have implemented our algorithm for both, deterministic
and conditional plans and show empirical results showing
the potential computational savings resulting from our ap-

proach, compared to the only available alternative of replan-
ning from scratch in the case of a discrepancy.

This extended abstract covers the intuitions behind (Fritz
& McIlraith 2007a) and (Fritz & McIlraith 2007b), to be pre-
sented at ICAPS07 and one of its workshops, respectively.

Monitoring Plan Validity
The available literature for execution monitoring is almost
exclusively concerned with the problem of monitoring plan
validity. This is the problem of deciding whether an exe-
cuting plan will still reach the goal after unexpected events
have happened, like actions failing to achieve some of
their alleged effects, exogenous events that have changed
the state of the world, etc.. Apart from this common
limitation to plan validity, many if not all presented ap-
proaches, e.g. (Fikes, Hart, & Nilsson 1972; Wilkins 1985;
Ambros-Ingerson & Steel 1988; Kambhampati 1990), also
share the same underlying technique, and this while being
seemingly unaware of that similarity and in particular with-
out formalizing it.

We here characterize the approach formally as the regres-
sion of the goal and remaining preconditions over the re-
mainder of the plan. The result of the regression provides
the sufficient and necessary condition for plan validity with
which the plan can be annotated for later verification during
on-line execution.

Theregressionof a formulaϕ over an actionα is another
formulaϕ′ that has to hold in order forϕ to hold after exe-
cutingα. We writeϕ′ = R[ϕ,α]. Regression can be defined
in several action languages. In our work we use the situation
calculus (Reiter 2001), but since the availability of regres-
sion is the only requirement for the applicability of our ap-
proach, it can equally well be used with any other language
for which regression can be defined, for instance STRIPS or
ADL ((Pednault 1989)).

In the situation calculus the state of the world is rep-
resented by the sequence of actions that occurred since a
distinguished and (partially) known initial situationS0. Ax-
iomatic knowledge about the effects of actions together with
axioms describing what is true in the initial situationS0 de-
scribe the (truth-)values of fluents in any particular situation.
The functiondo(a, s) denotes the situation reached after
executing actiona in situations. We usedo([α1, . . . , αn], s)
to abbreviate do(αn, do(αn−1, . . . , do(α1, s) . . . )).



α

α

α

α

β

β

β

βS0

do(α, S0)

do(β, S0))

do([α, α], S0)

do([α, β], S0))

do([β, α], S0))

do([β, β], S0))

do([β, α, α], S0)

do([β, α, β], S0))

1

2

3

4

5

6

7

8

9

Figure 1:An example search tree. Dashed lines denote impossible
actions, and[α, α] is the optimal plan.

We denote the preconditions of an actionα in
a particular situation s by Poss(α, s) and use
Poss([α1, . . . , αn], s) to abbreviate Poss(α1, s) ∧

Poss(α2, do(α1, s)) . . . Poss(αn, do([α1, . . . , αn−1], s)). 1

Then, the above mentioned plan annotation can be for-
mally defined as follows:
Definition 1 (Annotated Plan). Given initial situationS0, a
sequential plan~α = [α1, . . . , αm], and a goal formulaG(s),
the corresponding annotated plan for~α is a sequence of tu-
plesπ(~α) = (G1(s), α1), (G2(s), α2), . . . (Gm(s), αm) where

Gi(s) = Rs [G(do([αi, . . . , αm], s) ∧ Poss([αi, . . . , αm], s)]

That is, in each step of the plan we annotate the regres-
sion of the goal and the remaining preconditions, where the
regression is done over all remaining actions.Rs[ϕ(s′)] de-
notes fors′ = do([a1, . . . , ak], s) the repeated regression of
ϕ over the actionsai.

The annotation can be used during execution as follows,
where we denote the actual situation encountered during ex-
ecution, possibly deviating from the expected situation, by
S∗.

Definition 2 (Algorithm for Monitoring Plan Validity).
obtainS∗

while (¬G(S∗)) {
i = m

obtainS∗

while (¬Gi(S
∗)) { i = i − 1}

if (i > 0) then execute αi elsereplan }

This closely resembles the PLANEX execution strategy.

Monitoring Plan Optimality
With this formalization at hand we can now go on and ad-
dress the more complex problem of monitoring optimal-
ity by generalizing above method. Given an optimal plan,
where optimality is with respect to some user-defined met-
ric, for instance minimizing costs, we are interested in as-
serting that an executing plan remains not only valid but
also optimal. Space precludes presenting the technical de-
tails here (the interested reader is referred to (Fritz & McIl-
raith 2007a)). Instead we present the intuition, focusing on
the difference to the case of validity monitoring. Consider
the example search tree of Figure 1. Let[α, α] be the plan
found by an optimal, forward-search planner, and let op-
timality be expressed in terms of minimizing action costs.

1For the situation calculus savvy: In this extended abstract we
will abuse syntax by removing all reference to a basic action theory
and in particular will writeϕ(s) to express thatϕ holds ins, rather
than the, correct,D |= ϕ(s), given an action theoryD.

Then, the plan is optimal if all feasible alternatives reachthe
goal only with higher accumulated costs. This is typically
asserted through the use of an admissible heuristic which
provides a lower bound on the costs of reaching the goal
from any given state, allowing to soundly prune branches
from the search tree. In our example, the heuristic would
have provided such bounds for the nodes 5, 7, and 8, and the
these bounds together with the already accumulated costs of
actions leading to these nodes, have to have exceeded those
for node 4. Since[α, α] is a plan, Node 4 also satisfies the
goal.

Thus, intuitively in order to verify optimality on-line, we
have to verify that the above circumstances still hold if, at
the time the plan is to be executed, we find that the world
is not in situationS0 as we thought, but in an arbitrary, dif-
ferent situationS∗. To accomplish this, checking whether
the plan is still optimal among all its alternatives, we fol-
low the same idea as earlier for plan validity. We have to
answer two questions: (a) what do we need to annotate the
plan with? and (b) how can we use this annotation on-line
to quickly distinguish between discrepancies that affect the
optimality of the plan and those that don’t?

(a) Annotation: Instead of annotating the plan with just
the regression of the goal and the remaining preconditions,
we now need to also include the regression of action costs
and heuristic function. This is the first difference to the va-
lidity case. The second is that we have to do this not only
for the plan itself, but also for all viable alternatives, since
optimality is relative rather than absolute. It may be the case
that an alternative has improved as a result of a discrepancy
and also then we would like to reconsider which plan to take.

(b) Execution Algorithm:Once the plan has been anno-
tated with the regression of all relevant entities (goal, pre-
conditions, action costs, heuristic function in leaf nodes) we
can again use this extra information on-line to quickly de-
cide whether the current plan remains optimal. Here the
main benefit of regressing the conditions to the current situ-
ation comes into play. Since, after regression, the values of
all relevant entities are expressed in terms of the current sit-
uation (state), we can directly exploit knowledge about the
actual discrepancy. If, say, situationSi was expected butS∗

observed, we can determine efficiently, which fluents (prop-
erties of the world) are different in these situations. Gener-
ally, discrepancies only affect a very small subset of fluents
and this is what we can exploit.Only conditions that men-
tion any of the affected fluents need to be reevaluated, all
others maintain their previous (truth-)value.This allows for
drastic computational savings, as we will see next.

Empirical Results
We were interested whether the approach was time-effective
– whether the discrepancy-based incremental reevaluation
could indeed be done more quickly than simply replanning
when a discrepancy was detected.

To this end, we compared a preliminary implementation
of our algorithm, which we callmonoplex, to replanning
from scratch on 9 different problems in the metricTPP do-
main of the5th International Planning Competition. In each
case, we solved the original planning problem, perturbed the



se
c
o
n
d
s

test case, ordered by monoplex time

monoplex

replan

256

64

16

4

1

0.25

0.0625

0.01

0.005
0 500 1000 1500 2000 2500

Figure 2:running time comparison (note the logarithmic scale)

state of the world by changing some fluents, and then ran
bothmonoplex and replanning from scratch. To maximize
objectivity, the perturbations were done systematically by
multiplying the value of one of the numeric fluents by a fac-
tor between 0.5 and 1.5 (step-size 0.1). This resulted in a
total of 2574 unique test cases. Figure 2 shows the perfor-
mance of both approaches on a logarithmic scale (all exper-
iments were run on an Intel Xeon, 3.6GHz, 1GB RAM). To
enhance readability, we ordered the test cases by the running
time ofmonoplex. The results show that although it is pos-
sible formonoplex to be slower than replanning (in 0.3%
of the cases), it generally performs much better, resultingin
a pleasing average speed-up of 209.12. In 1785 cases the
current plan was asserted still optimal and therefore replan-
ning unnecessary, in 105 it had become invalid. In 340 of the
remaining 684 cases, replanning found the current plan to
still be optimal. Sometimes the reevaluation of states and/or
preconditions can even be entirely avoided, namely when
the perturbation does not affect any relevant fluents. This
happened in 545 cases and constitutes the greatest time sav-
ings potential, a result of our formal characterization of the
situation-dependent relevance of fluents to the optimalityof
the plan.

Monitoring Policy Execution
The same technique can be used to monitor the execution
of policies, represented as conditional plans from a known
initial state, in domains with uncertain action outcomes
(stochastic actions).

Markov Decision Processes (MDPs) are the de-facto stan-
dard for decision making under uncertainty. When MDPs
have big or even infinite state spaces, standard solution tech-
niques like value- or policy iteration become inefficient as
their complexity depends on the size of the state space. In-
stead it is often beneficial to explore the state space from
the initial state, if it is known, in a forward-search manner.
This limits the search effort to the reachable subset of state
space and can be done in an any-time fashion, increasing the
search horizon as time permits. Since under these circum-
stances the robustness of a full policy, mapping each state of
the world to a particular action, is lost, the need for execution
monitoring again arises. During execution of the conditional

relevant

affected

unique

16384

4096

1024

256

64

16

4

10 500 1000 1500 2000 2500

Figure 3:relevant, affected, and unique affected conditions

plan the agent may find itself in a state not considered during
planning. This may be either because the search was incom-
plete, ignoring less likely action outcomes in the interestof
time, or, again, because of exogenous events. Under these
circumstances our method can again be useful.

Once more we formalized and implemented the annota-
tion idea, that is we decided what the plan needed to be an-
notated with and how to use this on-line, and we tested it on a
variation of theTPP domain with stochastic actions. Figure
3 shows three numbers of conditions (from top to bottom):
the number of conditions relevant to the quality of the pol-
icy, the number of such conditions actually affected by the
induced discrepancy, and the number of unique such condi-
tions. The latter is the number of conditions that actually
need to be reevaluated, using a cache to quickly obtain the
evaluation result for copies of this condition in other parts of
the annotation. The number of unique affected conditions is
extremely low. On average this number was 2577.71 times
lower than the number of relevant conditions. This motivates
a patching approach over replanning.

References
Ambros-Ingerson, J., and Steel, S. 1988. Integrating plan-
ning, execution and monitoring. InProc. AAAI’88, 83–88.
Fikes, R.; Hart, P.; and Nilsson, N. 1972. Learning and ex-
ecuting generalized robot plans. InArtificial Intelligence,
volume 3, 251–288.
Fritz, C., and McIlraith, S. 2007a. Monitoring plan opti-
mality during execution. InProc. ICAPS-07. (to appear).
Fritz, C., and McIlraith, S. 2007b. Monitoring policy exe-
cution. InProc. of the 3rd Workshop on Planning and Plan
Execution for Real-World Systems. (to appear).
Kambhampati, S. 1990. A theory of plan modification. In
Proc. AAAI’90, 176–182.
Pednault, E. 1989. ADL: exploring the middle ground be-
tween STRIPS and the situation calculus. InProc. KR’89,
324–332.
Reiter, R. 2001.Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
Cambridge, MA: MIT Press.
Wilkins, D. 1985. Recovering from execution errors in
SIPE. InComputational Intelligence, volume 1, 33–45.


