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Abstract

We present a formal approach for combining programming
by demonstration (PbD) with programming by instruction
(PbI)—a largely unsolved problem. Our solution is based on
the integration of two successful formalisms: version space
algebras and the logic programming language Golog. Ver-
sion space algebras have been successfully applied to pro-
gramming by demonstration. Intuitively, a version space de-
scribes a set of candidate procedures and a learner filters this
space as necessary to be consistent with all given demonstra-
tions of the target procedure. Golog, on the other hand, is a
logical programming language defined in the situation calcu-
lus that allows for the specification of non-deterministic pro-
grams. While Golog was originally proposed as a means for
integrating programming and automated planning, we show
that it serves equally well as a formal framework for inte-
grating PbD and PbI. Our approach is the result of two key
insights: (a) Golog programs can be used to define version
spaces, and (b) with only a minor augmentation, the exist-
ing Golog semantics readily provides the update-function for
such version spaces, given demonstrations. Moreover, as we
will show, two or more programs can be symbolicallysyn-
chronized, resulting in theintersectionof two, possibly infi-
nite, version spaces. The framework thus allows for a rather
flexible integration of PbD and PbI, and in addition estab-
lishes a new connection between two active research areas,
enabling cross-fertilization.

1 Introduction
In large parts, AI is concerned with the problem of making
machines behave in particular ways intended by users. The
problem is challenging because the intended behaviors can
be very complex, it can be difficult to humans, in particular
non-programmers, to describe the correct behavior explic-
itly, and in many cases there are plenty of exceptions or spe-
cial circumstances to consider. Therefore life-long learning
is the norm and there always remains some uncertainty as to
what the right behavior should be.

Programming by demonstration (PbD; e.g., (Lieberman
2001)) has shown a lot of promise in end-user programming.
In PbD a user demonstrates the intended behavior to the sys-
tem on a number of specific examples, and the system in
turn tries to learn the correct behavior from this. This al-
lows a much larger group of people to “program”, as it does
not demand specialized programming skills of the user. The

shortcomings of PbD, however, are that it is often hard for
the system to generalize from linear examples when the in-
tended behavior has complex structures. Furthermore, in the
existing approaches it is difficult for the user to control what
is being learned or to recover from errors that were made
during demonstration.

On the other hand there are approaches that allow users
to program by explicit instruction (PbI). Using, say, natural
language a user can provide direct input regarding particu-
lar parts of the target program or its high-level structure.It
is hence easy to express complex program structure. The
disadvantages, however, are that this type of instruction is
prone to omissions and imprecision—it is easy for a user to
forget a condition or a boundary case— and also, as with
explicit programming, the user needs to put more effort into
structuring the instructions correctly.

Ideally one would want to combine both, PbD and PbI,
as they seem to complement each other well. But this inte-
gration is challenging. There have been some promising ap-
proaches for making PbD systems more robust to errors and
allowing user edits interleaved with demonstration of exam-
ples. Oblinger, Castelli, and Bergman (2006) describe the
augmentation-based learning (ABL) algorithm that is used
by the DocWizards system (Prabaker, Bergman, and Castelli
2006). The algorithm allows users to manually edit pro-
cedure hypotheses explicitly interleaved with demonstration
and ensures that such edits are not undone by future demon-
strations. Chen and Weld (2008) presentCHINLE, a system
that generates domain specific PbD systems from declarative
interface specifications. Via a compelling visualization of
procedure hypotheses, the system allows users to discard in-
dividual steps of the learned (linear) procedure or explicitly
add training examples in support of particular hypotheses.
These systems however, limit the types of editing operations
the user is allowed to perform and hence only cover part of
the spectrum between PbI and PbD. In particular, they do
not allow the manual specification of the high-level program
structure, which might be most helpful to the PbD part of
the system.

The problem is that there is no principled, comprehensive
framework for representing, updating, and executing pro-
cedure hypotheses. Such a framework should enable any
learner to output its acquired knowledge in this form, allow
for the combination of (sets of) procedure hypotheses, so



that different input/learning methods can be combined, and
enable the execution of partially learned procedures if nec-
essary, hence enabling learning from experience or explicit
user feedback as well.

Inspired by the recent approaches for combining PbD
with user edits, we propose a formal framework that inte-
grates PbD with PbI in a more flexible manner.

The key ideas of our approach are as follows: 1) We can
represent (infinite) sets of procedure hypotheses usingnon-
deterministic programs. These are used to represent uncer-
tainty about the target procedure being learned. In particu-
lar, we use the logical programming language Golog which
readily allows us to represent and reason about such non-
deterministic programs. Such a program can be understood
to represent the entire set of possible deterministic programs
described by it. For the purpose of this paper, we assume
that there is a learning component available that generates
such programs from user instruction. As such, we believe
the language to be well suited for this purpose, as its non-
deterministic constructs can be used in places where instruc-
tions were ambiguous or omitted. 2) We extend Golog’s se-
mantics to implement the update function that removes from
a set of hypotheses all those that are inconsistent with newly
given demonstrations. This is implemented as refinements to
the program representing the version space, resolving some
of the uncertainty, i.e., making some non-deterministic parts
of the program deterministic. 3) Given Golog’s formal se-
mantics, we can define a notion ofprogram synchronization
that provably implements asymbolic intersectionof (possi-
bly infinite) sets of hypotheses.

By virtue of basing the framework on Golog and its se-
mantics in the situation calculus, we get as a side-effect the
ability to execute procedure hypotheses at any time, even
while there still remains a lot of uncertainty. This exploits
Golog’s integration with automated planning and further fa-
cilitates learning from experience as well. Perhaps most
importantly however, the approach facilitates the reuse of
a large body of research regarding situation calculus and
Golog that could allows us to extend PbD for other settings,
including for environments with only partially observable
states, or uncertain action effects.

The contributions of this paper are of mainly theoretic na-
ture rather than describing or evaluating a complete system.
A prototype implementation of the framework however ex-
ists and will be made available. It could serve as a back-end
to systems that focus on the actual user interface and we are
actively using and extending this system.

1.1 Motivation
Some possible ways of integrating PbD and PbI are as fol-
lows: i) A novice programmer defines the rough, high-level
structure of a program using PbI and then starts demonstrat-
ing specific examples of the program. She may later go
back-and-forth between PbI and PbD to both get the struc-
ture but also all specific boundary cases right. ii) An expert
programmer designs a template program by instruction that
ensures a basic, required behavior. This template is then cus-
tomized by each end-user individually via demonstration.
iii) Two programmers each sketch their (partial) knowledge

of the same program using PbI. These two program candi-
dates are thensynchronized, by which they complement each
other and produce a more specific candidate. Similarly, two
sets of hypotheses provided by different learning systems
could be symbolically combined.

For illustration purposes in this paper, we use examples
from a domain in which a robot is being programmed to
tidy up a room. One possible, incomplete procedure for this
could be stated as follows:While there remains an item on
the floor, we are meant to pick it up and then, if it is a toy, put
it in the box, if it is clothing, go to the closet and put it either
on a hanger or in the drawer (but we don’t yet know which
one), and if it is anything else, we don’t know what to do.
Then, after receiving a demonstration where a book is put on
the shelf, the system may entertain two hypotheses regarding
the uncertainty about other objects: (a) that everything else
goes on the shelf, or that (b) there are more conditions to
consider. We will use this as a running example.

We begin by reviewing the situation calculus and Golog. We
then show how version spaces can be represented as Golog
programs, can be updated using an extension of Golog’s se-
mantics, and can be intersected bysynchronizingtwo pro-
grams. In Section 4 we describe how the presented frame-
work can be used to flexibly integrate PbD and PbI. We dis-
cuss related and future work before we conclude.

2 Preliminaries
The situation calculus is a sorted logic for specifying and
reasoning about dynamical systems (Reiter 2001). In the sit-
uation calculus, the state of the world is expressed in terms
of fluents, functions and relations relativized to asituations,
e.g.,F (~x, s). A situation is a history of the primitive actions
a performed from a distinguished initial situationS0. The
function do(a, s) maps an action and a situation into a new
situation thus inducing a tree of situations rooted inS0. The
relation ⊏ provides an ordering on situations of the same
branch, ands ⊑ s′ abbreviatess = s′ ∨ s ⊏ s′. We abbre-
viate do(an, do(an−1, . . . do(a1, s))) to do([a1, . . . , an], s) or
do(~a, s). We denote the set of actions byA. In the situa-
tion calculus, all actions have deterministic effects and this
is what we are assuming in this paper. Nevertheless, there
exist extensions that account for actions with uncertain out-
comes (e.g., (Mateus et al. 2001)).

In the situation calculus, background knowledge of a do-
main (e.g., our cleaning robot domain) is encoded as a ba-
sic action theory,D. It comprises four domain-independent
foundational axioms, and a set of domain-dependent ax-
ioms. Details of the form of these axioms can be found
in (Reiter 2001). We writes ⊏ s′ to say that situations
precedess′ in the tree of situations. This is axiomatized in
the foundational axioms. Included in the domain-dependent
axioms are the following sets:
Initial state axioms, DS0

: a set of first-order sentences rela-
tivized to situationS0, specifying what is true in the initial
state, e.g.,OnFloor(Book1, S0) andBook(Book1) state that ini-
tially there is a book on the floor.
Successor state axioms:provide a parsimonious representa-
tion of frame and effect axioms under an assumption of the



completeness of the axiomatization. There is one successor
state axiom for each fluent,F , of the formF (~x, do(a, s)) ≡
ΦF (~x, a, s), whereΦF (~x, a, s) is a formula with free vari-
ables among~x, a, s. ΦF (~x, a, s) characterizes the truth value
of the fluentF (~x) in the situationdo(a, s) in terms of what is
true in situations.
Action precondition axioms:specify the conditions under
which an action is possible. There is one axiom for each
actiona of the formPoss(a(~x), s) ≡ Πa(~x, s) whereΠa(~x, s)
is a formula with free variables among~x, s. For instance,
Poss(PickNextItem, s) ≡ (∃x).NextItem(s) = x ∧ OnFloor(x, s).

Given the semantics, situations compactly describetraces
of state-action pairs and can hence be used to represent
demonstrations of procedures.

2.1 Golog

Golog (Levesque et al. 1997) is a programming language
defined in the situation calculus. It allows a user to spec-
ify programs whose set of legal executions defines a sub-
tree of the tree of situations of a basic action theory. Golog
has an Algol-inspired syntax extended with flexiblenon-
deterministic constructs. Golog programs are created induc-
tively using the following constructs:

nil empty program
a ∈ A primitive action
φ? test conditionφ
[δ1; δ2] sequence
if φ then δ1 elseδ2 conditional
while φ do δ′ loops
(δ1 | δ2) non-deterministic choice
(πv)δ(v) non-deterministic choice of argument
δ∗ non-deterministic iteration

In addition, Golog allows the definition of procedures.
The semantics of a Golog programδ is defined in terms
of macro expansion into formulae of the situation calcu-
lus. Do(δ, s, s′) is understood to denote a formula ex-
pressing that executingδ in situation s is possible and
may result in situations′. This is defined inductively
over the program structure. For instance for primi-
tive actions: Do(a, s, s′)

def
= Poss(a[s], s) ∧ s′ = do(a[s], s),

where a[s] denotes the actiona with all its arguments
instantiated in situations. For simple non-determinism:
Do(δ1 | δ2, s, s

′)
def
= Do(δ1, s, s

′)∨Do(δ2, s, s
′). The complete

semantics can be found in (Levesque et al. 1997). While
deterministic constructs enforce the occurrence of particu-
lar actions, non-deterministic constructs define “open parts”
that allow for several ways of interpretation/execution. We
call a Golog programdeterministic if it contains neither
(δ1|δ2) nor (πv) nor δ∗.

3 Version spaces as Golog programs
In this section we illustrate how naturally Golog programs
can be used to define version spaces and how the existing
semantics can be augmented in order to refine a program
given an example, hence realizing the update function for
the version space. We further define a notion ofprogram

synchronizationthat allows us to symbolically intersect ver-
sion spaces.

Intuitively, in the context of this paper, non-deterministic
parts of a Golog program express uncertainty about the pre-
cise target procedure being learned and will be filled-in via
demonstration. Roughly, non-deterministic constructs can
be compared to the “union” operator and all other constructs
to “join” operators often used in version space algebra based
approaches (e.g., (Lau et al. 2003)). Hence, just like version
space algebras hierarchically combine simpler spaces into
more complex ones, we can use the inductive definition of
the Golog language to combine several sub-programs into
more complex ones. The availability of the concept of pro-
cedures is very helpful in this respect: it allows us to define
and reuse sub-version spaces and give them names. For in-
stance, our cleaning robot example could be specified as:

P1

def
= while (∃x).OnFloor(x) do

[

PickNextItem;

if Toy(Item) then Put(Item, Box)

else ifClothing(Item) then [goto(Closet);

(Put(Item, Hanger) | Put(Item, Drawer))]

elseProcess(Item)
]

We use the (non-deterministic) procedureProcess(x), de-
fined as follows, to describe the space of possible (determin-
istic) procedures of how to stow away any other item:

Process(x)
def
=

( Stow(x) |

((πc)[cond(c)?; if c then Stow(x) elsenil ])∗)

Stow(x)
def
= [((π l)goto(l))∗; (πv)Put(x, v)]

wherecond(ϕ) is a user-defined predicate that defines the
set (version space) of conditions to consider. This is com-
mon practice in version space algebra based approaches and
could, for instance, limit conditions to be simple fluent lit-
erals or conjunctions of such of up to a certain length. The
system could then conjecture conditions that distinguish the
place certain types of items are meant to be stowed at. The
auxiliary procedureStow(x) non-deterministically chooses
such a place and this non-determinism gets resolved as more
examples are incorporated.

For instance, given the described demonstration about the
book being put on the shelf, the above described hypothe-
sis (a) would replaceProcess(Item) by Put(Item, Shelf), which
is one possible option of realizing the procedures, choosing
the Stow(x) branch, not doing anygoto’s, and then choos-
ing Shelffor v). Hypothesis (b), on the other hand, would
replace it with

[

cond(Book(Item))?;

if Book(Item) then Put(Item, Shelf) elsenil ;

((πc)[cond(c)?; if c then Stow(x) elsenil ])∗
]

which is obtained by choosing the second branch in the non-
deterministic choice of theProcess(x) procedure.

We are now ready to define the problem of programming
by demonstration and what counts as a solution. We assume



the target procedure to be deterministic. However, in the
absence of sufficient training data, we may not be able to
specify all the details of this target procedure and hence still
end up with a non-deterministic procedure, after considering
a number of examples. This is reflected in the following
definition.

Definition 1. A PbD problem is a tuple
˙

δ, {(S1, S
′

1), . . . , (Sn, S′

n)}
¸

, where δ is a Golog pro-
gram and each(Si, S

′

i) is a tuple of situation terms such that
Si ⊏ S′

i. A solutionto this problem is anyδ′ such that:

1. for any pair of situationsS, S′, if D |= Do(δ′, S, S′), then
alsoD |= Do(δ, S, S′); and

2. for (Si, S
′

i) ∈ {(S1, S
′

1), . . . , (Sn, S′

n)}:

D |= Do(δ′, Si, S
′

i) ∧ (∀s).Do(δ′, Si, s) ⊃ s = S
′

i

That is, a solution to a PbD problem is a program that
does not admit any executions not admitted by the original
program, but does (at least) admit the given set of demon-
strated executions. Intuitively, in the definition,δ is a (usu-
ally non-deterministic) Golog program describing a space of
possible procedures, andδ′ is another Golog program that is
a specialization ofδ and in particular ensures that the pro-
gram behaves according to the given examples. We show
how such a solution can be obtained via simulation of the
given program over the demonstrations while keeping track
of the non-deterministic choices made during the simulation.
Note that even though we assume the target procedure to be
deterministic, a solution to a PbD problem is not necessarily
deterministic. This is in particular the case when not enough
demonstrations were given to rule out any remaining un-
certainty. Nevertheless, Golog’s semantics readily provides
the means for executing such non-deterministic programs, if
necessary.

3.1 Resolving uncertainty in Golog programs
Given a starting situationS and a programδ, the originally
intended use of Golog was to create a constructive proof for
the queryD |= ∃s′.Do(δ, S, s′), hence obtaining as a side-
effect a situation terms′ that is a sequentialplan for how the
program can be executed successfully. We, however, will
use the semantics in a different way: giventwo situation
termsS, S′ and a programδ with non-determinism, verify
that executingδ starting inS is possible and can result inS′.
In doing so, we heavily exploit the logical underpinnings
of the presented framework, in order to actively exploit the
content ofS′ to infer how decisions need to be made, rather
than following a trial-and-error approach. Recall that situa-
tions are sequences of actions and also, given a basic action
theoryD, completely describe the state of the world.

Hence, without any modification necessary, the existing
Golog semantics can be used toverify that a given program
is consistent with a given demonstration. This verification
can be done efficiently, as the sequence of actions inS′

guides the interpretation of the program, hence limiting the
amount of search necessary to one-step look-ahead. How-
ever, the program can actually also berefinedduring this
process such that all choices regarding non-determinism in
the program that were necessary in order to explain the given

Do
′(nil , s, s

′

, δ
′) ≡ s

′ = s ∧ δ
′ = nil

Do
′(a, s, s

′

, δ
′) ≡ Poss(a[s], s) ∧ s

′ = do(a[s], s) ∧ δ
′ = a

Do
′(ϕ?, s, s′, δ′) ≡ ϕ[s]? ∧ s = s

′ ∧ δ
′ = ϕ?

Do
′([δ1; δ2], s, s

′

, δ
′) ≡ (∃s

∗

, δ
′

1, δ
′

2).Do
′(δ1, s, s

∗

, δ
′

1)∧

Do
′(δ2, s

∗

, s
′

, δ
′

2) ∧ δ
′ = [δ′1; δ

′

2]

Do
′(if ϕ then δ1 elseδ2, s, s

′

, δ
′) ≡ (∃δ

′′).

(ϕ[s] ∧ Do
′(δ1, s, s

′

, δ
′′) ∧ δ

′ = if ϕ then δ
′′ elseδ2) ∨

(¬ϕ[s] ∧ Do
′(δ2, s, s

′

, δ
′′) ∧ δ

′ = if ϕ then δ1 elseδ
′′)

Do
′(while ϕ do δ, s, s

′

, δ
′) ≡ ¬ϕ[s′]∧

(∀P ).
˘

(∀s1, s2, s3, δ1, δ2, δ3)
ˆ

ϕ[s1] ∧ Do
′(δ1, s1, s2, δ2) ∧

P (while ϕ do δ2, s2, s3, while ϕ do δ3) ⊃

P (while ϕ do δ1, s1, s3, while ϕ do δ3)
˜

∧

(∀s1, δ1)¬ϕ[s1] ⊃ P (while ϕ do δ1, s1, s1, while ϕ do δ1)
¯

⊃ P (δ, s, s′, δ′)

Do
′((δ1|δ2), s, s

′

, δ
′) ≡

Do
′(δ1, s, s

′

, δ
′) ∨ Do

′(δ2, s, s
′

, δ
′)

Do
′((πv)δ(v), s, s′, δ′) ≡ (∃x)Do

′(δ(x), s,′ , δ′)

Do
′(δ∗, s, s′, δ′) ≡ (∀P ).{(∀s1)P (s1, s1,nil)∧

(∀s1, s2, s3, δ1, δ2)[Do
′(δ, s1, s2, δ1) ∧ P (s2, s3, δ2)

⊃ P (s1, s3, δ1; δ2)]} ⊃ P (s, s′, δ′)

Do
′(P (~x), s, s′, δ′) ≡ Proc(P (~x), δ) ∧ Do

′(δ, s, s′, δ′)

Figure 1: Axioms for refining programs.

demonstration are recorded. The refined program represents
the version space updated with the considered example. We
accomplish this by extending the original Golog semantics
as shown in Figure 1, where we use an additional forth argu-
ment that “returns” the refined program. Intuitively, the re-
fined program is the same as the original program for all de-
terministic constructs, and for non-deterministic constructs
it contains the specific choice that was made in order to “ex-
ecute” the program. The latter, however, is only the case for
those non-deterministic choices that are actually visited. For
instance, choices occurring in the ’then’ or the ’else’ branch
of an if-then-else, are only resolved if that branch appliedto
the considered example. Choices not visited during program
execution are left as is. In the next section we will see that
this refinement can be used to identify those specializations
of the original program that are consistent with a given pro-
gram execution. This is accomplished by fixing the second
situation term (s′), which forces the program to execute in
compliance with the actions in that situation term. Hence,
by keeping track of the choices made during execution, we
obtain a program that could be used to reproduce the demon-
stration described by the givens′. Further, since only those
choices are made that are actually required to execute the
program, no candidate programs are ruled out.

There are a few things to note: First, note that the cases for
if-then-else and while-loops are still in accordance with the
original Golog semantics. We here have merely unwound
the macro-definition (in terms of(δ1|δ2) andδ∗). The rea-
son for this is that we want to keep the if-then-else/while-



loop in the refined program, rather than replacing them with
the specific sequence of actions resulting from resolving the
non-deterministic choices for the specific case considered.

Second, since we want to explicitly refer to programs as
objects, in order to produce the refined program, we require
the reification of programs as objects in the language. This
property is shared with the so called transition semantics
for Golog, as described by (De Giacomo, Lespérance, and
Levesque 2000), and we assume programs are reified analo-
gously. This also allows us to define the semantics in terms
of a predicate rather than macro-expansion. Third, we do
not consider recursive procedures. Also, the reification of
programs allows us to assume that procedures are defined in
the background knowledge using the relationProc(P (~x), δ),
whereP denotes the procedure name,~x the formal argu-
ments, andδ the body, which may mention elements from
~x. Finally, the following property follows from analogy to
the original semantics.

Proposition 1. For any two situationsS, S′ and a Golog
programδ without procedures:

D |= Do(δ, S, S′) iff D |= (∃δ′).Do′(δ, S, S′, δ′)

3.2 Updating version spaces
Intuitively, the new, forth argument inDo′ “returns” the
refined program that results from making the necessary
choices during execution of the program in order to reach
s′ from s. Hence, in order to refine a Golog programδ using
a given demonstration(S, S′) we constructively prove the
query:

D |= (∃δ′).Do′(δ, S, S′, δ′)

Note that there may be several such programsδ′. As with the
original Golog, the provided definition ofDo′ lends itself to
a rather straightforward Prolog implementation, casting the
problem of constructing a proof into a search problem. We
will make such an implementation available on our web site.
It can be used to obtain all possible refined programsδ′.

As an example of how this might look in practice, con-
sider our example programP1 from the previous section, a
situationS where there is only one book on the floor, and the
action sequencePickNextItem, Put(Item, Shelf). Then one
can verify using above definitions that the following holds:

D |= Do′(P1, S, do([PickNextItem, Put(Item, Shelf)], S), P2)

for P2 being likeP1 but with Process(Item) replaced ac-
cording to any one of the two previously described hypothe-
ses (a) or (b).

The resulting programs can be further refined through
demonstration or manual editing. Regarding the former, one
can show that this leads to solutions of PbD problems.

Theorem 1. Let M =
˙

δ, {(S1, S
′

1), . . . , (Sn, S′

n)}
¸

be a PbD
problem. Any programδ′ such that:

D |= (∃ δ1, . . . , δn−1).Do′(δ, S1, S
′

1, δ1)∧

Do′(δ1, S2, S
′

2, δ2) ∧ · · · ∧ Do′(δn−1, Sn, S′

n, δ′)

is a solution toM .

Proof: See Appendix A.
The theorem gives rise to a host of possible algorithms for

finding solutions. This includes the common filtering algo-
rithm for updating version spaces: Given the first demon-
stration generate the entire set of consistent version spaces
(i.e., refined programsδ1). Then, given subsequent exam-
ples, remove from this set all those spaces (programs) that
are inconsistent with any of the examples. Note that our use
of logic readily realizes the “lazy evaluation” approach that
is popular in many version space algebra based approaches
to PbD in order to handle infinite version spaces.

Other possible algorithms could follow a depth-first or a
best-first search approach. The latter could, for instance,
be realized by devising an evaluation function that ranks re-
fined programs by some understanding of likelihood. For
example, shorter and/or simpler programs could be explored
before more complicated ones are considered. There is a
host of related research on situation calculus and Golog
from which such specifications and search strategies could
be drawn, e.g., (Bacchus, Halpern, and Levesque 1999;
Bienvenu, Fritz, and McIlraith 2006; Grosskreutz and Lake-
meyer 2000).

3.3 Intersecting Version Spaces
Thus far we have made the assumption that demonstrations
are given directly to our framework, and that only within
our framework the learning from examples takes place. In
practice, it may, however, be interesting to consider the in-
put from other learners. For instance, for a certain domain a
particular learning algorithm may be known to provide bet-
ter generalization than the version space approach underly-
ing our framework. To also enable the combination of PbI
with such external algorithms, and hence loosen our depen-
dence on the specific approach for learning from examples
assumed in the previous section, we here consider the prob-
lem of intersectingversion spaces. The problem can be
stated as follows: Given two version spaces for the same tar-
get procedure, determine a new version space that contains
all and only those program executions that were contained
by each of the two given spaces. In terms of our program
based representation of version spaces, we can define the
problem more precisely:

Definition 2. Let δ1, δ2 be two Golog programs over action
theoryD. The Golog programδ′ is called anintersection
of δ1, δ2 if for any two situationsS, S′ with S ⊑ S′: D |=
Do(δ′, S, S′) iff D |= Do(δ1, S, S′) andD |= Do(δ2, S, S′),
and there is at least one such pairS, S′ such thatD |=
Do(δ1, S, S′) andD |= Do(δ2, S, S′).

To understand the intuitive use of this, consider two pro-
grams, both describing some partial knowledge of the same
target procedure of going to another roomx:

[leaveCurrentRoom; ((πv)v)∗]

[((πz)z)∗; enterRoom(x)]

One possible, and in fact the most general, intersection of
these is[leaveCurrentRoom; ((πv)v)∗; enterRoom(x)].

We conjecture that the problem of (constructively) prov-
ing the existence of an intersection is undecidable for gen-



eral Golog programs and do not consider it any further.1

Instead we only consider a restricted form of Golog pro-
grams without while–loops and recursive procedures, and
where (bounded) non-deterministic iteration is only allowed
over primitive actions and expressions of the form(πv)a(v)
or (πv)v, i.e., non-deterministic choice of action arguments
or actions themselves. For clarity, we refer to this lan-
guage as Golog−. For this class of programs we can de-
fine the set of axioms shown in Figure 2, denotedΣsync,
regarding a new predicatesync that can be used to con-
structively prove the existence of an intersection of two pro-
grams, i.e., generate a program that represents the intersec-
tion of the version spaces. This representation is very com-
pact, as it uses the non-deterministic constructs of Golog
to represent the space of procedures still considered to be
a candidate for the target procedure. For ease of presenta-
tion we assume—without loss of generality—that all pro-
grams are sequences (e.g.,[A; nil] instead ofA). We use
the notationnondet(Z), whereZ is a set, to denote the non-
deterministic choice between the elements of the set, i.e.,
for Z = {z1, . . . , zn}, nondet(Z)

def
= (z1 | · · · | zn). Our re-

strictions on non-deterministic iteration ensure that this set
always turns out to be finite2. This set of axioms again can
be implemented and reasoned about efficiently in Prolog as
in contained in our implementation.

Theorem 2. Let δ1, δ2 be two Golog− programs over some
action theory. If there exists a Golog− programδ′ such that
Σsync |= sync(δ1, δ2, δ

′), then it is an intersection ofδ1, δ2.
Further, if there exists an intersection ofδ1, δ2, then there is
a δ′ s.t.Σsync |= sync(δ1, δ2, δ

′).

Note that the theorem does not state that all possible inter-
sections can be identified usingsync. This is because there
may be infinitely many possible intersections, all of which
characterizing the same sub-set of the version space. In-
stead, only one such representation is found. This, however,
does not cause practical limitations.

4 Example

To demonstrate how the presented framework can be used
to flexibly combine PbD and PbI we consider an extended
example. We assume that the correct, intended target proce-
dure is as follows (or equivalent to):

P1 = while (∃x).OnFloor(x) do
[

PickNextItem;

if Toy(Item) then Put(Item, Box)

else ifClothing(Item) then
[goto(Closet); Put(Item, Hanger)]

else ifBook(Item) then Put(Item, Shelf)

else[goto(Bin); Put(Item, Bin)]
]

1Our intuition stems from the problem’s similarity to the diffi-
cult problem of determining program equivalence.

2Intuitively this is becauseδ∗’s—which are the only source of
infinity—are unified when they “meet” insync.

sync(δ1, δ2, δ
′) ≡ sync′(δ1, δ2, δ

′) ∨ sync′(δ2, δ1, δ
′)

sync′(nil ,nil , y) ≡ y = nil

sync′([a; b1], [a; b2], y) ≡ (∃z).sync(b1, b2, z) ∧ y = [a; z]

sync′([ϕ?; x], δ2, y) ≡ (∃z).sync(x, δ2, z) ∧ y = [ϕ?; z]

sync′([if ϕ then δa elseδb; x], δ2, y) ≡
`

(∃za).sync([δa; x], δ2, za) ∧

((∃zb).sync([δb; x], δ2, zb) ∧ y = if ϕ then za elsezb) ∨

((6 ∃zb).sync([δb; x], δ2, zb) ∧ y = [ϕ?; za])
´

∨
`

(6 ∃za).sync([δa; x], δ2, za) ∧

(∃zb).sync([δb; x], δ2, zb) ∧ y = [¬ϕ?; zb]
´

sync′([(δa | δb); x], δ2, y) ≡
`

(∃za).sync([δa; x], δ2, za) ∧

((∃zb).sync([δb; x], δ2, zb) ∧ y = (za | zb)) ∨

((6 ∃zb).sync([δb; x], δ2, zb) ∧ y = za)
´

∨
`

(6 ∃za).sync([δa; x], δ2, za) ∧

(∃zb).sync([δb; x], δ2, zb) ∧ y = zb

´

sync′([(πv)δ(v); x], δ2, y) ≡ ((∃v
′

, x
′).δ2 = [(πv

′)δ(v′); x′]∧

(∃δ
′).sync(x, x

′

, δ
′) ∧ y = [(πv)δ(v); δ′]) ∨

`

(6 ∃v
′

, x
′).δ2 = [(πv

′)δ(v′); x′] ∧ (∃Z).y = nondet(Z) ∧

Z 6= ∅ ∧ (∀z).z ∈ Z ≡ (∃q).sync([δ(q); x], δ2, z)
´

sync′([a(v)∗; x], δ2, y) ≡
`

(∃x
′).δ2 = [a(v)∗; x′]∧

(∃δ
′).sync([a(v)∗; x], x′

, δ
′) ∧ y = [a(v)∗; δ′]

´

∨

(∃x
′).δ2 = [((πv

′)a(v′))∗; x′] ∧

(∃δ
′).sync([a(v)∗; x], x′

, δ
′) ∧ y = [a(v)∗; δ′]

´

∨
`

(6 ∃x
′)δ2 = [a(v)∗; x′] ∧ (6 ∃x

′)δ2 = [(πv)a(v)∗; x′] ∧

(∃Z).y = nondet(Z) ∧ Z 6= ∅ ∧

(∀z).z ∈ Z ≡ (sync([a(v); a(v)∗; x], δ2, z) ∨ sync(x, δ2, z))
´

sync′([((πv
′)a(v′))∗; x], δ2, y) ≡

`

(∃x
′).δ2 = [a(v)∗; x′]∧

(∃δ
′).sync([a(v)∗; x], x′

, δ
′) ∧ y = [a(v)∗; δ′]

´

∨

(∃x
′).δ2 = [((πv)a(v))∗; x′] ∧ y = [((πv

′)a(v′))∗; δ′] ∧

(∃δ
′).sync([((πv

′)a(v′))∗; x], x′

, δ
′)

´

∨
`

(6 ∃x
′)δ2 = [a(v)∗; x′] ∧ (6 ∃x

′)δ2 = [(πv)a(v)∗; x′] ∧

(∃Z).y = nondet(Z) ∧ Z 6= ∅ ∧

(∀z).z ∈ Z ≡ (sync([((πv
′)a(v′)); ((πv

′)a(v′))∗; x], δ2, z) ∨

sync(x, δ2, z))
´

Figure 2: The set of axiomsΣsync.

Following the approach (i) of Section 1.1 the user may first
provide the rough structure of the program,

P2 = while (∃x).OnFloor(x) do
[PickNextItem;Process(x)]

where Process(x) is the procedure defined in Sec-
tion 3.2. To further limit the scope of conditions,
she may define as part of the background theory
cond(c) ≡ (∃f, o).F luent(F ) ∧ c = f(o) and ensure
that fluents only hold for finitely many objects. Given



this, she can proceed by demonstrating what to do for
individual items, by showing situations where only one
item is lying on the floor. Consider a situationS1 where
only one shirt is on the floor, and the demonstrationS′

1 =
do([PickNextItem; goto(Closet); Put(Item, Hanger)], S1).
Using our Prolog implementation we can prove thatD |=
(∃δ′).Do′(P1, S1, S

′

1, δ
′) holds for a (finite) number of pro-

gramsδ′, all of which are likeP1 but replace theProcess(x)
by different sub-programs: one program replaces it by
[PickNextItem; goto(Closet); Put(Item, Hanger)], all others
replace it by

[

if F (O)

then [PickNextItem; goto(Closet); Put(Item, Hanger)]

elsenil ;

((πc)[cond(c)?; if c then Stow(x) elsenil ])∗
]

for some fluentF and some objectO, such thatD |=
F (O)[do(PickNextItem, S)]. That is, any fluent literal that
is true in the demonstration after picking up the item is a
candidate for the condition. Many of those will be found
inconsistent as soon as a second demonstration, regarding
a different type of item, is considered. Any such program
can be readily executed, randomly picking a place to store
any item not covered by the hypothesized condition (if the
chosen condition at all regards the current item).

5 Discussion

We have described a formal framework that implements a
version space algebra approach to PbD as an extension of
the logic programming language Golog. This enables the
integration of programming by demonstration with explicit
programming by instruction and further allows for the sym-
bolic intersection of version spaces. Our use of Golog also
facilitates extending PbD in other ways. For instance, one
might use planning in order to resolve some of the non-
determinism remaining in a procedure hypothesis if it needs
to be executed before a deterministic target procedure has
been learned. Also learning from experience is facilitated.

Finally, also Blythe et al. (2007) aim to integrate PbD and
PbI, though, focusing on a particular domain. Unfortunately,
the exposition does not provide sufficient technical detailto
understand the extend to which the goal of integration has
been achieved in that work in generality and to compare the
described system to our framework.

Other possible directions for future work include: the
study of other algorithms for searching the space of hypothe-
ses in different ways, e.g., guided by some specification of
most likely choices in the program, or based on heuristics;
considering the feasibility of PbD under incomplete knowl-
edge of the state, or in the face of uncertain action effects;
investigating the effects of the availability of detailed back-
ground knowledge about the domain and its actions; and
considering environments with continuous state and action
domains and possibly durative actions. In all of these ar-
eas it might be possible to readily build on existing work to
extend the scope of PbD accordingly.
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A Appendix
A.1 Proof of Theorem 1
We prove the theorem in two steps. First we show the the-
orem for single demonstrations, by induction over the struc-
ture of the program. The result then trivially extends to se-
quences of demonstrations via induction over the length of
the sequence, where the induction step is provided by the
lemma of the first part.

Proof for single demonstrations

Lemma 1. Let M =
˙

δ, {(S1, S
′

1)}
¸

be a PbD problem. Any
programδ′ such thatD |= Do′(δ, S1, S

′

1, δ
′) is a solution to

M .

Proof: The proof proceeds by induction over the structure
of the program, where for each item we show the two items
(1.+2.) of Definition 1 separately. Note that showing the
second item boils down to proving deterministic behavior
of the program along the action sequence described by the
situation in question.

δ = nil , δ = a, or δ = ϕ?
By definition,δ′ = δ, and hence, both items follow triv-
ially: the programs are equal and deterministic.

δ = [δ1; δ2]
By definition, δ′ = [δ′1; δ

′

2]. Item 1.: By definition and
Proposition 1 there is a situationS∗ such thatD |=
Do(δ′1, S, S∗) andD |= Do(δ′2, S

∗, S′). Hence, by in-
duction hypothesis, alsoD |= Do(δ1, S, S∗) andD |=
Do(δ2, S, S∗). Therefore, by definition ofDo, D |=
Do(δ, S, S′).
Item 2.: By induction hypothesis both subprogramsδ′1
andδ′2 are deterministic, hence, alsoδ′.

δ = if ϕ then δ1 elseδ2

There are two cases: eitherD |= ϕ[S1] or not. Since these
two cases are quite analogous, we only consider the first,
hence,δ′ = if ϕ then δ′′ elseδ2 whereδ′′ is such that
D |= Do′(δ1, s, s

′, δ′′).
For Item 1 we need to distinguish two more cases: IfD |=
ϕ[S] then δ′′ is executed, otherwise,δ2 is executed. In
the first case Item 1 follows by induction hypothesis. In
the second it follows trivially, since the program being
executed is the same.
For Item 2, since we assumeD |= ϕ[S1], we only need to
show thatδ′′ is deterministic along theS1, S

′

1 trajectory,
which follows by induction hypothesis.

δ = while ϕ do δ1

From the induction principle of the definition ofDo′ for
this case, we get thatδ′ = while ϕ do δ′1 whereδ′1 is such
that there is a finite sequence of situationsS1, . . . , Sn and
a corresponding sequence of programsδ1, . . . , δn such
thatδ1 = δ1, δn = δ′1, andS1 = S1

⊏ · · · ⊏ Sn = S′

1

and for all1 ≤ i < n, D |= Do′(δi, Si, Si+1, δi+1) and
D |= ϕ[Si], and, of course,D |= ¬ϕ[S′

1].
We show Items 1 and 2 by two separate inductions over
the length of this sequence (once backward, once for-
ward). We refer to this induction as the inner induction

to distinguish it from the outer induction (over the struc-
ture of the program).
Item 1: The base case for Item 1 is whenn = 0 which
corresponds to the case whereD |= ¬ϕ[S1]. Then the
claim follows trivially since the refined programδ′ is the
same as the original (δ), by definition.
For the induction step we assume the property holds
for n = j. By outer induction hypothesis and
Proposition 1 we have thatD |= Do(δj , S̄, S̄′) im-
plies D |= Do(δj−1, S̄, S̄′) for any pair of situ-
ations S̄, S̄′. And since inner induction hypothesis
gives us thatD |= Do(δj−1, S̄, S̄′) implies D |=
Do(δ, S̄, S̄′), again for all such situation pairs, it fol-
lows thatD |= Do(while ϕ do δj , S̄, S̄′) impliesD |=
Do(while ϕ do δ, S̄, S̄′). The claim now follows by in-
duction for anyn.
Item 2: The base case for Item 2 is whenD |= ¬ϕ[S1].
The claim follows trivially since there is only one possi-
ble execution, namely the empty one: it must be true that
S′

1 = S1.
For the induction step, again we assume the property
holds for n = j and hence, by applying the inductive
definition ofDo (j times):

D |= [Do(δj
, S

1
, S

2) ∧ · · · ∧ Do(δj
, S

j−1
, S

j)]∧
ˆ

((∀s) Do(δj
, S

1
, s) ⊃ s = S

2) ∧ · · · ∧

((∀s) Do(δj
, S

j−1
, s) ⊃ s = S

j)
˜

.

From outer induction hypothesis we get that:

D |= Do(δj+1
, S

j
, S

j+1)∧

(∀s).Do(δj+1
, S

j
, s) ⊃ s = S

j+1

and since by assumptionD |= ¬ϕ[Sn] we get, by defini-
tion of Do (unwinding the string ofj+1 sub-executions):

D |= Do(while ϕ do δ
′

, S1, S
′

1)∧

(∀s).Do(while ϕ do δ
′

, S1, s) ⊃ s = S
′

1

i.e., the thesis of the inner induction. The claim now
follows by induction for anyn.

δ = (δ1|δ2)
Item 1: Without loss of generality we assumeD |=
Do′(δ1, S1, S

′

1, δ
′). Then, by induction hypothesis:D |=

Do(δ′, S̄, S̄′) impliesD |= Do(δ, S̄, S̄′) for any pair of
situationsS̄, S̄′. Hence, since of courseX ⊃ X ∨ Y , the
claim.
Item 2:Again, Without loss of generality we assumeD |=
Do′(δ1, S1, S

′

1, δ
′). Then, by induction hypothesisδ′ is

deterministic.

δ = (πv)δ(v)
There are two cases to consider: either the introduced pro-
gram variable is bound to some termT during refinement,
or it is still variable inδ′.
Item 1: In the first case we have from induction hypothe-
sis thatD |= Do(δ′, S̄, S̄′) impliesD |= Do(δ(T ), S̄, S̄′)
for any pair of situationsS̄, S̄′. Hence, alsoD |=
Do(δ′, S, S′) impliesD |= (∃x)Do(δ(x), S̄, S̄′).
In the second case, Item 1 follows directly from induction
hypothesis.
Item 2: follows directly by induction hypothesis.



δ = δ∗

This case is quite analogous to that for while–loops.
From the induction principle of the definition ofDo′ for
this case, we get thatδ′ = δ1; . . . ; δn for somen > 0
such that there is a corresponding sequence of situations
S1, . . . , Sn such thatS1 = S1

⊏ · · · ⊏ Sn = S′

1 and for
all 1 ≤ i < n, D |= Do′(δ, Si, Si+1, δi+1).
We show Items 1 and 2 by two separate inductions over
the length of this sequence (once backward, once for-
ward). We refer to this induction as the inner induction
to distinguish it from the outer induction (over the struc-
ture of the program).
Item 1: The base case for Item 1 is whenn = 0. Then
δ′ is the empty programnil , which does not admit any
executions other than the empty one. Hence,S′ = S
and by definition ofDo for δ∗ we have that indeedD |=
Do(δ∗, S, S).
For the induction step we assume the property holds
for n = j. By outer induction hypothesis and Propo-
sition 1 we have thatD |= Do(δj , S̄, S̄′) implies
D |= Do(δ, S̄, S̄′) for any pair of situations̄S, S̄′. And
since inner induction hypothesis gives us thatD |=
Do(δ1; . . . ; δj−1, S̄, S̄′) implies D |= Do(δ∗, S̄, S̄′),
again for all such situation pairs, it follows thatD |=
Do(δ1; . . . ; δj , S̄, S̄′) implies D |= Do(δ∗, S̄, S̄′) as
well. The claim now follows by induction for anyn.
Item 2: In the base case,n = 0, δ′ is again the empty
programnil , which is trivially deterministic.
For the induction step, again we assume the property
holds forn = j and hence, by definition ofDo for se-
quences that:

D |= Do(δ1; . . . ; δj
, S1, S

j)∧

((∀s) Do(δ1; . . . , δj
, S1, s) ⊃ s = S

j)

From outer induction hypothesis we get that:

D |= Do(δj+1
, S

j
, S

j+1)∧

(∀s).Do(δj+1
, S

j
, s) ⊃ s = S

j+1

Hence:

D |= Do(δ1; . . . ; δj+1
, S1, S

′

1)∧

(∀s).Do(δ1; . . . ; δj+1
, S1, s) ⊃ s = S

′

1

i.e., the thesis of the inner induction. The claim now
follows by induction for anyn.

Proof for the general case For the general case, i.e.,
for a PbD problem with a sequence of demonstrations, the
two items of the definition of solution follow by induction
over the length of the sequence of demonstrations.
Item 1:The base case is for the empty sequence, in which
case the refined programδ′ is the same as the originalδ.
The induction step is provided by Lemma 1.
Item 2: The base case is provided my Lemma 1. For the
induction step, we need to show that after refining pro-
gramδi using the demonstration described bySi+1, S

′

i+1,
obtainingδi+1, it is still the case that

D |= Do(δi, Si, S
′

i) ∧ (∀s).Do(δi, Si, s) ⊃ s = S
′

i

i.e., that further refinement of a program never dis-
ables previously considered demonstrations (first con-
junct) and never introduces additional non-determinism
(second conjunct).
The first conjunct follows from Lemma 1: the program
δi is deterministic over the trajectorySi, S

′

i, and by as-
sumptionD |= (∃δ∗)Do′(δi, Si+1, S

′

i+1, δ
∗), namely

δ∗ = δi+1, andDo′ only modifies the non-deterministic
parts of a program.
The second conjunct follows by inspection of the axioms
for Do′: we observe that in none of the cases the refined
programδ′ mentions any non-deterministic sub-programs
that were not already part of the original program.

A.2 Proof of Theorem 2
Applying the definition of intersection, we can rewrite the
theorem as follows:

Theorem 3. Let δ1, δ2 be two Golog− programs over some
action theory, andS, S′ two situations from that theory such
that S ⊑ S′. (i) If there exists a Golog− programδ′ such
thatΣsync |= sync(δ1, δ2, δ

′), thenD |= Do(δ′, S, S′) iff D |=
Do(δ1, S, S′) andD |= Do(δ2, S, S′). Further, (ii) if D |=
Do(δ1, S, S′) andD |= Do(δ2, S, S′), then there is aδ′ s.t.
Σsync |= sync(δ1, δ2, δ

′).

The theorem states that synchronization is a sound and
complete means of determining intersections of programs.
We prove these two pieces separately. The theorem follows
directly from these two lemmata.

Proof of Completeness

Lemma 2 (Completeness). Let δ1, δ2 be two Golog− pro-
grams over some action theory, andS, S′ two situations
from that theory such thatS ⊑ S′. If D |= Do(δ1, S, S′)
andD |= Do(δ2, S, S′), then there is aδ′ s.t. Σsync |=
sync(δ1, δ2, δ

′).

Proof: By contradiction: If there is noδ′ s.t. Σsync |=
sync(δ1, δ2, δ

′) then eitherD 6|= Do(δ1, S, S′) or D 6|=
Do(δ2, S, S′).

This is shown by induction over the structure ofδ1.
The base case is given byδ1 = nil . Then, the only way to

“fail” is when δ2 is a non-empty sequence (notnil ), starting
with a primitive action, since in all other cases, that program
could be further expanded upon (using the second disjunct
of sync). Hence, we haveδ2 = [a; b2] for some actiona
and some sub-programb2. By definition ofDo, δ1 only ac-
cepts pairs of equal situations, whereasδ2 only accepts pairs
of situationsS, S′, whereS′ = do(~a, do(a, S)), for some,
possibly empty sequence of actions~a. Hence the thesis.

The cases for the induction step are as follows.

δ1 = [a; b1] with a a primitive action
Then, there doesn’t exists a programδ′ such thatΣsync |=
sync(δ1, δ2, δ

′) iff δ2 doesn’t start witha, or δ2 = [a; b2]
andΣsync 6|= sync(b1, δ2, δ

′). In the former case, the thesis
follows as in the base case, by definition ofDo, and in the
later by induction hypothesis forb1.



δ1 = [ϕ?;x]
Sincesync′([ϕ?;x], δ2, y) is defined for anyδ2 in terms of
sync(x, δ2, z), the thesis follows by induction hypothesis
for the case for sub-programx.

δ1 = [if ϕ then δa elseδb;x]
There are four possible cases:

1. Σsync |= (∃z)sync([δa;x], δ2, z) and
Σsync |= (∃z)sync([δb;x], δ2, z),

2. onlyΣsync |= (∃z)sync([δa;x], δ2, z), or
3. onlyΣsync |= (∃z)sync([δb;x], δ2, z), or
4. neither.

Only in the latter case, there is no synchronized program.
The thesis follows from induction hypothesis and defini-
tion of Do for if .

δ1 = [(δa | δb);x]
This case is analogous to the previous: the only possibility
for this case to “fail”, i.e., there not being a synchronized
program, is when neitherΣsync |= (∃z)sync([δa;x], δ2, z)
nor Σsync |= (∃z)sync([δb;x], δ2, z). The thesis hence
again follows from induction hypothesis for these cases
and definition ofDo for the simple non-deterministic
choice (at least one of the programs needs to be exe-
cutable).

δ1 = [(πv)δ(v);x]
Again, sincesync′ for this case is recursively defined for
any programδ2, the thesis follows by induction hypothe-
sis forx.

δ1 = [δ∗;x]
See the previous case.

Proof of Soundness

Lemma 3 (Soundness). Let δ1, δ2 be two Golog− programs
over some action theory. If there exists a Golog− pro-
gram δ′ such thatΣsync |= sync(δ1, δ2, δ

′), then for any
two situationsS, S′ with S ⊏ S′: D |= Do(δ′, S, S′) iff
D |= Do(δ1, S, S′) andD |= Do(δ2, S, S′).

Proof: By induction over the structure ofδ1. We here
assume without loss of generality that forδ1 always the first
disjunct of the axiom forsyncapplied, i.e., thatΣsync |=
sync′(δ1, δ2, δ

′).
The base case is whenδ = nil . Then, by definition of

sync′, bothδ2 = nil andδ′ = nil . The thesis for this case
hence follows trivially (X iff X and X).

For the induction step, the cases are as follows.

δ1 = [a; b1] with a a primitive action
Then, by definition, δ2 = [a; b2] for some sub-
program b2, and δ′ = [a; z] for some z such that
Σsync |= sync(b1, b2, z). From the definition ofDo
it follows that do(a, S) ⊏ S′, i.e., there is a (pos-
sibly empty) sequence of actions~b such thatS′ =

do(~b, do(a, S)). By induction hypothesis we know that
D |= Do(z, do(a, S), S′) iff D |= Do(b1, do(a, S), S′)
and D |= Do(b2, do(a, S), S′). Hence, from defini-
tion of Do we get that alsoD |= Do([a; z], S, S′) iff

D |= Do([a; b1], S, S′) andD |= Do([a; b2], S, S′), i.e.,
the thesis for this case.

δ1 = [ϕ?;x]
By definition of Do, D |= ϕ[S]. By definition
of sync′, δ′ = [ϕ?; z] and by induction hypothesis,
D |= Do(z, S, S′) iff D |= Do(x, S, S′) and D |=
Do(δ2, S, S′). From definition ofDo hence alsoD |=
Do([ϕ?; z], S, S′) iff D |= Do([ϕ?;x], S, S′) andD |=
Do(δ2, S, S′), i.e., the thesis.

δ1 = [if ϕ then δa elseδb;x]
There are three cases to consider:

1. y = if ϕ then za elsezb, then ifD |= ϕ[S] the thesis
follows by induction hypothesis for[δa;x] and defini-
tion of Do, otherwise it follows by induction hypothe-
sis for[δb;x] and again definition ofDo.

2. y = [ϕ?; za]. For the negation in this case we need
the completeness lemma.For the⇒ direction: it has
to be thatD |= ϕ[S], and hence the thesis follows by
induction hypothesis for[δa;x]. For the⇐ direction:
By Lemma 2 we know that since there is noz such
that Σsync |= sync([δb;x], δ2, z) that also it cannot be
the case thatD |= Do([δb;x], S, S′) ∧ Do(δ2, S, S′).
Hence, ifD |= ¬ϕ[S], then neither side of the “iff”
hold. Otherwise, ifD |= ϕ[S], the thesis follows from
induction hypothesis for[δa;x].

3. y = [¬ϕ?; zb]. This case follows in complete analogy
to the previous.

δ1 = [(δa | δb);x]
This case follows in analogy to the previous.

δ1 = [(πv)δ(v);x]
By definition ofsync′, there are two possible cases:

1. δ2 = [(πv′)δ(v′);x′]

2. or not.

In the first case,y = [(πv)δ(v); δ′]. Then by definition
of Do there is a situationS∗ such thatS ⊑ S∗ ⊑ S′

and D |= Do((πv)δ(v), S, S∗), or else neitherD |=
Do(y, S, S′) nor D |= Do(δ1, S, S′). If the said situ-
ation S∗ exists, then, sinceΣsync |= sync(x, x′, δ′), we
have by induction hypothesis thatD |= Do(δ′, S∗, S′) iff
D |= Do(x, S∗, S′) andD |= Do(x′, S∗, S′). Hence,
once again by definition ofDo for sequences the thesis.
In the second case,y = nondet(Z) where Z is
a set of programsz all of which satisfy Σsync |=
(∃q)sync([δ(q);x], δ2, z), and furthermore by definition
of sync′ for this case, there is noq′ such that at the
same time,Σsync |= sync([δ(q′);x], δ2, z) and z 6∈ Z.
Hence, for every choice ofq in δ1 there is a correspond-
ing programz in Z that was generated by synchroniz-
ing that instance ofδ1 with δ2 and vice versa. The the-
sis now follows by definition ofDo for nondet(simple
non-deterministic choice of any program in the set), and
induction hypothesis for each possible value forq.

δ1 = [a(v)∗;x]
By definition ofsync′, there are three possible cases:

1. δ2 = [a(v)∗;x′],



2. δ2 = [((πv′)a(v′))∗;x′],
3. or neither.

In the first case,y = [a(v)∗; δ′]. Then by definition of
Do there is a situationS∗ such thatS ⊑ S∗ ⊑ S′ and
D |= Do(a(v)∗, S, S∗), or else neitherD |= Do(y, S, S′)
nor D |= Do(δ1, S, S′). If the said situationS∗ exists,
then, sinceΣsync |= sync([a(v)∗;x], x′, δ′), we have by
induction hypothesis thatD |= Do(δ′, S∗, S′) iff D |=
Do([a(v)∗;x], S∗, S′) andD |= Do(x′, S∗, S′). Hence,
once again by definition ofDo for sequences the thesis.
(Note that the induction is well defined, since the second
programδ2 gets strictly monotonically smaller.)
In the second case,y = [a(v)∗; δ′]. Then by definition of
Do there is a situationS∗ such thatS ⊑ S∗ ⊑ S′ and
D |= Do(a(v)∗, S, S∗), or else neitherD |= Do(y, S, S′)
nor D |= Do(δ1, S, S′). If the said situationS∗ exists,
then, sinceΣsync |= sync([a(v)∗;x], x′, δ′), we have by
induction hypothesis thatD |= Do(δ′, S∗, S′) iff D |=
Do([a(v)∗;x], S∗, S′) andD |= Do(x′, S∗, S′). Hence,
once again by definition ofDo for sequences and forπ
the thesis.
In the third case,y = nondet(Z) where Z is a
set of programsz all of which satisfy Σsync |=
sync([a(v); a(v)∗;x], δ2, z) ∨ sync(x, δ2, z). Hence, for
each of the two choices of executinga(v) at least once
or not, there is a corresponding programz in Z that was
generated by synchronizing that choice withδ2 and vice
versa. The thesis now follows by definition ofDo for
nondet(simple non-deterministic choice of any program
in the set), and induction hypothesis for the programs re-
sulting from these choices.
It is important to note our restriction thatδ can only be a
primitive action (possibly with a non-deterministic choice
of argument). Otherwise, the induction would not be well
defined in the third case, since the first programδ1 can
increase in size. However, given the restriction and the
fact that, by assumption for this case,δ2 does not start
with δ∗ or a non-deterministic iteration over a term of the
form (πv)a(v) that could matchδ, the second program
strictly monotonically decreases in size.

δ1 = [((πv)a(v))∗;x]
In analogy to the previous case.


