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1 Introduction

In this document we survey the existing work on the problem of monitoring the execution
of agent plans and reacting to unexpected events (e.g. precondition failures). We start
off by motivating the problem and presenting our view of the structure of the problem.
Guided by this structure we then review the literature relevant to specific aspects of the
problem, discussing their merits and limitations, and identify open problems. The problem
of execution monitoring has attained comparatively little attention and there is in particular
very little principled work on this topic. Hence, this survey mainly gives an overview of
the available systems and makes an attempt to collect and generalize the contained ideas.
Before concluding, we summarize our observations and list possible research opportunities
based on the ideas and limitations identified.

1.1 Motivation

In order to make an agent reach a specified goal, it is common to device an agent with the
ability to plan. When there are several ways of reaching the goal, there are several valid
plans, one typically prefers one over the others leading to the notion of an optimal plan.
Independent of the underlying planning paradigm, algorithm, and preference specification
there are always assumptions about the world involved, as any kind of planning has to apply
a model of the world dynamics and in particular the agent’s action’s impact on the state
of the world in order to produce valid and optimal plans. But these assumptions may turn
out to be wrong or imprecise causing the world to evolve differently than expected. In 1977,
McCarthy [McCarthy, 1977] identified the so-called qualification problem, the impossibility
of stating and reasoning with all qualifications, i.e. preconditions, under which an action in
the domain of interest has its intended effects. This gives rise to potential modeling errors
that may result in discrepancies between the actual world state and the predictions thereof.

These discrepancies may or may not affect the validity and optimality of the plan being
executed but if they do, replanning of some sort is required to maintain these properties.
Other sources of discrepancies could be unexpected exogenous events or, more subtle, a
change of objective, e.g. a different goal.

As a result, agents acting in this kind of domain should be aware of the possibility that a
laid out plan may be rendered sub-optimal or invalid over the time it is being executed, and
provide for means of rationally reacting to these circumstances. We call the combination of
verifying the continued validity or optimality of a plan being executed (monitoring) and the
possibly required replanning in case sub-optimality is asserted execution monitoring.

In the next section we present our understanding of the overall execution monitoring frame-
work, dividing the problem into sub-problems. The sections thereafter will be structured
according to these sub-problems.
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2 Framework

In this section we describe a possible subdivision of the overall task of execution monitoring.
The choice of sub-tasks is inspired by the reviewed literature and previous framework spec-
ifications, which we discuss at the end of this section. We distinguish a monitoring and a
replanning module, where the monitoring module is subdivided into a discrepancy detection
step comparing expectations and observations, a diagnosis or state estimation step, and an
evaluation step. This structure is depicted in Figure 1. Since we are going to structure our

Observations

Model

State Evaluation

Monitoring

Diagnosis

continue execution

Replanning

Figure 1: Our execution monitoring framework.

presentation of the relevant literature accordingly, we briefly describe these components.

Model: This is the model of the world used in planning.

Observations: We are assuming a situated agent, that is, an agent performing actions
in an environment, thereby causing changes therein and receiving sensory input from
this environment. This input can appear in response to active sensing requests or be
delivered to the passive agent at a certain frequency. Typically, these observations do
not reveal the complete state of the world.

Diagnosis: This is the task of estimating the actual state and determining a sequence
of events that produced it, based on the model and the observation history. Which
aspects of the current state one aims to estimate is determined by the subsequent steps,
Evaluation and Replanning. In the context of execution monitoring, state estimation
is typically tailored towards detecting the discrepancies between what was predicted
by the model and what was actually observed in the real world. We are going to study
this task in detail in Section 4.3.1.

State Evaluation: This is the task of determining whether in the estimated state the va-
lidity and/or optimality of the current plan is preserved or not. If it is not, this step
leads to replanning, otherwise the current plan is continued. In the artificial example
domains found in the planning literature generally only those features of the world
that matter to the problem are modeled. Then virtually any discrepancy between
the expected and actual state of the world matters, i.e. affects plan validity and/or
optimality. But this is not so for most real-world domains. The reason is two fold:
Since modeling action outcomes precisely can be very difficult and many state vari-
ables are real valued, it is often the case that expectations and observations only differ
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slightly and in particular are qualitatively the same. Secondly, we often face a lot of
unpredictable exogenous events most of which are unrelated to the problem the agent
is facing and thus do not matter. But since still some of these may actually matter
in certain situations, we cannot leave these details out of consideration entirely by
pruning them from the model. We find that this aspect of execution monitoring has
received very little attention in the past and in particular has never been approached
formally – an omission we intend to address in our research. Section 4.3.2 describes
the relevant existing work on this issue.

Replanning: The problem of replanning is that of modifying the plan or planning from
scratch when the current plan has been asserted to be sub-optimal or invalid. The
questions involved here are whether to try the one thing or the other, and, in either case,
how this process can be performed quickly and what the constraints are. Classically
systems aim at repairing a failed plan quickly, ignoring the quality of the plan and
following the intuition that plan-repair is faster than planning from scratch. Section 5
addresses these issues.

We intend to focus our research on the last three items above.

2.1 Comparison To Existing Frameworks

Here we briefly compare our proposed framework with other recent proposals towards for-
malizing the problem of execution monitoring.

The presented framework is similar and indeed inspired by that of [Bjäreland, 2001]. Our
Model entity replaces Bjäreland’s “Expectation Assessment” function and our Observations
replaces his “Situation Assessment” function. Further we merge his “Discrepancy Detection”
and “Discrepancy Classification” steps into one Diagnosis step. Bjäreland’s approach is
driven by the notion of a discrepancy between what was expected and what was observed.
However, we believe that it is not always necessary to determine the exact discrepancy and
also that often a significant amount of state estimation has to take place to determine it
precisely. Our approach seems in particular in probabilistic settings more appropriate where
a discrepancy may not be well defined. As a major difference, Bjäreland’s framework lacks
the State Evaluation step, a step we consider crucial for the overall success and performance
of the system. Finally, we name the last step Replanning rather than “Recovery”, as not all
discrepancies that matter are necessarily malignant and need to be recovered from but can
also be serendipitous.

In [De Giacomo et al., 1998] the authors propose a framework formalized in the situation
calculus for monitoring the execution of high-level robot programs specified in the GOLOG
agent programming language [Levesque et al., 1997]. In this framework the authors assume
to observe exogenous actions themselves, hence not addressing the problem of diagnosis.
The monitor is defined through a predicate Monitor(δ, s, δ′, s′) and ’called’ after every step
of the program. Monitor exchanges the situation term s by s′ to reflect the potential
occurrence of an exogenous action, and modifies the program δ as appears adequate: If
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another predicate Relevant(δ, s, s′) holds, a recovery predicate is called which may modify
the remaining program δ to recover from the discrepancy, otherwise the program remains
unchanged. While the focus of [De Giacomo et al., 1998] is on the formal specification of
the framework they do propose a specific, but simple, monitor. The Relevant predicate,
fulfilling the state evaluation step of our framework, is realized by simulating the remaining
program δ in the new situation s′. If this simulation succeeds, that is the program can
successfully be executed in the new situation, the discrepancy is irrelevant, otherwise it is
relevant. Replanning is defined as finding a shortest repair program p (sometimes called
a patch (cf. [Eiter et al., 2004])) for δ, such that the sequence of the two programs, p; δ, is
expected to successfully execute as verified by simulation (forward projection). This suggests
that all discrepancies are considered malignant.

Finally, [Fichtner et al., 2003] formalized a similar framework based on the fluent calculus
and implemented it on a robot using the fluent calculus implementation FLUX.

Our research interest and the focus of this document is however not on frameworks for
formalizing but on methods for solving the problem of execution monitoring. We thus do
not consider the advantages and limitations of these frameworks in detail.

We begin the technical part of our presentation by reviewing some early approaches to
integrated planning and execution. In Section 4 we will review approaches to monitoring
(see dashed box in Figure 1) and in particular in Sections 4.3.1 and 4.3.2 present relevant
work for the Diagnosis and the State Evaluation steps, respectively. In Section 5 we discuss
the existing approaches to replanning, elaborating briefly on approaches that refine the
model prior to replanning in order to accommodate for the mis-prediction that caused the
discrepancy.

3 Integrated Planning and Execution

In this section we review a few, in particular early, approaches towards integrating planning
and execution. We can roughly divide the presented approaches into two classes, those that
actively reason about discrepancies between what was expected during planning and what
actually happened during plan execution, and those that do not.

3.1 Discrepancy-Based Approaches

Work on execution monitoring reaches back to the earliest deployed systems. As one of
the first [Fikes et al., 1972] described, among other things, the execution system applied on
Shakey the Robot. Even though the language used for planning, STRIPS, is very limited in
expressiveness, the authors presented some interesting ideas for monitoring the execution of
plans and reacting upon execution failure. The core idea is to represent plans, which here
are limited to be sequential, in a way that supports monitoring by revealing their structure.
For this, the authors introduced triangle tables. Figure 2 shows a triangle table for the
sequential plan OP1, OP2, OP3, where OPi is a STRIPS operator. Each cell represents a set
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Figure 2: A triangle table for representing a plan with three operators OP1, . . . , OP3, the
dashed box defines the “3rd kernel”.

of clauses. In the cells below each operator OPi, those ADD effects of OPi are contained that
persist after the execution of a subsequent execution step. That is, A1 contains exactly those
clauses that are produced by OP1 and A1/2 contains that subset of A1 whose clauses are not
deleted by OP2. The left-most column (number 0) holds those clauses that are preconditions
to the corresponding operators in the plan but are not produced by earlier operators in the
plan and are thus required to be established by other means. Taken together, these clauses
(PCi) define the overall preconditions for the entire plan. Further, Fikes et al. defined the
marked clauses of a cell to be those clauses that are required by the operator of that row.
Then the ith-kernel is defined as the set of marked clauses in the rectangle that includes the
bottom left cell and row i (see the figure for an example). The interpretation of this is that
whenever the clauses of the ith-kernel are true in a given model of the state and dynamics
of the environment, then the ith-tail of the plan, starting with operator i, is applicable and
projected to reach the goal. In our terminology we say the remaining plan is valid. Further,
if the (n + 1)th-kernel is true, where n is the number of operators in the plan, the goal is
already achieved. Based on the triangle table representation of a plan, the execution strategy
that Fikes et al. proposed, called PLANEX, proceeds as follows:

1. Test the highest kernel (n+ 1).

2. If it is true, the goal is achieved, stop execution.

3. Otherwise, proceed checking lower kernels until one is found that is true and then
execute the corresponding operator.

4. If no kernel in the triangle table is true, the plan has failed and replanning is required.

6



5. Otherwise, repeat.

By optimistically checking all higher kernels before executing the next operator in the plan,
this strategy has the advantage that it discovers some serendipities. It also repeats parts of
a plan that have failed to achieve their intended effects. However, this procedure may end
up in an infinite loop when the failure is due to conceptual, e.g. modeling, errors like for
instance assuming that an action achieves a certain literal but simply doesn’t, no matter
how often the action is executed.

While the applied action description language, STRIPS, is fairly limited, we make the
following observation that allows us to lift the benefits of this approach to more expressive
action description languages: Although the authors seem to have been unaware of this at the
time of this article or they simply miss pointing it out, a kernel is exactly the regression of
the goal through the remaining operators of the plan and the simplicity of the representation,
merely based on clauses of the ADD effects, is due to the limitations of STRIPS to non-
negative, non-disjunctive preconditions and goals, and the required absence of conditional
effects of actions. This regression is produced by the applied backward-chaining planning
algorithm and thus comes without computational overhead.

The utility of the plan structure for execution monitoring was later recognized by others.
In these approaches the term rationale was coined, as the authors realized that not so much
the structure of a plan but rather the rationale for the choice of its elements is what has to be
preserved. This was the case with the hierarchical SIPE planning system [Wilkins, 1988] and
in the IPEM system [Ambros-Ingerson and Steel, 1988] based on the TWEAK partial order
planner. The execution monitoring strategy of the former is described in [Wilkins, 1985].
The core idea is to represent the purpose of every action in the plan by stating the time until
when its effects have to be maintained, e.g. until the goal is reached or a depending action has
been executed, and to explicitly mark assumptions made during planning. These annotations
are used during execution to decide whether a discrepancy is affecting the remaining plan
or not. When that is so, SIPE offers a set of eight replanning rules that ’often retain much
of the original plan’. These rules are incomplete in the sense that they do not necessarily
produce a legal plan but rather a task network with some unachieved sub-goals remaining,
so the transformed plan is handed back to the planner.

In many applications, it is desirable to conservatively, i.e. only minimally, modify the
current plan when needed, as this is generally assumed to minimize execution costs. An
example of this is described in [Myers, 1998] where the SIPE approach was used to moni-
tor the execution of air campaigns. We, however, believe that if there are costs involved,
these should be modeled explicitly and the monitoring be extended appropriately to moni-
tor continued optimality of the plan according to these costs as opposed to only monitoring
continued validity and soft-constraining the replanning implicitly through an unspecified
preference criterion as Myers does.

Similarly to SIPE, Ambros-Ingerson and Steel approached execution monitoring in con-
junction with the TWEAK partial order planner [Ambros-Ingerson and Steel, 1988]. They
extend the set of plan transformation rules of the planner to accommodate for unforeseen
events and to integrate the execution into the process. The actual execution monitoring is
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then performed through the application of predefined IF-THEN rules mapping flaws to fixes
(plan transformation rules). A scheduler heuristically sorts the list of open flaws continuously
during execution. While the paper does not go into detail about how to efficiently detect
flaws, which is a major limitation, this work is still interesting as it shows how partial-order
planning can naturally perform plan repair upon unforeseen events during execution. This
is due to the fact that partial-order planning, much like backward-chaining, chooses actions
to add to the plan based on open preconditions and this again makes the reasons for adding
the actions, the rationale, explicit and usable for monitoring (and plan repair).

While PLANEX merely used the plan’s rationale for evaluating whether the current
plan or parts of it are still valid for achieving the goal, SIPE and IPEM also exploit this
information for replanning.

Others have approached the problem of recovering from discrepancies during execution
heuristically using predefined fault models and fixes. Beetz and McDermott
[Beetz and McDermott, 1994] described how XFRM, a planner based on RPL, the Reac-
tive Plan Language, handles discrepancies. In this framework, the model of the dynamics
is probabilistic, i.e. actions can have stochastic effects. When a discrepancy arises during
the execution of a plan, sample execution scenarios are projected to evaluate the impact of
the discrepancy. This contrasts with the earlier presented approaches which, one way or
the other, all implicitly regressed the goal to evaluate the impact of the discrepancy. Here
instead the discrepancy is progressed. Since the projection is non-deterministic, the number
of sample scenarios determines the probability of detecting a problem, but the authors do
not investigate how many samples are required depending on the situation and the domain,
neither do they provide a concise definition of a failure. When failures are projected to
happen, these are classified into a domain dependent hand-crafted taxonomy of fault models
that also maps them to plan transformation rules. The application of these transformations
may improve the plan, but is not guaranteed to do so. All in all the approach is incomplete
in at least two senses: due to the choice of samples certain problems arising from a current
discrepancy in the future may not be detected and due to the heuristic character of both
diagnosis and replanning (plan transformation), the approach is not guaranteed to recover
from contingencies.

In [Beetz and McDermott, 1996] the authors later extended the approach to improve
flexibility between planning and execution, but this didn’t address any of above criticism.

3.2 Approaches Not Based On Discrepancies

Reactivity was the motivation for the latter heuristic approach, that is, the desire or re-
quirement to respond quickly to execution failures. Reactivity was also the driving force for
so called universal plans, proposed by [Schoppers, 1987]. The idea is simple: starting from
the goal, backward-chaining is performed until either a contradiction is produced or no open
sub-goal (precondition of some action in the tree) has support, i.e. there is no action whose
effects satisfy any of these open sub-goals. This creates a decision tree that dictates which
action to perform in which state in order to reach the goal. The approach is indeed universal
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in the sense that for any state for which there exists a plan of getting to the goal, this plan
can readily be read off the tree. This way, whatever goes wrong during execution of a plan,
the system instantly knows how to react if it is possible to reach the goal from the new state.

Unfortunately, the price for this is high and in fact makes the whole approach intractable:
in worst case the time and space complexity is linear in the size of the domain, which, if
not infinite, is exponential in the number of domain features. Further, this was just a
reinvention of policies as defined in decision-theoretic planning in MDPs (see for instance
[Puterman, 1994]), with a factored state space. This is comparable to recent approaches to
first-order decision-theoretic planning using regression ([Boutilier et al., 2001]).

As with universal plans, in decision-theoretic planning generally no knowledge about the
initial state is assumed but the problem is solved in a backward fashion for all states. This
is generally infeasible for the stated reasons (also cf. Section 6.1). When the initial state is
known, i.e. when a policy is not computed ahead of time but when a particular problem in-
stance arises, forward search can be use. For that matter a forward search based approach to
decision-theoretic planning was presented by [Dearden and Boutilier, 1994]. This approach
performs conditional planning for the outcomes deemed possible for the considered actions
in the current situation, but prunes parts of this search tree where it is sound. The ap-
proach relies on the existence of a heuristic function and Boutilier et al. also present ideas
on how such a function could be constructed. Pruning is possible when upper and/or lower
bounds on this function are known and when the error of this function, compared to the
actual value of a node, can be bound. The general assumption in execution monitoring is
that enumeration of all contingencies is impossible. But even when this is not the case, i.e.
certain abnormalities can be predicted, it may not be wise to try to conditionally plan for
all of them as some may be very unlikely and their consideration generally blows up plan-
ning time exponentially. Instead, one may want to investigate the possibility of recovering
from these contingencies only when they arise. The work by [Dearden and Boutilier, 1994]
may be a first step towards investigating how much conditional planning makes sense and
when it is safe not to plan for a potential outcome. The decision of leaving anticipated but
unlikely abnormalities out of consideration in planning could be a result of meta-reasoning
(cf. Section 6.2).

Probably the most prominent recent applied work in execution monitoring is that of
[Williams and Nayak, 1996], where the authors describe the Livingstone system that flew on
NASA’s Deep Space One mission which successfully tested high-risk technologies in space
and collected scientific data and images of a comet from 1998 to 2001. Livingstone is a
model-based reactive self-configuring system. It uses propositional logic augmented by a
’next’ operator to model a transition system, where all occurring propositions are equalities
y = e, with y a state variable and e an element in the domain of y. Based on that, the model-
based configuration manager determines control values for a set of control variables in two
steps: in the mode-identification step (MI) the set of plant trajectories that are consistent
with previous control values, sensor readings, and the transition system is generated. In our
framework this would be called the monitoring part. From that, the mode-reconfiguration
(MR) generates sets of control values that immediately lead to a goal state, characterized as
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a subset of states (configurations). This would be the replanning. The system only considers
one-step plans (reconfigurations) and makes strong assumptions about the countability of
states and transitions (actions). In general we cannot assume that the system can recover
from a discrepancy in just one step, or that a goal can be reached after a single transition.
On the other hand, this work makes a limitation of all above works apparent: not only the
current state may differ from what was expected but also the goal may – and does – change
in realistic environments. The methodology of this approach more closely resembles that of
control theory (cf. Section 6.3) rather than AI planning.

4 Monitoring

Monitoring, in the context of execution monitoring, is the problem of deciding whether
execution of the current plan should be continued or not. In this section we review work
that is relevant for this task and for the sake of presentation we roughly classify the presented
approaches into one of three categories:

1. external monitoring, where the monitoring and the executing systems are disjoint,

2. expectation-based monitoring, where the decision is based on the materialization of
defined expectations, and

3. model-based monitoring, which is the approach we assume in our framework (cf. Figure
1), that is, sub-dividing the task into diagnosis and state evaluation.

In the latter approach a lot of work can be found on the diagnosis part of the problem
(Section 4.3.1), while the evaluation problem has attained very little and in particular not
much principled work (Section 4.3.2).

4.1 External Monitoring

In what we here call external monitoring, the monitoring and the executing entity are inde-
pendent, meaning that the monitor watches the agents behavior but does not have access
to the agents internal state. In particular the monitor is not informed of the actions being
executed but can only try to infer this information from observing the actions’ effects. Al-
though this was proposed in the literature to enable one agent to monitor other agents, this
work may still be of interest even in frameworks like ours where we do not separate these two
entities, as this approach provides insight into the difficult diagnostic problem of deciding
’what happened’, a question we are going to return to in Section 4.3.1. But in contrast
to the approaches in Section 4.3.1, the approaches presented here also evaluate the found
diagnoses.

The Autominder system ([Pollack et al., 2003]) is a cognitive orthodic helping people
with memory impairment by issuing personalized reminders to help the client accomplish
her daily agenda. The system observes the client’s actions to infer whether a reminder is
necessary or not. The authors of the system argue that since sensory input is noisy and the
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action in the client’s plan (agenda) can have complex temporal constraints, reasoning under
uncertainty and reasoning with quantitative temporal relationships between events has to
be integrated for this task. For this purpose they introduce Quantitative Temporal Dynamic
Bayesian Networks (QTDBNs; [Colbry et al., 2002]), an integration of Time Nets and Dy-
namic Bayesian Networks (DBN). The Time Net component models the relationship of the
time intervals client actions occur in, representing the probability that an event occurs in a
certain time interval, while the DBN reasons about actions, sensors, and domain properties
within any such time interval. The DBN is updated with the arrival of new information,
i.e. sensory input, while the Time Net is updated only as the actual time crosses a time
interval boundary. At these time changes two interface functions pass information from the
DBN to the Time Net and back. Experimental results show that for sufficiently small tasks,
QTDBNs achieve their purpose of monitoring the execution of another agent’s, here the
client’s, plan, but the required Bayesian reasoning, which is known to be NP-hard, causes a
time complexity exponential in the number of modeled actions.

To monitor the execution of a multi-agent system, [Dix et al., 2003] investigate an ap-
proach that could be described as meta-planning. Again unaware of the internal states of
the participating agents in the system, the authors propose to create a set of intended plans
off-line in a meta-theory that reasons about messages passed between the individual agents
partially revealing the executed actions. On-line, these intended plans are filtered based on
the messages actually passed between agents. That is, when a new message is observed, the
set of intended plans is reduced to those plans compatible with this observation. The system
raises an alert to the user if the set becomes empty, to indicate that according to the meta-
theory there is no way the monitored system is going to achieve its objectives, or when no
message has arrived for a specified time, indicating that the system is stuck. Hence, instead
of proving that the monitored system performed nominally, the approach here is to try to
prove the opposite and assume nominal operation as long as there is at least one possible
way of reaching the goal, i.e. at least one compatible intended plan. This approach demon-
strates that monitoring is possible even when the applied models in the execution system
and the monitoring system are different, which contrasts to the approach in Autominder,
where the client’s plan is known precisely and taken into account for monitoring. Instead,
the monitoring system here merely bases its decisions on the objectives of the agents being
monitored and a rough indication on which actions are being performed, perceivable from
the passed messages. It also allows monitored agents to change their plans, as long as there
remains a way of reaching the goal. Hence the goal and not the plan is used to determine
failure.

Even less knowledge about the monitored system is required when learning techniques
are applied. To decide whether the execution of a task will still finish before a deadline
is reached, [Hansen and Cohen, 1992] model the problem as a sequential decision problem.
This can either be solved by standard techniques when a model of the actions and their
impact on reaching the goal is known, or using temporal difference methods otherwise.

Although interesting from a conceptional point of view, for us this is not a viable options
as we are concerned with monitoring the execution of a plan correctly right from the first
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time it is executed and cannot afford to perform test runs first to collect learning data.

As we pointed out earlier the techniques of this section are not promising approaches for us
per se, as they abstract too much from the underlying system and disregard information we
gage valuable in both monitoring and replanning.

4.2 Expectation-Based Monitoring

The idea of basing the monitoring decision on the materialization of certain plan-dependent
expectations was first stated in [Doyle et al., 1986]. Doyle et al. proposed an approach to the
problem of monitoring the successful execution of a plan through the generation and use of
perception requests to verify the nominal execution of the involved actions. Given a plan and
a model of the environment, their method selects properties that need to be monitored and
generates perception requests that can verify the materialization of these properties. The
latter are embedded into the plan. The properties are typically pre- and post-conditions
of actions, and perception requests are sensing actions together with the expected sensing
values. During execution the actual sensing values returned by the sensing actions can be
compared to the expected values to detect discrepancies. While the significance of the actual
implemented system described in the paper called GRIPE (Generator of Requests Involving
Perception and Expectations) may be questionable, the paper is notable for raising the
awareness of relevant questions. These involve how often and accurately assertions should
be verified and how this can be done best, i.e. introducing the problem of planning for
perception requests. But first and foremost the question as to which properties should be
monitored is raised and this question today is still awaiting a satisfactory answer. The
authors propose four criteria involved with this choice:

• the uncertainty of properties due to several reasons (incomplete initial knowledge,
stochastic action outcomes, etc.);

• the dependency of future actions on the property;

• the importance of the property; and

• the ease of recovery.

Of these four the second has received the most attention as we have seen implicitly already
in PLANEX, SIPE and IPEM, and repeat to see in the sequel of this survey. Doyle et al.
realized that some action effects are irrelevant as no future action nor the goal require their
presence, while others, said to lie on the critical path, are. But the paper lacks a formal
definition of this set. The notion of a critical path relates this work to the triangle tables we
saw earlier since ’elements of the critical path’ is merely a synonym for ’marked clauses in a
kernel’. Doyle et al., like Fikes and his colleagues earlier, did not realize that this is again
just the regression of the goal through the remaining actions of the plan. Characterizing
this technique as goal regression, or more generally rationale regression, will likely enable
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the generalization of this technique to other action formalisms, planning paradigms, and
preference criteria.

Inspired by this work, Musliner et al. discuss some aspects of time in execution monitoring
for actions with durations and in particular address the questions of how to verify critical
assertions most effectively ([Musliner et al., 1991]). By using a planner that deploys simple
depth-first backward-chaining from the goal to the initial state, they construct the critical
path. Then, at every stage in the plan where a post-condition is established that is used in the
precondition of a later action, a verification action is inserted to monitor the condition over
the required time interval. Musliner et al. argue that these actions themselves may require
planning as they too have pre- and post-conditions and durations. To accommodate that
fact, they propose to augment the theory with models for these sensing actions. The paper
however lacks formal details and leaves certain questions open like, e.g., whether and how
the models for the normal actions are modified to motivate the introduction of verification
actions.

Another examples of expectation-based monitoring is the work by [Earl and Firby, 1997].
Instead of planning from first principles, the presented Routine Management and Analysis
system (RAMA) chooses from predefined dynamics when given a goal to achieve. These
dynamics combine actions and expectations about observations to be made during their
execution.

Expectations were also the basis for the method we recently proposed for monitoring the
execution of plans generated from GOLOG programs, where the produced plan is explicitly
marked with the assumptions that were made during planning [Ferrein et al., 2004]. These
assumptions represent the at planning time projected truth values of conditions included in
the GOLOG program (e.g. in if-then-else constructs or while-loops). If during execution
of the plan these assumptions are violated or the next action is not possible, the plan is
abandoned and replanning from scratch is performed. This seems to be the most reasonable
thing to do in a domain that is as dynamic as RoboCup where we applied this work.1

This contrasts with the earlier mentioned work of [De Giacomo et al., 1998] as it does not
monitor the execution of the GOLOG program itself, but the resulting (conditional) plan
after performing decision-theoretic planning over a program, maintaining the expectations
involved through the hard constraints in the original program. While the approach worked
in practice, it cannot claim any kind of correctness or optimality. For instance, it does not
anticipate failure of future actions in the plan, like others do. Nevertheless it serves as a rare
example of monitoring where the constraints underlying the construction of the plan, which
in this case were procedural hard constraints represented through a GOLOG program, are
taken into account in monitoring the execution of the plan. This is crucial, because when
these constraints change, there is no reason to believe that the plan at hand continues to be
optimal or even valid.

Consider the following “Tree Example” of [Lespérance et al., 2000], which we modify
slightly for our purposes. In this domain our agent is trying to fell a tree and carry it home.

1We used the presented approach in several RoboCup tournaments including the world-cups of 2003 and
2004.
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To not faint from exhaustion she has to rest when her fatigue is getting too bad. She thus
can decide between three actions, chop, rest, and carry-tree. Her doctor told her to rest
whenever she feels high fatigue. Overall we can incorporate these hard constraints with the
original task into the following GOLOG program

(if ¬fatigue then (chop | carry-tree) else rest endIf)∗ ; tree-at-home?

where a|b denotes the nondeterministic choice between two sub-programs a and b, a; b de-
notes their sequence, and a∗ denotes the nondeterministic iteration of a. A tree-chopping
expert said that it usually takes five chops to fell a tree and our agent has an idea of how
much labor, chopping and carrying, she can do until she needs a rest. From this model
information and the hard constraints a GOLOG interpreter may produce the following plan:
chop, chop, chop, rest, chop, chop, carry-tree. However, when executing this plan
it happens that our agent feels fatigue already after two chops, the model was imprecise. The
remaining plan is still executable but would violate the given hard constraints and would
cause our agent to faint. The problem is that the hard constraints got lost in planning
because the planner assumed correctness of the model. To account for such modeling errors
the method proposed in [Ferrein et al., 2004] would produce the following annotated plan
instead: M(¬fatigue), chop, M(¬fatigue), chop, M(¬fatigue), chop, M(fatigue), rest,
M(¬fatigue), chop, M(¬fatigue), chop, M(¬fatigue), carry-tree and the proposed ex-
ecution engine discards the plan if during execution a marker (M) is encountered whose
condition fails to hold, contrary to what was expected.

While most work on monitoring is concerned with monitoring the execution of a plan,
it is also possible that even during planning pieces of the tentative plan become invalid, for
example when a precondition that was true earlier becomes false. This aspect of planning
and monitoring in dynamic domains is addressed in [Veloso et al., 1998] where the resulting
approach is implemented in the PRODIGY framework ([Veloso et al., 1995]). In particular
the authors propose to generate two kinds of monitors during planning: plan-based monitors
targeting preconditions of actions in the tentative plan, and alternative-based monitors. The
latter are relevant when preferences over different possible plans exists: during planning it
may happen that the most preferred alternative is not possible for some reason. If this
reason changes and the alternative becomes available, optimality requirements force us to
pursue this alternative instead, so monitoring this reason is vital for optimality. While this
presents an interesting aspect, in the described approach the problem is strongly simplified
by assuming that the quality of an alternative can be decided a-priori, that is, without
exploring the corresponding part in the search tree first and by assuming that the quality
of a plan is purely determined by its comprising actions and in particular independent of
the traversed states. This is a major limitation of this approach, which also lacks a formal
foundation.

4.3 Model-Based Monitoring

Recall our framework of Section 2, where we sub-divide Monitoring into Diagnosis and State
Evaluation. Evaluating the state with respect to the plan, that is, determining whether the

14



plan continues to be valid and optimal or not, may require more information than provided
by the observations. Supplying this information is one of the tasks of diagnosis, estimating
the state. When the state estimation leads us to think that the world has evolved differently
from what was predicted by the model, diagnosis also serves the purpose of answering the
questions “what went wrong?”, “what did actually happen?”. This is in particular useful to
know in situation where the model needs to be refined before replanning, to avoid getting
caught in an infinite loop (cf. Section 5.3). The two tasks are obviously related and can even
be indistinguishable in certain state representation like for instance the situation calculus
(e.g. [Reiter, 2001]).

4.3.1 Diagnosis

In this section we review selected previous work relevant to the problem of Diagnosis in the
context of execution monitoring. We will first briefly review early work on static model-
based diagnosis and then explain how this relates to the problem of state estimation and the
diagnosis of dynamical systems.

Model-based diagnosis was first described by Ray Reiter ([Reiter, 1987]). In Reiter’s
approach the system description, SD, is a finite set of first-order sentences and in this
system a set of components, COMP = {c1, . . . , cn}, exists, each of which may either perform
abnormally (Ab(ci)) or nominally (¬Ab(ci)). Given SD and COMP , an observation OBS,
represented as another finite set of first-order sentences, conflicts with the assumption that
all components work correctly if SD ∪ {¬Ab(c1), . . . ,¬Ab(cn)} ∪ OBS is inconsistent. The
problem of diagnosis is then to find a subset ∆ of the components such that assuming these
components abnormal and the rest to work nominally, consistency of the union with SD and
OBS is reestablished. The subset ∆ is called a diagnosis. Generally there are several possible
diagnoses in which case one is generally preferred over the others. In Reiter’s approach this
preference is defined through minimality, that is, a diagnosis ∆ is preferred over another
diagnosis ∆′ if and only if ∆ ⊂ ∆′. The preference for minimal diagnosis also makes sense
from a probability point of view. Assuming that correct behavior of a component is more
likely than its failure and that component failures happen independent of each other, minimal
diagnoses are also most likely diagnoses.

[Witteveen et al., 2005] have used this approach to diagnose abnormal events during the
execution of agent plans. The system description models the dynamics of the domain, in
particular the effects of the agent’s actions, and the components are the agent’s actions
themselves. In this setup the Independence of component failures is not given anymore, as
the failure of one action can causes others to fail to. The authors accommodate for this
fact by introducing the notion of Pareto minimal causal diagnosis. Roughly, the original
diagnoses are reduced to their causes when a subset of components in the diagnosis causes
the failure of other components in the set. Minimality is then determined based in the
reduced sets.

Reiter later extended his original work with de Kleer and Mackworth
([de Kleer et al., 1992]) to allow for fault models and exoneration axioms, which violate
the assumption implicitly made in the original work that also every super-set of a diagnosis
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is a diagnosis itself. The main approach presented in this paper was based on the notion of
prime implicants and the diagnoses defined from that were called kernel diagnoses.

Another way of defining the most probable diagnosis is the introduction of explicit nu-
meric failure probabilities. The generation of candidate diagnoses can then be focused to
the most likely ones ([de Kleer, 1991]). To improve the efficiency of diagnosis, it is often
also beneficial to compile the diagnostic model into a representation which is more efficient
for the diagnostic task, but this often increases the space required by the representation.
Provan ([Provan, 2005]) recently addressed this problem by again exploiting the preference
information (probabilities) and limiting the parts that are compiled based on that.

The task of state estimation is arguably similar in nature to the above described problem of
diagnosis: given some observation that gives rise to the suspicion that the actual current state
is not the one we expected, we would like to identify the actual state as best we can. As such
the above described diagnosis is a special case of state estimation where the incompleteness
of knowledge is limited to the abnormality of the components. It is also limited as it does
not provide for dynamics in the system, that is, it is only possible to talk about what holds
or doesn’t hold now but not what may have happened in the past to reach the current state.

McIlraith addressed this misfit in [McIlraith, 1997]. She combined above work with
the situation calculus to model action dynamics and introduced the notion of explana-
tory diagnosis. Given a basic action theory in the situation calculus Σ, a history of ac-
tions HIST that is known to have happened since the initial state S0, and an observa-
tion OBS, an explanatory diagnosis is a sequence of actions E = α1; . . . ;αn such that
Σ |= Poss(HIST ;E, S0) ∧ OBS(do(E, do(HIST, S0))). That is, an explanatory diagnosis
is a sequence of actions that may have happened following HIST and explains the obser-
vations. These actions are assumed to be exogenous, that is, not under the control of the
monitored agent. The author shows that the problem of finding an explanatory diagnosis
coincides with the problem of planning: The system dynamics are described by the action
theory Σ, the initial state is the state resulting from executing HIST in the initial state S0,
do(HIST, S0), and the goal is described by the observations OBS.

McIlraith’s work was extended by [Iwan, 2000, Iwan and Lakemeyer, 2003]. Iwan real-
ized that in order to explain the observations, it is sometimes not enough to conjecture the
occurrence of exogenous actions after the given history of actions HIST but that in order to
explain the observations one has to assume the occurrence of exogenous actions in between
the given action history and/or that some actions in this sequence were not performed as ex-
pected. Iwan also addressed the problem of characterizing and computing the most preferred
diagnosis using explicit probabilities for the occurrence of events, much like [de Kleer, 1991]
proposed for the static case. The computation is based on best-first forward search.

Both McIlraith and Iwan make the assumption that observations are only made at the
end of the action sequence to be conjectured or equivalently that diagnosis is performed right
when the observations are made. This may prove to be too strict a limitation in practice
as in real-world systems computational resources are limited and thus it may not always be
possible to perform the diagnosis right away when a surprising observation is made.2 Also,

2Without further computation, it is also not always possible to say whether an observation is surprising
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due to incomplete knowledge, it may be the case that certain observations do not contradict
the model assumptions immediately but only after additional observations are made or simply
have a delay. This suggests to extend the presented work by using approaches of planning
with temporal goals, in order to describe the temporal relationship between observations and
presumably performed actions. Recent work by Baier et al. ([Baier and McIlraith, 2006])
can supposedly be lifted for this purpose. Also, to express more complex probability criteria
over several possible diagnoses, work by Bienvenu et al. ([Bienvenu et al., 2006]) may help
in defining and planning with qualitative temporal probabilities. The use of qualitative
probabilities also avoids the problematic elicitation of numeric probabilities from experts,
which may be difficult, annoying for the user, and error prone.

Another shortcoming of these approaches is their applicability to real-world systems in-
volving continuous evolutions of real valued features, like for instance the three-dimensional
position coordinates of a helicopter in operation. Consequently, the majority of deployed
robotic systems described in the literature approach the problem of state estimation differ-
ently. The main difference is the representation of the dynamics: instead of sets of logical
sentences for representing states and some kind of effect axioms for describing the effects of
actions in the domain, these systems describe the state by the numeric values of certain prop-
erties and control values, and use algebraic or differential equations to describe the impacts
these properties have on each other depending on the current mode of operation. This way
not only continuous values and continuous time becomes manageable, but also continuous
probability distributions can be modeled to capture the uncertainty of the domain.

This approach was used in [McIlraith, 2000] and [de Freitas et al., 2004]. In both these
papers the system to be diagnosed was modeled as a hybrid system, that is, using a state
representation that has both a discrete and a continuous part. The continuous part generally
describes the dynamics, whereas the discrete part describes the operational modes. The
latter induce different dynamics in the continuous part, for instance the direction of travel of
a robot. Faults are defined through fault modes in the discrete part and cause the dynamics
of the continuous part to change. Observations, on the other hand are generally only made in
the continuous part, except for deliberate control mode changes. The task then is generally
to infer if and when a faulty mode has materialized and reasoning is generally based on the
belief state, that is, a probabilistic distribution over possible system states.

In [McIlraith, 2000], McIlraith casts the problem of diagnosing a hybrid system as a
Bayesian model tracking and selection problem. To efficiently track multiple models simul-
taneously, she proposes the use of particle filters. One major problem with the use of particle
filters for diagnosis is that they focus on the most likely models, that is the nominal behav-
ior, while fault modes are unlikely and can therefore slip the attention of the, approximate,
filter. McIlraith overcomes this problem by biasing the samples towards the results of a
separate, qualitative diagnosis as it is described in [McIlraith et al., 2000]. The paper makes
a single-fault assumption.

Particle filters now are a very common approach to approximate the distribution of the
state variables. These can also be integrated with exact methods like for instance Kalman

or not.
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filters into so called Rao-Blackwellised particle filter (see e.g. [de Freitas et al., 2004]).
[Verma et al., 2002] combine particle filters with Partially Observable Markov Decision Pro-
cesses (POMDP) for controlling a system: a policy for the POMDP is computed off-line while
particle filters are used on-line to track the belief state. Particle filters can also be used for
approximate inference in Dynamic Bayesian Networks (see e.g. [Russell and Norvig, 2003],
pp. 565–568).

Depending on the way the system is modeled and on the available observations, diagnosis
may not be required or can be trivial. This is for instance the case when the state can be
sensed completely, or when it can be sensed partially and the observations coincide exactly
with the predictions of the model. Since then there is no discrepancy, there is no reason
to believe that the actual state is any different from the predicted one. In any case, the
situation-dependent need and requirements for diagnosis should be guided by its purpose,
that is, it should be determined with respect to the following steps, State Evaluation and
Replanning. If, for instance, State Evaluation is able to specify a sub-set of states in all of
which the current plan should be continued, then there is no need, and really no point, in
trying to disambiguate between two candidate diagnoses when both candidates belong to
this sub-set.

4.3.2 State Evaluation

Recall that in our framework (cf. Figure 1) the diagnosis step is followed by a state evaluation
step to determine the relevance of the discovered and diagnosed discrepancy between the
prediction and the estimated state, to decide whether any kind of replanning is required or
advisable. This question has received little principled attention in the literature.

One can generalize the technique implicitly used by several approaches to answer this
question, as that of annotating the plan at every step with the regression of the goal through
the remainder of the plan (cf. Section 3). When the regressed goal holds in the state actually
encountered during execution, the remainder of the plan is expected to succeed, according
to the model. PLANEX uses STRIPS as the action description language and since STRIPS
allows for neither conditional effects, nor disjunctive preconditions, nor uncertain action
outcomes (disjunctive action effects), regression becomes very simple. This regression is
implicitly done in the backward-chaining search performed by the planner and the annotation
is part of the triangle tables used for representing plans. Our generalization also applies to
SIPE, which is based on hierarchical planning, and IPEM, based on a partial-order planner.
In both approaches the choice of actions to add to the plan is based on open preconditions
(sub-goals), starting from the goal, and in both approaches the dependencies between these
sub-goals and the actions in the plan they are established by are represented in the plan.
Again these representations are used during execution to verify the continued validity of the
remaining plan and to support replanning at a basic level.

Neither of the recent logic-based frameworks for execution monitoring
[De Giacomo et al., 1998, Fichtner et al., 2003, Bjäreland, 2001] mentions or formalizes this
matter. Both [Fichtner et al., 2003] and [Bjäreland, 2001] lack an evaluation step entirely.
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The specific monitor suggested in [De Giacomo et al., 1998] performs evaluation not by re-
gression at planning time, but through projection at run-time. This is done in the Relevant

predicate (cf. Section 2). This is also the method used in [Soutchanski, 2003b]. The advan-
tage of the regression based approaches is that the regression and plan annotation can be
done off-line during or after planning, minimizing the time required on-line. The disadvan-
tage is that it requires more memory to store the plan annotations.

Further, virtually no work exists on extending this approach to gaging relevance of an
execution-time discrepancy to plan optimality. Since almost all deployed systems are pursu-
ing optimality according to some quality measure, this appears to be a relevant problem to
address in future research.

Recently [Boutilier, 2000] described a decision-theoretic model of monitoring the precon-
ditions of actions in a plan during execution to determine whether or not the current plan
should be continued, and proposed heuristic methods to make this otherwise intractable
problem tractable for more than just very short plans. His motivation was three drawbacks
with existing approaches3: (i) they generally ignore the monitoring cost, (ii) they do not
account for monitoring errors (noisy sensors), (iii) they ignore the fact that a failed pre-
condition now may be reestablished at the time when the affected action is to be executed
(e.g. hearing about a traffic jam on a route that won’t be reached for several hours). To
address these concerns Boutilier modeled the decision of continuing or abandoning the plan
as a POMDP. The state space of this POMDP is the set of vectors of truth values for all
preconditions in the plan. At every stage of plan execution the POMDP can choose for each
precondition in the remainder of the plan whether to monitor it or not, and after monitoring
is done, whether to continue executing the current plan or to abandon it in favor of adopt-
ing the best alternative at this point. This is similar in methodology to the approach by
[Hansen and Cohen, 1992], but for the general question of whether or not a plan should be
continued, and not restricted to the question whether a deadline will be reached or not.

The approach requires the availability of certain information, part of which may be
difficult to obtain in practice:

• For any point in the plan the value of the best alternative plan at that point has to be
known, since it will be used as the value for abandoning the current plan. This is not
generally known as common planners do not provide this information since that would
incur greater planning time costs. Many, in particular currently popular heuristic
search based planners, would provide an upper bound on this value however.

• The probability of possible failures has to be known. Although these probabilities
certainly exist, estimating them may be difficult. This assumption also implies that
the agent is aware of all possible faults and this again is not generally the case in the
real world.

• A monitoring (e.g. sensor) model has to provide the likelihood for a particular sensor
reading for the case that a particular precondition has failed, and for the case that it
has not failed. This is to allow for monitoring errors (e.g. noisy sensors).

3including approaches that replan whenever an unexpected state is reached
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The general POMDP defined this way is too complex to be tractably solvable. Instead
Boutilier proposed decomposition and approximation techniques. These make the plan
monitoring problem solvable in a reasonable amount of time, even for long plans involv-
ing hundreds of steps, while compromising only little on quality as shown by experiments.

Boutilier assumed away many complicating factors to keep the presentation simple. It
is clear that the approach generalizes to cases where these assumptions do not hold, but
it is unclear how that would affect the complexity. For instance are all preconditions as-
sumed to be established prior to plan execution, i.e. the system does not have to reason
about which actions are establishing preconditions of later ones and adjust the monitoring
decisions accordingly. Also are conditional effects left out of the picture this way, but it is
generally not enough to just monitor the preconditions of actions, but also the conditions
under which certain desired or required effects are produced are relevant. It could hence be
worthwhile trying to combine this approach with a rationale-based approaches, which can
help in discovering the structure of a problem. Another limitation is the fact that alternative
plans are not monitored at all. This is problematic because if during execution an alterna-
tive becomes better than the current plan, we should adopt it. Also if the best alternative
decreases in value, this should affect our decisions as it may no longer be advisable to adopt
the current alternative plan just yet when some future precondition of the current plan is
expected to fail. Overall, Boutilier addresses the question “whether” and “when” to monitor
relevant conditions, but he does not cover the question “which” conditions are relevant. By
assumption the set of relevant conditions is already given but finding this set is not trivial.

5 Replanning

Once we have estimated the actual state of the world, evaluated it with respect to the
plan, and asserted that the current plan has become invalid or sub-optimal, we have to
decide how to react to this. In particular we do not want to replan from scratch in the new
state but should try to repair our current plan accordingly. Or not? Nebel and Koehler
[Nebel and Koehler, 1995] showed, in what is about the only theoretical paper on this topic,
that modifying a given plan for an altered initial and goal state has the same complexity
as planning from scratch. This holds even when similarity between the planning tasks is
assumed and as little as one atom4 is removed from or added to the goal while the initial state
remains unchanged. The result also holds for the reverse case of a minimally altered initial
state, the common situation in execution monitoring after a discrepancy occurred. When
conservative, that is minimal, modification of the existing plan is required, the situation
becomes even worse. Then plan modification can be even more complex than planning
from scratch, that is, there are cases where planning from scratch can be done in time
polynomial in the size of the problem definition while minimally modifying an existing plan
is NP-complete.

While this suggests to not even bother trying to repair a failed plan but to simply re-
plan from scratch, several people have found plan modification to be more efficient in practice

4Nebel and Koehler base their considerations on propositional STRIPS planning.
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[Kambhampati, 1990, Gerevini and Serina, 2000, Koenig et al., 2002, Hanks and Weld, 1995]
as we will see in detail in Section 5.1. The worst case complexity results should thus be taken
with a grain of salt and in particular it would be interesting to further investigate the condi-
tions under which plan modification becomes less efficient. The proposed similarity measure
based on the removal or addition of unspecified atoms from or to the goal or initial state
seems not very informative in this respect.

Another reason why Nebel and Koehler’s results may not be very relevant to us, is the
fact that they limit their considerations to STRIPS planning without preferences over plans.
It remains to investigate whether these results also apply to plan modification under plan-
ning with preferences. This raises a much broader issue regarding the available literature on
execution monitoring and replanning in particular: In almost all approaches the objective in
replanning is to minimize the replanning effort, not to maximize the resulting plan’s quality.
This was also one of the concerns in a recent paper at ICAPS: Cushing and Kambham-
pati [Cushing and Kambhampati, 2005] argue that generally plan optimality is desired and
planning time is only a secondary objective, but current replanning methods do not account
for that. The naive solution for achieving optimality is of course continuous planning, i.e.
replanning from scratch after every execution step. This strategy was for instance used in
[Lazovik et al., 2003], where the authors present a framework for planning and monitoring
the execution of web service requests.

[Cushing and Kambhampati, 2005] also raise concerns about the common limitation to
replanning for altered initial and/or goal states. Some changes in the world, in particular
those affecting the available operators, cannot be modeled under these assumptions. Imagine
for instance a robot who breaks her gripper and cannot lift objects anymore. Cushing and
Kambhampati propose to precede replanning with a model-adjustment step to alter the
planning operators as necessary to accommodate for this kind of discrepancies. Not doing
this, implicitly assumes that a failure is never the agents ’fault’ and this ignorance can lead
to the infinite repetitions of a (systematic) mistake. We will come back to this issue in
Section 5.3.

5.1 Plan Repair

Despite the theoretical worst-case results by Nebel and Koehler, many people have shown
plan modification more efficient than planning from scratch in practice. The motivation for
this work has not always been execution monitoring, it was also explored as a means of
more efficient planning, so-called case-based planning or planning from second principles.
Instead of planning from first principles when a planning problem arises, the idea is to
consult a library of preexisting plans, find one that matches well with the new problem, and
then modify it according to the new requirements. The problem of replanning in execution
monitoring is a special case of this where the plan library consists of only one plan, the
current but failed plan. In our presentation we do not distinguish the presented results by
their original motivation and for those approaches rooted in case-based planning, we ignore
the methods for plan retrieval from a library.

Kambhampati describes a plan modification framework based on the PRIAR hierarchical
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task network (HTN) planner [Kambhampati, 1990]. This paper is of particular interest as
it again demonstrates the utility of the rationale, now in particular for the plan modifica-
tion/repair task. Again the plan is annotated with the rationale, the goal regressed through
the remainder of the plan. Kambhampati calls this annotation the validation structure of
the plan. As the name suggests, the validation structure serves to verify the plan’s validity.
A validation is a 4-tuple 〈E, ns, C, nd〉, where ns and nd are leaf nodes of the HTN, i.e. prim-
itive actions, E is an effect of ns (the source) and C is a precondition of nd (the destination).
Each node n in the HTN is annotated with (i) the schema instance that reduced (expanded)
the node, (ii) its e-conditions (external effect conditions), the effects of any node below n in
the hierarchy that support a validation outside of the n-subtree, (iii) its e-preconditions, the
preconditions of any node in this subtree supported by a node outside of the subtree, and
(iv) its p-conditions (persistence conditions). The latter, p-conditions, are validations whose
source is scheduled before, and whose destination is scheduled after the task of node n, thus
requiring that the validation’s effect is not invalidated by any node within the subtree of
n. This structure serves both to evaluate whether the plan is still valid and for replanning
when it is not. A violation can be the failing of a validation, a missing validation, or an
unnecessary validation. Roughly, in the two former cases a new sub-goal node for achieving
the missing support is added to the network, in the latter case, the unnecessary validation
is removed and this removal propagated, potentially removing any supporting actions which
are no longer required. The resulting modified HTN will be handed back to the planner,
reducing potentially remaining new, open sub-goals. Using the blocks world domain, Kamb-
hampati shows that doing plan repair this way can be between 30% and 98% faster than
planning from scratch depending on the similarity of the two problem instances. The results
also show that plan modification generally seems to pay off more the more complex the
problems are, in this case measured by the number of blocks. But the setup and generality
of the results were questioned by [Nebel and Koehler, 1995] for two reasons:

1. all considered instances belong to a sub-class of planning problems in the blocks world
domain which are solvable in polynomial time,

2. all instances are free of “deadlocks”, meaning that it is never necessary to put a block
temporarily on the table in order to reach the goal.

Based on the SNLP partial-order planner, [Hanks and Weld, 1995] implemented a plan
modification system called SPA. They also annotate the steps of the plan with the “rea-
sons” for adding it, but they utilize this information differently: when the need for plan
modification arises, the information can be used to retract earlier additions with all their
consequences. The presented replanning algorithm then just performs search in the space of
partial plans starting from the current one. The presented empirical comparison to PRIAR
draws a mixed picture: the savings rate of PRIAR is higher, but the authors argue that this
is because PRIAR is simply slower in generative planning5, a claim also supported by Nebel
and Koehler. But also from a theoretical point of view PRIAR’s superiority makes sense as
PRIAR seems to exploit the plans annotation more.

5Both replanning systems are compared to their own generative planner to determine their relative savings.
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Another partial-order planner based approach is the GPG system of
[Gerevini and Serina, 2000] based on planning graphs [Blum and Furst, 1995]. The modi-
fication of a plan for altered initial and/or goal sets of atoms is driven by inconsistencies
in the plan. An inconsistency is either an open precondition, an open goal condition, or
two parallel actions that are mutually exclusive. The main algorithm (ADJUST-PLAN)
processes these inconsistencies one by one starting with those of least time index. A window
around the inconsistency is cut out of the plan and replanned, using the set of true fluents at
the beginning of the window and the set of preconditions of actions at the end of the window
as initial and goal states. If there is no plan for the current window, the window is increased.
Replanning for one inconsistency may introduce new inconsistencies later in the plan. These
are dealt with as the considered time index proceeds. The replanning algorithm is clearly
sound and complete since in the worst case it ends up performing replanning from scratch,
namely when the replanning window is spanning the entire plan. Surely, only replanning
for the preconditions of the actions immediately to follow the window is not enough, as
goal conditions may be affected by the replanning if e.g. an action inside the window that
achieved a goal condition is not re-added and not compensated for otherwise. This insight
led Gerevini and Serina to what they call the Backward Ω-goal set, which in fact is again
nothing more than the regression of the goal over the remainder of the plan as we have seen
it implicitly already in PLANEX. Ideally one would use this set as the sub-goal to plan for
when cutting a window instead of just using the preconditions of actions immediately after.
In the considered partial-order setup this set can however not be computed when there are
still inconsistencies in the remainder of the plan in which case GPG approximates the set.
Experimental results on slightly modified logistics, rocket, and gripper example prob-
lems show that this technique can again be much faster than planning from scratch, in this
case up to four orders of magnitude.

An even more efficient and fairly universal approach to plan repair was recently presented
at ICAPS. The idea in [van der Krogt and de Weerdt, 2005] is to reuse the heuristic used by
a competitive planner to guide plan modification. The motivation for this is that replanning
is not essentially different from generative planning, but still most available replanning sys-
tems do not use a competitive planner. Roughly, the idea is to nondeterministically remove
actions from the plan and then add new actions, where the choice of actions to remove or
add is guided by the heuristic. The presented approach is universally applicable with all
heuristic planners but requires that the heuristic is capable of evaluating arbitrary partial
plans. While this is not generally the case, as most heuristic planners (e.g. FF) deploy
forward-search and their heuristics are designed accordingly, van der Krogt and de Weerdt
propose the following method to overcome this problem: after removing an action from the
plan, divide the remainder into pieces, so-called cuts, in such a way that no two actions
in the same cut were previously connected by a removed action.6 Then, from each cut a
macro-action is created and added to the theory. After that, evaluating the empty plan, or,

6This is always the case in totally-ordered plans, but in the exemplified partial-order setting (using the
VHPOP planner) plans can be graphs as actions can be performed concurrently and then this requirement
makes sense.
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in heuristic forward-search terminology, evaluating the initial state, provides the required
heuristic information for the partial plan that was created from removing actions. An em-
pirical comparison with GPG on problems of slightly modified initial states or goals shows
that the presented approach can be anywhere between two to four times faster on some
domains and twice as slow on others, while the plan quality, defined as the length, remains
comparable. While the idea of lifting the planning heuristic to replanning is certainly an
interesting new perspective, the automatic creation of macro actions from plan fragments
is not always trivial depending on the action description language, putting a crimp in the
universality argument.

One of the results in [Nebel and Koehler, 1995] was that plan reuse, and therefore also
also plan repair, can be even less efficient than plan generation in the worst case when
minimality of changes, so-called conservative plan modification, is required. Also this concern
was addressed empirically: In their 2006 ICAPS paper [Fox et al., 2006] presented a thorough
empirical comparison of plan repair and plan generation on PDDL 2.1 problems using the
LPG planner, a local search heuristic planner similar to the earlier used GPG system. Fox
et al. define the distance between two plans as the cardinality of actions appearing in
either plan but not their intersection and speak of greater plan stability when one replanning
strategy produces a new plan of a smaller distance to the old plan than another replanning
strategy. To maintain high plan stability, they extend LPG’s heuristic by a term penalizing
the addition or removal of actions increasing this distance. Unsurprisingly the modified
system achieves greater plan stability on replanning tasks than planning from scratch, while
generally but not always being faster then replanning from scratch. However, Fox et al. use
a different notion of conservative modification than the one underlying the results of Nebel
and Koehler. Nebel and Koehler distinguished several ways of modifying a plan and were
only able to show that conservative modification can be more complex than planning from
scratch for modifications where not only the cardinality of the actions the two plans have in
common is maximal, but also their order is the preserved. This restriction is not present in
the work by Fox et al..7

In contrast [Sapena and Onaindia, 2002] adopt a strategy where actions can only be
deleted at the front of a plan. The objective in this work is to find a plan suffix that is
executable from a state which is reached after executing a minimal number of actions in the
current (actual) state.8 The presented but very limited experimental results show that this
approach is faster than planning from scratch on problems with minor changes to the initial
state while slower on problems with major changes.

In the robotics community search techniques based on the A∗ algorithm dominate approaches
used to address the navigation problem. This is the problem of navigating a robot through a
dynamic environment without colliding with any objects. Due to the dynamics it is often the

7The modification strategy of Fox et al. corresponds to the MODMIX strategy of Nebel and
Koehler for which they were not able to show above worst case results (cf. the footnote on page 9 of
[Nebel and Koehler, 1995]).

8This is subsumed by the MODDEL strategy of Nebel and Koehler.
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case that the presence or position of obstacles change9 while a robot is executing a navigation
plan and then the robot needs to replan its trajectory. This is a special case of the general
replanning problem we are concerned with but here only the applicability of actions in the
search tree change, or, in search terminology, edges and states are removed from or added
to the search tree or the costs assigned to edges change. Despite these limitations the more
advanced research results along these lines could serve as inspiration for our, more general,
problem. These techniques all guarantee optimality10 of the plan modification result and
also other aspects have been addressed and now include, for instance, an anytime algorithm
for this sort for “replanning” ([Ferguson et al., 2005]). [Koenig et al., 2002] describe how the
techniques can be lifted to symbolic replanning, unfortunately without lifting the limitation
to cases where only the applicability of actions (in the search tree!) have changed. While
this is certainly too limited from our perspective the guaranteed optimality of the resulting
plan still makes this interesting for us. It is important though to understand the complexity
of the limitation. If none of the edges in the search tree is affected, the algorithm will do
nothing and claim optimality of the current plan. However it is easy to construct examples
where this fails, that is, cases where optimality is claimed but replanning from scratch would
find a better plan. One is in settings with conditional effects: a discrepancy may not affect
the preconditions or costs of any action in the plan, yet what the plan produces is not in
accordance with what was planned for. Another way to confuse this approach is when the
heuristic value depends on the available operators and their costs, as opposed to being a
simple mapping from states (or state features) to numbers. In fact the heuristic functions
most commonly used satisfy this criterion as they span a relaxed forward search graph to
estimate a distance from the current state to the goal. During heuristic search planning,
parts of the search space are pruned when, roughly, the heuristic function states that no
plan of a better quality than x can be found in this part of the search space and there are
candidates of quality better than x. But this information may change when the costs of
operators in these pruned parts change, potentially making earlier pruned parts now more
attractive. It is thus not enough to limit oneself to the edges in the originally spanned search
tree, but the impact of discrepancies on the heuristic function has to be considered as well.

5.2 Backtracking

As an alternative to modifying the remainder of the current plan, people have also consid-
ered the possibility of on-line backtracking to previous points in the plan from where an
existing alternative plan could be executed. This makes particular sense in conjunction with
conditional planning. When a condition that decides between possible sub-plans is evaluated
in a wrong belief about the actual state of the world, it may be beneficial to backtrack to
this point of plan execution when later noticing the mistake, so that the correct sub-plan
can be followed instead.

In [Golden et al., 1996] the motivation for backtracking is that under time constraints,

9more specifically the agent’s belief about obstacles changes
10with respect to all possible plans in the current state
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on-line systems may start executing a plan prefix while the plan has not been worked out
completely yet. Backtracking to a previous choice point then becomes necessary when it
turns out that the executed plan candidate does not reach the goal. Unfortunately, this
paper, whose focus is the description of the XII planning system, only outlines the benefits
and problems with backtracking. Recent work by [Eiter et al., 2004] is more elaborate. The
authors propose the off-line generation of backtracking libraries that can be used as patch-
plans upon execution failure to lead the system back to a diagnosed point of failure from
where an alternative plan to reach the goal may be found. The key contribution of this paper
is that of formulating the problem of finding pairs of action sequences and reverse plans as
a conformant planning problem. From there, the authors show several complexity results
by reduction from evaluation of Quantified Boolean Formulae (QBFs). In particular they
show that determining whether a given action sequence has a reverse action or a reverse plan
is Σp

2 hard or Σp
3 hard respectively (for the considered propositional action representation

framework). In this work, a reverse action (resp. reverse plan) for an action sequence AS is,
roughly, any action (resp. sequence of actions) such that for any two states S, S ′ for which
executing AS in S produces S ′ it is the case that the reverse action (resp. plan) executed
in S ′ always leads to S if it is executable in S ′. This paper is only of theoretical interest:
computing a reverse plan for every possible action sub-sequence of a plan prior to executing
it does not seem practical considering the demonstrated complexity.

In [Soutchanski, 2003a] and his thesis ([Soutchanski, 2003b], Section 4.3.3, page 122),
Soutchanski also proposes an extended recovery predicate involving backtracking. Unlike
the recovery predicate of [De Giacomo et al., 1998], it is not required to find a repair (patch)
plan with which the current remaining program can be prefixed to make it executable again,
but it also considers backtracking to an earlier program state (recorded in a so-called program
state history) from where alternative execution branches exist. The backtracking is realized
through planning on-line. Again we note that Soutchanski’s focus is on formalizing the
problem in the Situation Calculus. In particular, the applied planning algorithms used to
implement the specified predicates are poor compared to state of the art planning techniques.
But this is not a limitation of Soutchanski’s work, as his formal specifications of the task
are independent of the methods applied in the implementations are in particular amenable
to more sophisticated methods (within bounds).

5.3 Learning

In all approaches we have looked at so far one assumes that planning from scratch in the
new, unexpected situation would produce a plan that is valid and optimal and in fact is
taken as measure for any replanning algorithm in terms of quality and speed. But what if
the discrepancy that occurred is due to a systematic error and will thus repeat itself? This
is for instance the case when the agent applies an incorrect model of its own actions during
planning. Consider the following example of a soccer robot equipped with a kicking device11:
The user provided the robot with a model describing that kicking will make the ball travel

11This example is based on a true story.
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in a straight line until it hits an obstacle. Unfortunately, during the game a fuse blows,
causing the kicking device to fail entirely. Assume the robot has intercepted the ball and is
in a good position to score a goal by either kicking or pushing the ball into the goal. Since
kicking is usually faster this is the preferred option as it has a higher probability of success
and so the robot triggers a kick action, but nothing happens, the kick is broken. The robot
realizes that something went wrong when observing that the ball is still right in front of it
as this observation is inconsistent with the model. But planning anew in the new situation
will not do any good since the best plan will still be to kick instead of pushing the ball –
according to the erroneous model. None of the approaches we have described so far would
ever get out of this loop and the robot would miss its chance of scoring12. What is missing
is a model adjustment step before replanning to account for modeling faults.

In this section we review replanning approaches where this problem has been addressed.
We will elaborate on the obvious relation of this problem to reinforcement learning in the
next section where we discuss other related fields of research.

[McNeill et al., 2003] consider the problems arising in the execution of agent plans in a
multi-agent setting due to faulty ontologies. Their approach prescribes that before executing
a plan, the plan is “deconstructed” in order to annotate it with the assumptions made
during planning. These annotations are then used when a discrepancy arises, to pinpoint
possible causes of the fault. Intuitively these annotations state why the agent thought the
plan-elements would work, that is, why it thought each precondition was satisfied. If the
action then fails at execution, one can conjecture what went wrong in the past, i.e. which
past action failed to produce its required effect (compare this to the diagnosis task and in
particular [Iwan, 2000]). At this point the paper makes a strong assumption namely that the
reason why an action fails is given to the agent already as a condition, that is, if an action
a fails the system is informed that this is because a – possibly yet unknown – precondition
φ of a was not satisfied. The paper proposes to then correct the systems ontology and this
may involve either changing facts in the theory, corresponding to changing the belief about
the state of the world, or modifying the signature of the ontology itself. Unfortunately the
paper does not give clues as to how one can decide what actually has to be changed and how
this change can be done automatically.

Less original but more principled and detailed is the proposal of [Bjäreland, 1999]. This
paper begins by formalizing the problem in the situation calculus and distinguishes between
two sources for discrepancies exogenous actions (EA) and violation of ontological assumptions
(VOA). The paper makes one critical assumption: the system is always able to tell whether
an action has been executed completely or not by reading internal sensors. This is used
to determine whether an EA or a VOA has caused a discrepancy: if no action has been
executed but a discrepancy occurs it is assumed to be due to an EA, otherwise it is due to
a VOA (combinations are not considered). When an EA occurs there is no need to adjust
the model of the dynamics, instead just the current knowledge about the current situation is
modified. This is done by replacing the axioms describing the initial situation S0 with axioms
describing the values of all ground fluents in the observed new state of the world. This is

12and finally impressing her developers
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only possible in the face of complete knowledge about the initial situation. If the discrepancy
is deemed to be due to a VOA, four cases are distinguished, two where the truth value of a
fluent unexpectedly changed (positively or negatively), and two where it unexpectedly did
not change (positively or negatively). In these cases the suggestion is to extend the successor
state axioms, describing how fluents change in response to the execution of actions in the
domain, according to the action that was performed and the discrepancy that was observed.
This is done in a very obvious way: the conditions under which a fluent changes when the
action in question is executed are either restricted by adding conjuncts or relaxed by adding
disjuncts to the existing conditions. This does not seem to be a very favorable approach from
the machine learning perspective as it does not perform any sort of generalization. While this
may not be so critical with toy domains which can be modeled propositionally, in real-world
systems the fluents of the model often involve many real-valued numbers, e.g. a position, and
restricting learning to instances of these numbers will not be of any help in improving the
model, as it is unlikely that the exact same state will be visited repeatedly. The assumption
of perfect actuators, that is, assuming that the system always knows whether an actions has
been executed completely, is problematic too. Some actions have indirect effects that only
become observable sometime after the actual action was performed, but these effects would
here be classified as exogenous and the system would thus never learn about their cause.

In [Wang, 1994] the author is concerned with learning planning operators by observing the
actions of an expert agent and ’practicing’ the newly acquired operators in the real-world to
refine the model.13 Observations consist of the state prior and the state after a named action
is executed. The system is learning specific-to-general by simply generalizing preconditions
and effects. Many assumptions are made: operators and states are deterministic, sensors are
noise-free, the state is fully observable, preconditions are conjunctions of literals, and actions
do not have conditional effects. In order to refine learned operators, the author proposes to
solve practice problems in the environment to obtain more observations. While the paper
does not elaborate on how to choose these practice problems, it does address the problem
of planning using potentially over-constrained plan operators. When during planning the
agent is uncertain about a conjectured but not yet verified precondition, the corresponding
action may be considered applicable even when the conjectured precondition is not satisfied,
in order to test the conjecture. A plan repair strategy that plans for open preconditions
handles the potentially resulting execution failures.

Recently [Pasula et al., 2004] have addressed the same problem but in the presence of
uncertainty about action outcomes. Given a set of (pre-state, action, post-state) examples,
(s, a, s′), they greedily search for a best set of operators where the quality measure to max-
imize is the likelihood of the data given the operators, minus a term penalizing complex
operator sets as determined through the number of preconditions and outcomes of all op-
erators. The actual search is divided into three functions of which LearnRules is the main

13In fact, the author does not propose to practice in the real-world but a simulation thereof. This proposal
though does not make much sense, because any simulation requires a model of the world itself. Thus if it is
possible to implement and run such a simulator, the model learning problem has already been solved and
the simulator model could be adopted by the agent. We thus think that practicing in the real-world is the
only way to make sense out of this proposal.
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function. It initializes the search by creating operators for each tuple (s, a) and then per-
forms the search by specializing or generalizing these operators. Each time it creates a new
operator it calls the second function InduceOutcomes. This function adds the specification
of the outcomes (conjunctions of literals) to the operator. It again applies search to maxi-
mize the score (likelihood of data minus complexity) by merging compatible outcomes and
removing redundant ones. Finally, the LearnParameters function adjusts the probabilities
of these outcomes using a gradient method for optimization with respect to the score. While
no theoretical properties like convergence guarantees or complexity are analyzed, the au-
thors compare the approach to a learning method for Dynamic Bayesian Networks (DBNs)
showing that the presented approach learns the true distribution of outcomes better than
DBNs for all considered training set sizes. They also demonstrate that relational operators,
i.e. operators with variable arguments, are learned faster than purely propositional (ground)
ones.

Pasula et al.’s approach can be classified as learning from specific-to-general. Alterna-
tively one can also learn from general-to-specific as demonstrated, for the purpose of learning
planning operators under partial observability, in [Amir, 2004, Amir, 2005]. There the ap-
proach is to start out with the set of all possible transition systems and filter this set by a
given sequence of action-observation tuples, only keeping those transition systems consistent
with the observations. Dealing with the explicit set of all possible transition systems (called
the transition belief state) is not feasible as it is doubly exponential in the number of domain
features and the number of actions. Instead, Amir represents the transition belief more
compactly as a formula of propositional logic. The actual learning of plan operators is then
defined as the progression of this transition belief formula through the actions in the given
sequence and the filtering by conjunction with the made observations. This approach will
probably not be useful in our setting as we are starting with one specific transition system,
the one we used in planning, and it is unclear how one could generate a larger set of possible
transition systems from that in order to make this filtering approach applicable.

6 Related Work

In this section we briefly overview a few related areas of research. This presentation serves
mainly to mark the boundaries of our survey and show the differences and similarities. In
particular it does not claim to be a thorough summary of research in these related fields.

6.1 Decision Theory

In decision theory, people are concerned with optimally choosing actions in systems of
stochastic state transitions in order to maximize a given utility function. The de-facto
standard for representing these systems are Markov Decision Processes (MDPs) (see e.g.
[Puterman, 1994, Boutilier et al., 1999]), when the state is fully observable, and Partially-
Observable Markov Decision Processes (POMDPs), when the state is only partially observ-
able. Solving an MDP (resp. POMDP) amounts to generating a policy, a control rule
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mapping states (resp. belief states) to actions in a way that maximizes the expected ac-
cumulated reward received from the states visited when following this rule (cf. Universal
Plans in Section 3). Policies are universal. Since they map every state to an action, an agent
executing the policy always knows what to do next and this choice will be optimal and so
no execution monitoring for dealing with run-time discrepancies is required except for state
estimation in the case of POMDPs. But the price for this is high as mentioned earlier in
the context of Schopper’s Universal Plans: the enumeration of all states makes the approach
generally infeasible for large or infinite domains. Recent efforts try to work around this
requirement by using compact representations [Hoey et al., 1999] and approximation tech-
niques [St-Aubin et al., 2000]. Also First-Order MDPs are being investigated and a symbolic
form of value iteration explored as a viable way for solving them [Boutilier et al., 2001].
First-Order MDPs are a promising approach, but the available solution techniques are not
yet competitive with state of the art planners.

Further, while theoretically being the ultimate answer to run-time discrepancies in the
current state of the system, policies become invalid when the goal, here the value function,
changes. We will come back to this point in our final section.

When there remains uncertainty about the model applied in planning, there is a trade-off
to be made. Either one exploits the current model, that is, tries to maximize the reward
by behaving optimally according to it, or one decides to explore the environment in order
to improve the model and benefit from this information gain in the future. This problem
has been formalized and addressed in decision theory, reinforcement learning, and adaptive
control (see for example [Duff, 2002], Chapter 2 for a survey). While the approaches have
their appeal because of their rigorous mathematical foundation, they are limited in their
expressiveness by using a transition function that maps ground states and ground actions to
new states. For instance, a system performing action pickup(a) 1000 times does not learn
anything about pickup(b). This contrasts with the approaches presented in Section 5.3.

6.2 Metareasoning

In the face of limited computational resources14, a rational agent interleaving planning and
execution in a dynamic world should also be aware that deliberation itself impacts the state
of the world. This is because the world evolves while the agent deliberates. In many ap-
plications it may thus be sometimes beneficial to commit to a seemingly sub-optimal plan
quickly, because determining the optimal plan may just ’cost’15 more than the potential
gain, namely when time directly or indirectly affects the preferences of the agent. Rea-
soning about the agent’s own reasoning process and capabilities is called metareasoning
([Russell and Wefald, 1991]). In the context of execution monitoring we may be faced with
questions of metareasoning when monitoring plan optimality: It may be that the current
plan, while still valid, has been found to be sub-optimal. Then it may still be optimal (in

14and this is the case for any real-world system
15We use the terms ’cost’ and ’gain’ loosely here and understand them to stand for any negative, resp.

positive, impact on the agents preference criteria.
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the meta sense) to continue its execution, namely when replanning will cost more than the
potential gain. Another aspect of metareasoning concerns the evaluation step itself: if the
evaluation incurs costs, e.g. by interrupting the execution, it may be beneficial to omit
evaluation and any subsequent replanning entirely. [Russell and Wefald, 1991] suggest two
main applications for metareasoning: (a) enabling the agent to decide on-line which compu-
tations to perform and which not, but also (b) analyzing the rationality of a system design.
We can hope that in particular with respect to the latter, metareasoning can help lay the
groundwork for evaluating execution monitoring designs and methods theoretically rather
than just empirically.

6.3 Control Theory

The high-level objective of control theory – “control a system such that it behaves in a
particular way” – is very similar to ours. The main difference between control theory and
AI planning and execution monitoring approaches are the applied mathematics (cf. e.g.
[Dean and Wellman, 1991]). Typically in control theory states are represented through the
values of continuous variables, and ’control laws’ map the current state and current time
to control values, much like policies do in decision theoretic planning. While the dynam-
ics of the controlled system can generally be characterized by algebraic, often differential,
equations, the use of an explicit model is uncommon. Often the error, e(t), the difference
between the current state and the desired state at time t, is used directly to control the sys-
tem. The very popular proportional-integral-derivative (PID) controller for example defines
the control value to take in terms of a linear combination of the error itself, e(t), the accu-

mulated error,
∫
t
e(t), and the error’s gradient, de(t)

dt
. Apart from the difference in applied

techniques, research in control theory is also generally concerned with other questions such
as the controllability, stability, or diagnosability of a system. Similarities exist in so-called
optimal control which is concerned with optimizing the systems behavior with respect to
some “cost index”, the counterpart to preferences in AI planning. Finally, adaptive control
techniques address the problem of refining the controller automatically, by adjusting the
control parameters as seems necessary during operation.

7 Conclusion and Proposed Research

Revisiting the modules of the execution monitoring framework of Section 2 we make the
following observations:

• Diagnosis: While approaches using numeric probabilities to reason about the most
likely diagnosis are compelling from a mathematical point of view, they suffer from
the problem of knowledge elicitation. In particular in complex dynamical systems,
eliciting precise numeric probabilities from experts may be infeasible. As such, some
form of qualitative probability measure is compelling. We argue that experts do not
think about probabilities in numeric Markovian terms, but in temporally extended
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qualitative terms, like “After driving over peebles, there is an increased probability of
erroneous odometry sensor readings.” or “When the CPU fan fails, it is likely that the
CPU will overheat at some point.”

The role of diagnosis in the context of execution monitoring also leaves some open
questions. For instance, when a rationale-based approach to state evaluation is used
and the plan has been annotated at each step with a condition for its validity, diag-
nosis should not provide the most likely diagnosis, but rather the probability for this
condition being true.

• Evaluation: This part of the task has received surprisingly little attention in particular
with respect to monitoring continued optimality of a plan. The only exception worth-
while noting, [Boutilier, 2000] (cf. page 19), makes strong assumptions about the
available data, but may be a good starting point for further research. Nearly all
approaches for evaluating discrepancies with respect to plan validity are based on the
regressed goal, even though most authors do not seem to be aware of this. Yet no
attempt has been made to lift this approach to evaluate discrepancies with respect to
plan optimality.

• Replanning: Plenty of work exists regarding plan modification, most of it contribut-
ing an algorithm and an empirical analysis, showing its speed-up over planning from
scratch, but with [Nebel and Koehler, 1995] (cf. page 20) theoretical investigations on
this matter exist as well. However, virtually none of the existing approaches aims at
maximizing plan optimality rather than a speedy reestablishment of plan validity. Ex-
ceptions are either limited in their applicability (cf. page 25, [Koenig et al., 2002]) or
apply a specific preference criterion which is in particular distinct from the preferences
that lead to the current plan ([Cushing and Kambhampati, 2005], [Fox et al., 2006],
cf. page 24).

Also there are no satisfactory integrated approaches, i.e. execution monitoring systems
applying state-of-the-art techniques in all of these parts. While modularizing has its obvious
appeal, an integrated approach could have potential benefits as well. For instance it may
not be necessary to disambiguate between two possible diagnoses when both faults provoked
the same course of action, for instance the same repair plan, or both suggested replanning
from scratch.

7.1 Proposed Research

Principally our interest lies with highly dynamic real-time domains of continuous state and
action spaces, with lots of uncertainty, both exogenous and endogenous, and where specifying
or learning a fail-proof model is not feasible or practical. We believe that in these cases,
planning has to be paired with execution monitoring and an ideal execution monitor should:

• track the actual state of the world;
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• determine whether the current plan has become sub-optimal or invalid and correct this;

• refine the model when necessary;

• operate on-line and not require significant changes to the applied planning method, in
particular not require the off-line computation of a policy;

• allow for changing goals and preferences;

• be introspective and able to reason about the effects of its own deliberation processes
(metareasoning);

• monitor replanning in order to react appropriately to discrepancies during that time
as well.

In particular we believe that the following issues are worthwhile investigating:

1. Rationale-Based Monitoring: We believe that the rationale underlying the original
construction of a plan is a good starting point in analyzing the impact run-time dis-
crepancies have on the overall objective, namely reaching a given goal (plan validity) or
reaching a goal in the best possible way (plan optimality). This belief is supported by
several existing approaches but it has not been approached in a principled fashion yet
and has still to be formalized. Also the use for monitoring optimality rather then just
validity of a plan is a new and challenging aspect. Once formalized, the applicability of
this approach for monitoring planning and execution of systems under various forms of
soft and hard constraints and for various planning paradigms should be investigated.
For instance, monitoring plan validity in the face of temporally extended goals would
be an interesting aspect, but also monitoring plan optimality of conditional plans could
be studied.

2. Rationale-Based Replanning: Similar to the last item, the formalization of the rationale
may also be exploited in replanning, in particular for deciding whether or not plan-
repair is likely to be more efficient than planning from scratch and, if so, the rationale
my guide the repair. When Nebel and Koehler investigated the impact of problem sim-
ilarity on the efficiency of plan-repair, they used a purely syntactic similarity measure.
It remains to be shown that a more semantic, i.e. problem specific, similarity measure
still not warrants better repair complexity. Such a similarity measure may be inspired
by the rationale.

3. Conditional Planning versus Execution Monitoring: While not the main motivation
for our work, it is also interesting to investigate how the trade-off between detailed
modeling and subsequent conditional planning should be made against the alternative
of naive modeling or little conditional planning ( e.g. only for the most likely cases)
and thus faster planning together with tight execution monitoring. Here, insights from
metareasoning may be relevant.
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4. Execution Monitoring for Changing Objectives: While most people consider execution
monitoring a means for dealing with run-time discrepancies regarding the current state
of the world, it can also happen that the agent’s goal or preferences change. When
such a change has not been anticipated and planned for, e.g. in form of a contingency
plan, the system again has to decide how to react to this matter.

5. Preferred Dynamic Diagnosis: McIlraith ([McIlraith, 1997], cf. page 16) has cast
the problem of dynamic diagnosis as a planning problem and recently we have in-
vestigated means for expressing complex qualitative temporal preferences in planning
([Bienvenu et al., 2006, Baier et al., 2007]). We believe these can be used to express
complex qualitative temporal probabilities over possible diagnoses as well. These are
easier to elicit from experts than numeric probabilities and overcome the Markovian
restriction of standard probabilistic frameworks.

A long-term goal is to design a planning and execution system, very likely based on either
the ReadyLog or IndiGolog framework, and demonstrate its applicability in some real-world
domain with above characteristics.
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