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Abstract. Reliably extracting information from aerial imagery is &idult prob-
lem with many practical applications. One specific caseisfifoblem is the task
of automatically detecting roads. This task is a difficulion problem because
of occlusions, shadows, and a wide variety of non-road ¢hj&espite 30 years
of work on automatic road detection, no automatic or sertiaatic road detec-
tion system is currently on the market and no published niettas been shown
to work reliably on large datasets of urban imagery. We pseptetecting roads
using a neural network with millions of trainable weightsigfhlooks at a much
larger context than was used in previous attempts at lezthia task. The net-
work is trained on massive amounts of data using a consumer. @/ demon-
strate that predictive performance can be substantialprared by initializing
the feature detectors using recently developed unsugernigsrning methods as
well as by taking advantage of the local spatial coherentiesobutput labels. We
show that our method works reliably on two challenging urbatasets that are
an order of magnitude larger than what was used to evaluatopis approaches.

1 Introduction

Having up-to-date road maps is crucial for providing manyamtant services. For
example, a city requires accurate road maps for routing @eney vehicles, while a
GPS-based navigation system needs the same informatiodeén  provide the best
directions to its users. Since new roads are constructedérgaly keeping road maps
up-to-date is an important problem.

At present, road maps are constructed and updated by haed dasigh-resolution
aerial imagery. Since very large areas need to be considéredupdating process
is costly and time consuming. For this reason automaticctiete of roads in high-
resolution aerial imagery has attracted a lot of attentiotiné remote sensing commu-
nity. Nevertheless, despite over 30 years of effort [1]hattime of writing there was
no commercial automatic or semi-automatic road detectystesn on the market [2,
3] and, to the best of our knowledge, no published method kas Bhown to work
reliably on large datasets of high-resolution urban imgpger

Much of the published work on automatic road detection fei@n ad-hoc multi-
stage approach [1,4,5]. This generally involves estaipigskome a priori criteria for
the appearance of roads and engineering a system thatsdebgetts that satisfy the
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established criteria. For example, roads are often cheriaet as high-contrast regions
with low curvature and constant width, with a typical de@ctstrategy involving edge
detection, followed by edge grouping and pruning. While earnfi these approaches
have exhibited good performance on a few sample images,akénwvhich they com-
bine multiple components often results in the need to tuniéplaithresholds and such
methods have not been shown to work on large real-world estas

In this paper we follow a different approach, where the spdtrnsto detect roads
from expert-labelled data. Learning approaches are pdatiy well-suited to the road
detection task because it is a rare example of a problem vexgrert-labelled data is
abundant. It is easy to obtain hundreds of square kilomefehigh-resolution aerial
images and aligned road maps. In fact, most universities liararies dedicated solely
to geographic data of this kind.

Learning-based approaches to road detection are not neverasattempts at pre-
dicting whether a given pixel is road or not road given feasiextracted from some con-
text around it have been made [6-9]. While showing some menthese approaches
have also failed to scale up to large challenging datase¢sb®lleve that previous
learning-based approaches to road detection have not deré&k because they suffer
from three main problems. First, very little training dagaused, likely because ground
truth for training and testing is typically obtained by mafiylabelling each pixel of an
aerial image as road or non-road making it infeasible to use@f training data. Sec-
ond, either a very small context is used to extract the featwr only a few features are
extracted from the context. Finally, predictions for eadttepare made independently,
ignoring the strong dependencies between the road/nahlaibals for nearby pixels.

We propose a large-scale learning approach to road detehibaddresses all three
problems as follows:

— We use synthetic road/non-road labels that we generaterfradily available vec-
tor road maps. This allows us to generate much larger labeli¢asets than the
ones that have been used in the gast.

— By using neural networks implemented on a graphics processour predictors
we are able to efficiently learn a large number of featuresumada large context
for making predictions.

— We introduce a post-processing procedure that uses thendepeies present in
nearby map pixels to significantly improve the predictiohewr neural network.

Our proposed approach is the first to be shown to work well egelamounts of
such challenging data. In fact, we perform an evaluationvem ¢hallenging urban
datasets covering an area that is an order of magnituder ldrge what was used to
evaluate any previous approach. We also show that a prelgatrsing based approach
works well on some parts of the datasets but very poorly oersthinally, we show
that all three of our proposed enhancements are importafitiining good detection
results.

! Dollar et al. [10] proposed a similar approach to generatjraund truth data but still used
very little training data.
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2 Problem Formulation

Let S be a satellite/aerial image and l&f be a corresponding road map image. We
defineM (i, j) to bel whenever locatiolfz, j) in the satellite imagé corresponds to a
road pixel and 0 otherwise. The goal of this paper is to le&id (¢, j)|.S) from data.

In a high-resolution aerial image, a single pixel can repméa square patch of land
that is anywhere between several meters and tens of ceatsveile. At the same time
one is typically interested in detecting roads in a larg@aauch as an entire town or
city. Hence, one is generally faced with the problem of mgkiredictions for millions
if not billions of map pixels based on an equally large nundfesatellite image pixels.
For these reasons, the probability thidti, j) = 1 has typically been modeled as a
function of some relatively small subset§fthat contains locatiof, j) instead of the
entire imageS [7, 10]. In this paper we model

P(N(M (i, 3), wm)|N(S(i, §), ws)), (1)

whereN (I(4, j), w) denotes a x w patch of imagd centered at locatiofi, j). Hence,
we learn to make predictions fora,, x w,, map patch given a, x w, satellite image
patch centered at the same location, whefe < w,. This allows us to reduce the
required computation by both limiting the context used tee predictions and by
reusing the computations performed to extract features fre context.

2.1 Data

While high-resolution aerial imagery is easy to obtain, pieel road/non-road labels
are generally not available because most road maps comesdictarformat that only
specifies the centreline of each road and provides no infimmabout road widths.
This means that in order to obtain per-pixel labels one nitletelabel images by hand
or generate approximate labels from vector data. The hédlitag approach results in
the most accurate labels, but is tedious and expensiveidpdper we concentrate on
using approximate labels.

Our procedure for generating per-pixel labels for a giveelee imageS is as
follows. We start with a vector road map consisting of roadtedine locations for a
region that includes the area depictedinwe rasterize the road map to obtain a mask
C for the satellite images. In other wordsC(i, j) is 1 if location (i, 7) in satellite
imagesS belongs to a road centreline afdtherwise.

We then use the mask to define the ground truth may as

_d(i,j)?

]\/[(Zv.]) =e oz, (2)

whered(i, 7) is the Euclidean distance between locatfary) and the nearest nonzero
pixel in the maskC, ande is a smoothing parameter that depends on the scale of the
aerial images being used/ (i, j) can be interpreted as the probability that location
(i,7) belongs to a road given that it é§1, j) pixels away from the nearest centreline
pixel. This soft weighting scheme accounts for uncertaimtgad widths and centreline
locations. In our experimemtwas set such that the distance equivalebta- 1 pixels
roughly corresponds to the width of a typical two-lane road.
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CY (b)
Fig. 1. The rooftop of an apartment building. a) Without contextWi)h context.

3 Learning to Detect Roads

Our goal is to learn a model of (1) from data. We use neural odtsvbecause of their
ability to scale to massive amounts of data as well as thewiisavhich they can be
implemented on parallel hardware such as a GPU. We mode$(1) a

FO(N(S(i,5), ws))), (3)

whereg is feature extractor/pre-processor ghid a neural network with a single hidden
layer and logistic sigmoid hidden and output units. To beise

F(x) = (W3 a(WTX+by) +by), (4)

whereo (x) is the elementwise logistic sigmoid function,'s are weight matrices and
b’s are bias vectors. We now describe the pre-processingdifume, followed by the
training procedure fof.

3.1 Pre-processing

It has been pointed out that it is insufficient to use only laoage intensity information
for detecting roads [7]. We illustrate this point with Figut. The aerial image patch
depicted in sub-figure 1(a) resembles a patch of road, baitmiire context, as shown
in sub-figure 1(b), it is clearly the roof of an apartment 8imp. Hence, it is important
to incorporate as much context as possible into the inputstpredictor.

The primary aim of the pre-processing procedure is to redoealimensionality
of the input data in order to allow the use of a large contekinfiaking predictions.
We apply Principal Component Analysis ta, x ws; RGB aerial image patches and
retain the topw, - ws principal components. The function is then defined as the
projection ofws x ws RGB image patches onto the tap - w, principal components.
This transformation reduces the dimensionality of the gtiavo thirds while retaining
most of the important structure. We have experimented wsihgialternative colour
spaces, such as HSV, but did not find a substantial differengerformance.

It is possible to augment the input representation with rotb&tures, such as edge
or texture features, but we do not do so in this paper. We hgverenented with using
edge information in addition to image intensity informatidut this did not improve
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Fig. 2. Some of the filters learned by the unsupervised pretrainioggalure.

performance. This is likely due to our use of an unsupervisathing procedure for
initializing, or pretraining, the neural network. In thexhesection we will describe
how this procedure discovers edge features independgnihabning a model of aerial
image patches.

3.2 Training Procedure

At training time we are presented wifli map and aerial image patch pairs. et
ands'™ be vectors representing th¢h map and aerial image patches respectively, and
letm™ denote the predicted map patch for thth training case. We train the neural
network by minimizing the total cross entropy between grbnath and predicted map
patches given by

2

Wop,

N
=30 (mMlog ™ + (1= m™) log(1 — ™)), (5)
n=1

=1

where we use subscripts to index vector components. We tiseldastic gradient de-
scent with momentum as the optimizer.

Unsupervised Pretraining Traditionally neural networks have been initialized with
small random weights. However, it has recently been shoatusing an unsupervised
learning procedure to initialize the weights can signiftsaimprove the performance
of neural networks [11, 12]. Using such an initializatiompedure has been referred to
aspretraining.

We pretrain the neural netwopkusing the procedure of Hinton and Salakhutdinov
[11], which makes use of Restricted Boltzmann Machines (RBMn RBM is a type
of undirected graphical model that defines a joint probghilistribution over a vector
of observed variablesand a vector of latent variablés Since our neural network has
real-valued inputs and logistic hidden units, in order tplgfiRBM-based pretraining,
we use an RBM with Gaussian visible and binary hidden unite jbint probability
distribution overv andh defined by an RBM with Gaussian visible and binary hidden
units is

p(v.h) = e BV 7

whereZ is a normalizing constant and the enefggv, h) is defined as

E(v,h) = Z v? - Z c;v; + Z bphy, + Z wirvihy | . (6)
k ik

7 7
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While maximum likelihood learning in RBMs is generally iattable, efficient approx-
imate learning can be performed by approximately miningzandifferent objective
function known as Contrastive Divergence [13].

We train an RBM on the PCA representations of aerial imagehestby approxi-
mately minimizing Contrastive Divergence using stocltagtadient descent with mo-
mentum. In order to encourage a sparse model of aerial imagesne where only
a few components df are nonzero, we fix the hidden unit biaggsto a large neg-
ative valué, as proposed by Norouzi et al. [14]. This encourages theemiduhits to
be off unless they get a large input from the visible unitsc®the RBM was trained,
we initialized the weight matri¥l; and bias vectob; from Equation 4 with the RBM
weightsw andb. We found that encouraging sparseness sped up learningw@nohied
generalization.

Some selected filters learned by the pretraining procederstaown in Figure 2.
The vast majority of the filters learned to ignore colour, the few filters that were
colour sensitive were low-frequency, opposing red-greeblae-yellow filters. Many
of the colour-neutral filters are oriented, high-frequeredge filters. We believe this
is why augmenting the inputs with edge information did nopiove road detection
performance.

Adding Rotations When training the neural network we found that it is useful to

rotate each training case by a random angle each time it cepsed. Since many cities
have large areas where the road network forms a grid, tgioindata without rota-

tions will result in a model that is better at detecting roatlsertain orientations. By
randomly rotating the training cases the resulting modelsat favor roads in any

particular orientation.

4 Incorporating Structure

Figure 3(a) shows predictions for a small map patch made lyneural network.

There are two obvious problems with these predictions —etlage both gaps in the
predicted roads and disconnected blotches of road pix@en®ur prior knowledge
about the structure of road networks it would be safe to eatecthat the blotches in
Figure 3(a) are false positives while the gaps are falsetivega Previous learning-
based approaches to road detection along with the methadlged in Section 3 make
such mistakes because they make predictions independendly pixels.

In order to take advantage of the structure present in neagu/non-road labels we
introduce a post-processing step. The goal is to improvetthéiction for a given map
pixel using nearby predictions. We treat this as a supetNesrning problem and train
a neural network to predicta,,, x w,,, map patch from a. x w, patch of predictions.
To be precise, led! be the predictions of neural netwoflfor map image\/. Then let
f» be a neural network of the same functional formyfasat predictsV (M (2, 5), w.y,)
based onV (M (i, j),w.). The prediction off, for map imageM is then denoted by
M,

pr

2 |n this paper, we sét, to -4.



Learning to Detect Roads in High-Resolution Aerial Images 7

(b)

Fig. 3. (a) Predictions before post-processing. (b) Predictidies post-processing.

The neural networlf, is trained using stochastic gradient descent to minimiasscr
entropy between the ground truth map patches and the pmedics given by Equa-
tion (5). We do not use pretraining when trainifig as this did not improve perfor-
mance. As with training of the neural netwgfkwe randomly rotate each training case
before it is processed in order to remove a bias towards lioagtsne orientations.

The post-processing procedure is similar to the approaghioy®d by Jain and
Seung [15] for natural image denoising. They train a corimhal neural network to
predict small noise-free patches of natural images givagelgpatches that had noise
added to them. Since our post-processing procedure refheaeplies a local filter at
fixed intervals over a larger image, it can be seen as a typernfotutional neural net-
work where the convolution is followed by subsampling. Jaid Seung show that this
kind of neural network architecture can be seen as perfgmpgproximate inference
in a special kind of Markov Random Field model [15]. Jain aedii®) also show that
this approach outperforms approaches based on Markov RaRagds on the image
denoising task.

Figure 3(b) shows the result of applying the post-procesgiocedure to the pre-
dictions from figure 3(a). The process clearly removes diseated blotches, fills in the
gaps in the roads, and generally improves the quality of tediptions. While we do
not do so in this paper, the post-processing procedure capjieed repeatedly, with
each application receiving the predictions made by theipusvapplication as input.
This process propagates confident predictions along tltegbeel road network.

5 Experiments

We performed experiments on two datasets consisting ohuabeaal imagery at a res-
olution of 1.2 meters per pixel. We will refer to the datasetsu&BAN1 andURBAN2.
DatasetURBANL1 covers a large metropolitan area with both urban and saburé-
gions. It consist of a training set that covers roughly 500esq kilometers, a separate
test set of 50 square kilometers, and a separate small tratidset that was used for
model selection. DatasefRBANZ2 is only used for testing and consists 2¥ square
kilometers of aerial imagery of a city different from the arevered inuRBAN1. When
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generating the ground truth pixel labels as described iti@e2.1, the smoothing pa-
rameterss was set t@® pixels. This makes the area within one standard deviation of
a pixel roughly 20 feet in diameter, which is approximatélg tvidth of a typical two
lane road.

We made predictions fot6 x 16 map patches fron64 x 64 colour RGB aerial
image patches, which correspondsuitg = 16 andws = 64. The neural networlf
had4096 input units,12288 hidden units, and56 output units. For the post-processing
procedure, we seb. to 64 and usedt096 hidden units in the neural n¢}. Hencef,
had4096 input units,4096 hidden units, and56 output units. All inputs to the neural
networks were shifted and rescaled to have nteand standard deviatioh

Although our method is not overly sensitive to the parame&tues, we present
them here for completeness. We used stochastic gradiecemtesith minibatches of
size 64 and momentum 060.9 for training the neural networks. We used a learning
rate 0of0.0005 and L, weight decay 00.0002. When training Restricted Boltzmann
Machines we used the contrastive divergence approximagitre gradient [13]. Once
again, we used stochastic gradient descent with minibatoch&ize64 and momentum
of 0.9. We used a learning rate 6f001 and L, weight decay 0f.0002. We made
between 10 and 20 passes through the training set whemgaimé neural networks
and RBMs.

Since the models we have just described all have millionsasfpeters and the
training set for datasetRBAN1 consists of over 1.2 million training cases, training
our models would normally take months on a single core CPU exks on a multi-
core machine. We were able to train our best model in less3hdays on a consumer
GPU. This included pretraining and training of neural netwg and training of the
post-processing neural netwofk. Since the training procedures for neural networks
and RBMs are easily expressed in terms of elementary maigrapions, porting them
to the GPU was trivial. In both cases, we obtained speedupsooé than an order of
magnitude over the same algorithms running on a moderndowe-CPU. In order to
implement the required algorithms on the GPU, we first cibat&PU-based matrix
library for Python. The CUDAMat library as well as our implentations of neural
networks and RBMs are now available as open-source soffd/éfe

5.1 Metrics

The most common metrics for evaluating road detection systare correctness and
completeness [17]. Theompleteness of a set of predictions is the fraction of true roads
that were correctly detected, while tbarrectnessis the fraction of predicted roads that
are true roads. Since the road centreline locations thatee 1o generate ground truth
are often noisy we compute relaxed completeness and coesescscores. Namely, in
our experiments completeness represents the fraction@fdad pixels that are within

p pixels of a predicted road pixel, while correctness meastive fraction of predicted
road pixels that are withip pixels of a true road pixel. Relaxing the completeness and

% Multiples of 64 were used because using arrays with dimensions that areplasilof 64 can
help reduce the number of idle cores on the GPU.
4 CPU implementations used parallel linear algebra routmesMATLAB.
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Fig. 4. Completeness/correctness curvesJ®@BAN1 andURBAN2.

correctness measures in this manner is common practiceaviaérating road detection
systems [17]. In this paper we seto 3 pixels.

5.2 Results

Since our models provide us with road/non-road probagédifor map pixels, we need

to select a threshold to make concrete predictions. Forg¢hison we evaluate our mod-
els using completeness/correctness curves. Figure 4 stampleteness/correctness
curves for the four models we evaluated on both datasets.

To compare to previous approaches, we evaluate a moddlgldbe HER, that uses
a smaller context of size4 and does not use rotated training data, pretraining, or post
processing. This approach has been used in several roadidet®ystems [6, 7, 9], but
with far less training data. The modefrHER is also an example of the kind of road
detection system that can be trained on a modern CPU in tteeititakes us to train
our best model on a GPU.

We comparedTHER to three new models that used a context sizé4énd were
trained as described above. The modeltATE did not utilize pretraining or post-
processing and is meant to show the performance of usingea tamtext with rotated
training data. The modetRETRAIN is a pretrained version ctOTATE. Finally, the
modelPOSTPROAS the modePRETRAIN followed by our post-processing procedure.

The large difference in the performance of the maaieiErR on the two datasets can
be explained by the structure of their road networks. Matigshave large areas where
the road network consists of a grid at some orientation ltieguin roads having two
dominant orientations. Indeed, large parts of the citiasiBAN1 andURBAN2 consist
of grids, however, the orientation of the grids is differ&etween the two datasets.
Since the modebTHER is trained on patches afRBAN1 without randomly rotating
them, the model strongly favors roads in orientations sintd those iruRBAN1. Since
the dominant orientations of roadsuRBAN2 are different, the performance of HER
on URBANZ2 is much worse than onRBAN1. This gap in performance shows that any
approach that learns to detect roads from patches withoatporating rotations into
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the data or rotation invariance into the model is likely torkvaery poorly unless it is
trained and tested on very similar conditions. This effést &ighlights the importance
of evaluating road detection systems on large datasetsawifide variety of road types
and orientations.

Since the remaining three models randomly rotate eachiriacese before pro-
cessing it, our models exhibit similar performanceumBAN1 andURBAN2, suggest-
ing that they are robust to significant variations betweaimiing and testing data. The
results also show that unsupervised pretraining signifigamproves road detection
performance. If we compare the models by their break-evam$ad.e. the points on
the curves where completeness equals correctness, thepemised pretraining im-
proves both completeness and correctness by @bhobiton both datasets. The post-
processing procedure further improves completeness amectoess on both datasets
by approximately anoth&.02.

Figure 5 presents a qualitative comparison between thealypredictions of the
modelsOTHER and POSTPROCON theURBAN1 test set. Figure 5(a) shows that while
OTHERIS able to detect two-lane suburban roads quite well, theetaiten has prob-
lems with bigger roads. Figure 5(b) shows that the maae$ TPROCIS able to deal
with wider roads. Figures 5(c) and 5(d) show the predict@nsTHER andPOSTPROC
respectively for an area that includes a highway interchafige modebTHER clearly
has trouble detecting the highway whidesTpProadoes not.

To get a better understanding of the kinds mistakes our bedehmakespost
PROC consider Figure 6. It shows predictions made by plesTPROCMOdel on two
regions taken from theRBAN1 test set. Figure 6(a) shows some typical examples of
false positive detections. Most of the false positives aract paved regions that cars
drive on. Since only named streets tend to be included in noaak, things like alleys
and parking lots are not included and hence end up beindéaba$ false positives, if
detected.

Figure 6(b) shows some examples of typical false negatitectiens, which tend to
be caused by rare road types or conditions. For examplegwhilmodel is able to deal
with shadows and occlusions caused by small objects, sutthess it is unable to deal
with shadows and occlusions caused by large buildings. @ssilple way of dealing
with such problems is modifying the post-processing pracedo receive predictions
as well as a satellite image patch of the same area as ingatsfibuld allow the post-
processor to learn to fill in such gaps based on appearance.

We stress that our evaluation was performed on challenglmdata and covered
an area roughly an order of magnitude larger than the aresbtasevaluate previous
work on road detection. We believe that our approach is tketfirbe shown to work
reliably on real-world data on a large scale.

6 Related Work

Most of the prior work on road detection, starting with théia work of Bajcsy and
Tavakoli [1], follows an ad-hoc approach. A popular appfoswolves first extracting
edges or other primitives and then applying grouping andipgitechniques to obtain
the final road network. Laptev et al. [5] use scale space yhieoextract a coarse road
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Fig.5.a) and c) Visualization of the predictions madedyHER. b) and d) Visualizations of the
predictions made bposTPROC See the electronic version for colour. True positives amve

in green, false positives are shown in red, false negatirgestaown in blue, and the background
colour is used for true negatives. We used the threshold:tiraésponds to the break-even point
on the completeness/correctness curves.

network and then apply a ribbon snake model to refine the reaslank, while Mena
and Malpica [18] use segmentation followed by skeletonagtion. Another common
strategy involves tracking roads from either expert-pidedior automatically extracted
starting points [19, 4].

One of the earliest attempts to learn to detect roads inlderegery is due to
Boggess [7]. A neural network was used to predict road/m@utiabels for a pixel
given a small§ x 5 pixels) aerial image context. Not surprisingly such a sroatitext
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Fig. 6. Failure modes of the modelosTPROC See the electronic version for colour.

is not sufficient for detecting roads in a wide variety ofisefs. Subsequent attempts to
use neural networks for road detection [6, 9] did not achggaificant improvements
over the results of Boggess as they also relied on a smakxo@tx 9 pixels being the
largest) for prediction and used very little training data.

Dollar et al. [10] presented some results on road deteatiothéir general approach
to learning object boundaries. They extract tens of thodsari predefined features
(such as Haar filter responses) from a large context arowtdm@gel and use a proba-
bilistic boosting tree to make predictions. However, thalymffer a proof-of-concept
gualitative evaluation on three small images. While ourrepph shares many of the
same characteristics, the key difference is that we leagrféhtures and exploit the
dependencies among the labels.

There is a vast literature on methods for exploiting depenigs among pixel labels
to which our post-processing procedure is related. He §2@].applied Conditional
Random Fields (CRFs) to the image labelling problem aftézreding them to the im-
age domain. In the road detection literature, active canteadels are often used to
incorporate prior knowledge about the structure of roadvasks for improved detec-
tion results [5, 21]. Porway et al. [22] used a grammar to rhoglationships between
objects such as cars, trees, and roofs for the purpose ahgasrial images. As we
have already mentioned, our post-processing step is sitwoilthe approach of Jain
and Seung [15] to image denoising. One advantage of thisdlppproach over using
MRFs and CRFs with unrestricted potentials is that it aveiigsneed for performing
approximate inference by directly learning a mapping.
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7 Future Directions

The Gaussian-binary RBM that was used to initialize theuieatletecting layer of
the neural network is not a very good generative model of asdipcause it assumes
that the pixels are independent given the features. A bgteerative model would
include an explicit representation of the covariance stmeoof the image. This has been
shown to improve discriminative performance for an objecbgnition task (reference
withheld for anonymity).

Most of the “errors” in the current system are due to the annig nature of the
labelling task. Our system often finds real roads that ar@lgimot large enough to be
labelled as roads by an expert. The use of vector maps thatdad width information
also means that our system is penalized for correctly findiag pixels in wide roads
such as highways. In addition to hurting the test perforrearorors of this type hurt
the training because the network is trying to fit inconsistabels. A better way to
handle ambiguous labels during training is to view the lsleaitracted from the map
as noisy versions of an underlying set of true labels. Thiswal the neural network to
override labels that are clearly incorrect during traini®g an object recognition task
(reference withheld), explicitly modeling the label noggeatly improves performance
when a substantial proportion of the labels are incorrect.

8 Conclusions

We have presented an approach for automatically deteaiandgrin aerial imagery us-
ing neural networks. By using synthetic road/non-road lgb@&d a consumer GPU
board we were able to efficiently train much larger neuralveets on much more data
than was feasible before. We also showed how unsupervisé@jming and supervised
post-processing substantially improves the performamf@proad detector. The re-
sulting road detection system works reliably on two largeslets of challenging urban
data. To the best of our knowledge, no other published rotettien system has been
shown to work well on challenging urban data on such a scale.
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