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Abstract. Reliably extracting information from aerial imagery is a difficult prob-
lem with many practical applications. One specific case of this problem is the task
of automatically detecting roads. This task is a difficult vision problem because
of occlusions, shadows, and a wide variety of non-road objects. Despite 30 years
of work on automatic road detection, no automatic or semi-automatic road detec-
tion system is currently on the market and no published method has been shown
to work reliably on large datasets of urban imagery. We propose detecting roads
using a neural network with millions of trainable weights which looks at a much
larger context than was used in previous attempts at learning the task. The net-
work is trained on massive amounts of data using a consumer GPU. We demon-
strate that predictive performance can be substantially improved by initializing
the feature detectors using recently developed unsupervised learning methods as
well as by taking advantage of the local spatial coherence ofthe output labels. We
show that our method works reliably on two challenging urbandatasets that are
an order of magnitude larger than what was used to evaluate previous approaches.

1 Introduction

Having up-to-date road maps is crucial for providing many important services. For
example, a city requires accurate road maps for routing emergency vehicles, while a
GPS-based navigation system needs the same information in order to provide the best
directions to its users. Since new roads are constructed frequently keeping road maps
up-to-date is an important problem.

At present, road maps are constructed and updated by hand based on high-resolution
aerial imagery. Since very large areas need to be considered, the updating process
is costly and time consuming. For this reason automatic detection of roads in high-
resolution aerial imagery has attracted a lot of attention in the remote sensing commu-
nity. Nevertheless, despite over 30 years of effort [1], at the time of writing there was
no commercial automatic or semi-automatic road detection system on the market [2,
3] and, to the best of our knowledge, no published method has been shown to work
reliably on large datasets of high-resolution urban imagery.

Much of the published work on automatic road detection follows an ad-hoc multi-
stage approach [1, 4, 5]. This generally involves establishing some a priori criteria for
the appearance of roads and engineering a system that detects objects that satisfy the
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established criteria. For example, roads are often characterized as high-contrast regions
with low curvature and constant width, with a typical detection strategy involving edge
detection, followed by edge grouping and pruning. While some of these approaches
have exhibited good performance on a few sample images, the way in which they com-
bine multiple components often results in the need to tune multiple thresholds and such
methods have not been shown to work on large real-world datasets.

In this paper we follow a different approach, where the system learns to detect roads
from expert-labelled data. Learning approaches are particularly well-suited to the road
detection task because it is a rare example of a problem whereexpert-labelled data is
abundant. It is easy to obtain hundreds of square kilometersof high-resolution aerial
images and aligned road maps. In fact, most universities have libraries dedicated solely
to geographic data of this kind.

Learning-based approaches to road detection are not new – several attempts at pre-
dicting whether a given pixel is road or not road given features extracted from some con-
text around it have been made [6–9]. While showing some promise, these approaches
have also failed to scale up to large challenging datasets. We believe that previous
learning-based approaches to road detection have not worked well because they suffer
from three main problems. First, very little training data is used, likely because ground
truth for training and testing is typically obtained by manually labelling each pixel of an
aerial image as road or non-road making it infeasible to use alot of training data. Sec-
ond, either a very small context is used to extract the features, or only a few features are
extracted from the context. Finally, predictions for each pixel are made independently,
ignoring the strong dependencies between the road/non-road labels for nearby pixels.

We propose a large-scale learning approach to road detection that addresses all three
problems as follows:

– We use synthetic road/non-road labels that we generate fromreadily available vec-
tor road maps. This allows us to generate much larger labelled datasets than the
ones that have been used in the past.1

– By using neural networks implemented on a graphics processor as our predictors
we are able to efficiently learn a large number of features anduse a large context
for making predictions.

– We introduce a post-processing procedure that uses the dependencies present in
nearby map pixels to significantly improve the predictions of our neural network.

Our proposed approach is the first to be shown to work well on large amounts of
such challenging data. In fact, we perform an evaluation on two challenging urban
datasets covering an area that is an order of magnitude larger than what was used to
evaluate any previous approach. We also show that a previouslearning based approach
works well on some parts of the datasets but very poorly on others. Finally, we show
that all three of our proposed enhancements are important toobtaining good detection
results.

1 Dollar et al. [10] proposed a similar approach to generatingground truth data but still used
very little training data.
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2 Problem Formulation

Let S be a satellite/aerial image and letM be a corresponding road map image. We
defineM(i, j) to be1 whenever location(i, j) in the satellite imageS corresponds to a
road pixel and 0 otherwise. The goal of this paper is to learnp(M(i, j)|S) from data.

In a high-resolution aerial image, a single pixel can represent a square patch of land
that is anywhere between several meters and tens of centimeters wide. At the same time
one is typically interested in detecting roads in a large area such as an entire town or
city. Hence, one is generally faced with the problem of making predictions for millions
if not billions of map pixels based on an equally large numberof satellite image pixels.
For these reasons, the probability thatM(i, j) = 1 has typically been modeled as a
function of some relatively small subset ofS that contains location(i, j) instead of the
entire imageS [7, 10]. In this paper we model

p(N(M(i, j), wm)|N(S(i, j), ws)), (1)

whereN(I(i, j), w) denotes aw×w patch of imageI centered at location(i, j). Hence,
we learn to make predictions for awm×wm map patch given aws×ws satellite image
patch centered at the same location, wherewm < ws. This allows us to reduce the
required computation by both limiting the context used to make the predictions and by
reusing the computations performed to extract features from the context.

2.1 Data

While high-resolution aerial imagery is easy to obtain, perpixel road/non-road labels
are generally not available because most road maps come in a vector format that only
specifies the centreline of each road and provides no information about road widths.
This means that in order to obtain per-pixel labels one must either label images by hand
or generate approximate labels from vector data. The hand labelling approach results in
the most accurate labels, but is tedious and expensive. In this paper we concentrate on
using approximate labels.

Our procedure for generating per-pixel labels for a given satellite imageS is as
follows. We start with a vector road map consisting of road centreline locations for a
region that includes the area depicted inS. We rasterize the road map to obtain a mask
C for the satellite imageS. In other words,C(i, j) is 1 if location (i, j) in satellite
imageS belongs to a road centreline and0 otherwise.

We then use the maskC to define the ground truth mapM as

M(i, j) = e−
d(i,j)2

σ2 , (2)

whered(i, j) is the Euclidean distance between location(i, j) and the nearest nonzero
pixel in the maskC, andσ is a smoothing parameter that depends on the scale of the
aerial images being used.M(i, j) can be interpreted as the probability that location
(i, j) belongs to a road given that it isd(i, j) pixels away from the nearest centreline
pixel. This soft weighting scheme accounts for uncertaintyin road widths and centreline
locations. In our experimentσ was set such that the distance equivalent to2σ+1 pixels
roughly corresponds to the width of a typical two-lane road.
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(a) (b)

Fig. 1. The rooftop of an apartment building. a) Without context. b)With context.

3 Learning to Detect Roads

Our goal is to learn a model of (1) from data. We use neural networks because of their
ability to scale to massive amounts of data as well as the easewith which they can be
implemented on parallel hardware such as a GPU. We model (1) as

f(φ(N(S(i, j), ws))), (3)

whereφ is feature extractor/pre-processorandf is a neural network with a single hidden
layer and logistic sigmoid hidden and output units. To be precise,

f(x) = σ(WT
2 σ(W

T
1 x + b1) + b2), (4)

whereσ(x) is the elementwise logistic sigmoid function,W’s are weight matrices and
b’s are bias vectors. We now describe the pre-processing function φ, followed by the
training procedure forf .

3.1 Pre-processing

It has been pointed out that it is insufficient to use only local image intensity information
for detecting roads [7]. We illustrate this point with Figure 1. The aerial image patch
depicted in sub-figure 1(a) resembles a patch of road, but with more context, as shown
in sub-figure 1(b), it is clearly the roof of an apartment building. Hence, it is important
to incorporate as much context as possible into the inputs tothe predictor.

The primary aim of the pre-processing procedure is to reducethe dimensionality
of the input data in order to allow the use of a large context for making predictions.
We apply Principal Component Analysis tows × ws RGB aerial image patches and
retain the topws · ws principal components. The functionφ is then defined as the
projection ofws × ws RGB image patches onto the topws · ws principal components.
This transformation reduces the dimensionality of the databy two thirds while retaining
most of the important structure. We have experimented with using alternative colour
spaces, such as HSV, but did not find a substantial differencein performance.

It is possible to augment the input representation with other features, such as edge
or texture features, but we do not do so in this paper. We have experimented with using
edge information in addition to image intensity information, but this did not improve
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Fig. 2.Some of the filters learned by the unsupervised pretraining procedure.

performance. This is likely due to our use of an unsupervisedlearning procedure for
initializing, or pretraining, the neural network. In the next section we will describe
how this procedure discovers edge features independently by learning a model of aerial
image patches.

3.2 Training Procedure

At training time we are presented withN map and aerial image patch pairs. Letm(n)

ands(n) be vectors representing thenth map and aerial image patches respectively, and
let m̂(n) denote the predicted map patch for thenth training case. We train the neural
network by minimizing the total cross entropy between ground truth and predicted map
patches given by

−

N
∑

n=1

w2
m

∑

i=1

(

m
(n)
i log m̂

(n)
i + (1−m

(n)
i ) log(1− m̂

(n)
i )

)

, (5)

where we use subscripts to index vector components. We used stochastic gradient de-
scent with momentum as the optimizer.

Unsupervised Pretraining Traditionally neural networks have been initialized with
small random weights. However, it has recently been shown that using an unsupervised
learning procedure to initialize the weights can significantly improve the performance
of neural networks [11, 12]. Using such an initialization procedure has been referred to
aspretraining.

We pretrain the neural networkf using the procedure of Hinton and Salakhutdinov
[11], which makes use of Restricted Boltzmann Machines (RBMs). An RBM is a type
of undirected graphical model that defines a joint probability distribution over a vector
of observed variablesv and a vector of latent variablesh. Since our neural network has
real-valued inputs and logistic hidden units, in order to apply RBM-based pretraining,
we use an RBM with Gaussian visible and binary hidden units. The joint probability
distribution overv andh defined by an RBM with Gaussian visible and binary hidden
units is

p(v, h) = e−E(v,h)/Z,

whereZ is a normalizing constant and the energyE(v, h) is defined as

E(v, h) =
∑

i

v2i −





∑

i

civi +
∑

k

bkhk +
∑
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wikvihk



 . (6)
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While maximum likelihood learning in RBMs is generally intractable, efficient approx-
imate learning can be performed by approximately minimizing a different objective
function known as Contrastive Divergence [13].

We train an RBM on the PCA representations of aerial image patches by approxi-
mately minimizing Contrastive Divergence using stochastic gradient descent with mo-
mentum. In order to encourage a sparse model of aerial images, i.e. one where only
a few components ofh are nonzero, we fix the hidden unit biasesbk to a large neg-
ative value2, as proposed by Norouzi et al. [14]. This encourages the hidden units to
be off unless they get a large input from the visible units. Once the RBM was trained,
we initialized the weight matrixW1 and bias vectorb1 from Equation 4 with the RBM
weightsw andb. We found that encouraging sparseness sped up learning and improved
generalization.

Some selected filters learned by the pretraining procedure are shown in Figure 2.
The vast majority of the filters learned to ignore colour, butthe few filters that were
colour sensitive were low-frequency, opposing red-green or blue-yellow filters. Many
of the colour-neutral filters are oriented, high-frequencyedge filters. We believe this
is why augmenting the inputs with edge information did not improve road detection
performance.

Adding Rotations When training the neural networkf we found that it is useful to
rotate each training case by a random angle each time it is processed. Since many cities
have large areas where the road network forms a grid, training on data without rota-
tions will result in a model that is better at detecting roadsat certain orientations. By
randomly rotating the training cases the resulting models do not favor roads in any
particular orientation.

4 Incorporating Structure

Figure 3(a) shows predictions for a small map patch made by our neural network.
There are two obvious problems with these predictions – there are both gaps in the
predicted roads and disconnected blotches of road pixels. Given our prior knowledge
about the structure of road networks it would be safe to conclude that the blotches in
Figure 3(a) are false positives while the gaps are false negatives. Previous learning-
based approaches to road detection along with the method described in Section 3 make
such mistakes because they make predictions independentlyfor all pixels.

In order to take advantage of the structure present in nearbyroad/non-road labels we
introduce a post-processing step. The goal is to improve theprediction for a given map
pixel using nearby predictions. We treat this as a supervised learning problem and train
a neural network to predict awm×wm map patch from awc×wc patch of predictions.
To be precise, let̂M be the predictions of neural networkf for map imageM . Then let
fp be a neural network of the same functional form asf that predictsN(M(i, j), wm)

based onN(M̂(i, j), wc). The prediction offp for map imageM is then denoted by
M̂p.

2 In this paper, we setbk to -4.
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(a) (b)

Fig. 3. (a) Predictions before post-processing. (b) Predictions after post-processing.

The neural networkfp is trained using stochastic gradient descent to minimize cross
entropy between the ground truth map patches and the predictions as given by Equa-
tion (5). We do not use pretraining when trainingfp, as this did not improve perfor-
mance. As with training of the neural networkf , we randomly rotate each training case
before it is processed in order to remove a bias towards roadsin some orientations.

The post-processing procedure is similar to the approach employed by Jain and
Seung [15] for natural image denoising. They train a convolutional neural network to
predict small noise-free patches of natural images given larger patches that had noise
added to them. Since our post-processing procedure repeatedly applies a local filter at
fixed intervals over a larger image, it can be seen as a type of convolutional neural net-
work where the convolution is followed by subsampling. Jainand Seung show that this
kind of neural network architecture can be seen as performing approximate inference
in a special kind of Markov Random Field model [15]. Jain and Seung also show that
this approach outperforms approaches based on Markov Random Fields on the image
denoising task.

Figure 3(b) shows the result of applying the post-processing procedure to the pre-
dictions from figure 3(a). The process clearly removes disconnected blotches, fills in the
gaps in the roads, and generally improves the quality of the predictions. While we do
not do so in this paper, the post-processing procedure can beapplied repeatedly, with
each application receiving the predictions made by the previous application as input.
This process propagates confident predictions along the predicted road network.

5 Experiments

We performed experiments on two datasets consisting of urban aerial imagery at a res-
olution of 1.2 meters per pixel. We will refer to the datasets asURBAN1 andURBAN2.
DatasetURBAN1 covers a large metropolitan area with both urban and suburban re-
gions. It consist of a training set that covers roughly 500 square kilometers, a separate
test set of 50 square kilometers, and a separate small validation set that was used for
model selection. DatasetURBAN2 is only used for testing and consists of28 square
kilometers of aerial imagery of a city different from the onecovered inURBAN1. When
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generating the ground truth pixel labels as described in Section 2.1, the smoothing pa-
rametersσ was set to2 pixels. This makes the area within one standard deviation of
a pixel roughly 20 feet in diameter, which is approximately the width of a typical two
lane road.

We made predictions for16 × 16 map patches from64 × 64 colour RGB aerial
image patches, which corresponds towm = 16 andws = 64. The neural networkf
had4096 input units,12288 hidden units, and256 output units. For the post-processing
procedure, we setwc to 64 and used4096 hidden units in the neural netfp. Hencefp
had4096 input units,4096 hidden units, and256 output units3. All inputs to the neural
networks were shifted and rescaled to have mean0 and standard deviation1.

Although our method is not overly sensitive to the parametervalues, we present
them here for completeness. We used stochastic gradient descent with minibatches of
size 64 and momentum of0.9 for training the neural networks. We used a learning
rate of0.0005 andL2 weight decay of0.0002. When training Restricted Boltzmann
Machines we used the contrastive divergence approximationto the gradient [13]. Once
again, we used stochastic gradient descent with minibatches of size64 and momentum
of 0.9. We used a learning rate of0.001 andL2 weight decay of0.0002. We made
between 10 and 20 passes through the training set when training the neural networks
and RBMs.

Since the models we have just described all have millions of parameters and the
training set for datasetURBAN1 consists of over 1.2 million training cases, training
our models would normally take months on a single core CPU or weeks on a multi-
core machine. We were able to train our best model in less than3 days on a consumer
GPU. This included pretraining and training of neural network f and training of the
post-processing neural networkfp. Since the training procedures for neural networks
and RBMs are easily expressed in terms of elementary matrix operations, porting them
to the GPU was trivial. In both cases, we obtained speedups ofmore than an order of
magnitude over the same algorithms running on a modern four-core CPU4. In order to
implement the required algorithms on the GPU, we first created a GPU-based matrix
library for Python. The CUDAMat library as well as our implementations of neural
networks and RBMs are now available as open-source software[16].

5.1 Metrics

The most common metrics for evaluating road detection systems are correctness and
completeness [17]. Thecompleteness of a set of predictions is the fraction of true roads
that were correctly detected, while thecorrectness is the fraction of predicted roads that
are true roads. Since the road centreline locations that we used to generate ground truth
are often noisy we compute relaxed completeness and correctness scores. Namely, in
our experiments completeness represents the fraction of true road pixels that are within
ρ pixels of a predicted road pixel, while correctness measures the fraction of predicted
road pixels that are withinρ pixels of a true road pixel. Relaxing the completeness and

3 Multiples of 64 were used because using arrays with dimensions that are multiples of64 can
help reduce the number of idle cores on the GPU.

4 CPU implementations used parallel linear algebra routinesand MATLAB.
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(a) Results forURBAN1 (b) Results forURBAN2

Fig. 4. Completeness/correctness curves onURBAN1 andURBAN2.

correctness measures in this manner is common practice whenevaluating road detection
systems [17]. In this paper we setρ to 3 pixels.

5.2 Results

Since our models provide us with road/non-road probabilities for map pixels, we need
to select a threshold to make concrete predictions. For thisreason we evaluate our mod-
els using completeness/correctness curves. Figure 4 showscompleteness/correctness
curves for the four models we evaluated on both datasets.

To compare to previous approaches, we evaluate a model, labelled OTHER, that uses
a smaller context of size24 and does not use rotated training data, pretraining, or post-
processing. This approach has been used in several road detection systems [6, 7, 9], but
with far less training data. The modelOTHER is also an example of the kind of road
detection system that can be trained on a modern CPU in the time it takes us to train
our best model on a GPU.

We compareOTHER to three new models that used a context size of64 and were
trained as described above. The modelROTATE did not utilize pretraining or post-
processing and is meant to show the performance of using a large context with rotated
training data. The modelPRETRAIN is a pretrained version ofROTATE. Finally, the
modelPOSTPROCis the modelPRETRAIN followed by our post-processing procedure.

The large difference in the performance of the modelOTHERon the two datasets can
be explained by the structure of their road networks. Many cities have large areas where
the road network consists of a grid at some orientation, resulting in roads having two
dominant orientations. Indeed, large parts of the cities inURBAN1 andURBAN2 consist
of grids, however, the orientation of the grids is differentbetween the two datasets.
Since the modelOTHER is trained on patches ofURBAN1 without randomly rotating
them, the model strongly favors roads in orientations similar to those inURBAN1. Since
the dominant orientations of roads inURBAN2 are different, the performance ofOTHER

on URBAN2 is much worse than onURBAN1. This gap in performance shows that any
approach that learns to detect roads from patches without incorporating rotations into



10 Learning to Detect Roads in High-Resolution Aerial Images

the data or rotation invariance into the model is likely to work very poorly unless it is
trained and tested on very similar conditions. This effect also highlights the importance
of evaluating road detection systems on large datasets witha wide variety of road types
and orientations.

Since the remaining three models randomly rotate each training case before pro-
cessing it, our models exhibit similar performance onURBAN1 andURBAN2, suggest-
ing that they are robust to significant variations between training and testing data. The
results also show that unsupervised pretraining significantly improves road detection
performance. If we compare the models by their break-even points, i.e. the points on
the curves where completeness equals correctness, then unsupervised pretraining im-
proves both completeness and correctness by about0.05 on both datasets. The post-
processing procedure further improves completeness and correctness on both datasets
by approximately another0.02.

Figure 5 presents a qualitative comparison between the typical predictions of the
modelsOTHER andPOSTPROCon theURBAN1 test set. Figure 5(a) shows that while
OTHER is able to detect two-lane suburban roads quite well, the model often has prob-
lems with bigger roads. Figure 5(b) shows that the modelPOSTPROCis able to deal
with wider roads. Figures 5(c) and 5(d) show the predictionsof OTHER andPOSTPROC

respectively for an area that includes a highway interchange. The modelOTHER clearly
has trouble detecting the highway whilePOSTPROCdoes not.

To get a better understanding of the kinds mistakes our best model makes,POST-
PROC consider Figure 6. It shows predictions made by thePOSTPROCmodel on two
regions taken from theURBAN1 test set. Figure 6(a) shows some typical examples of
false positive detections. Most of the false positives are in fact paved regions that cars
drive on. Since only named streets tend to be included in roadmaps, things like alleys
and parking lots are not included and hence end up being labelled as false positives, if
detected.

Figure 6(b) shows some examples of typical false negative detections, which tend to
be caused by rare road types or conditions. For example, while our model is able to deal
with shadows and occlusions caused by small objects, such astrees, it is unable to deal
with shadows and occlusions caused by large buildings. One possible way of dealing
with such problems is modifying the post-processing procedure to receive predictions
as well as a satellite image patch of the same area as input. This should allow the post-
processor to learn to fill in such gaps based on appearance.

We stress that our evaluation was performed on challenging urban data and covered
an area roughly an order of magnitude larger than the areas used to evaluate previous
work on road detection. We believe that our approach is the first to be shown to work
reliably on real-world data on a large scale.

6 Related Work

Most of the prior work on road detection, starting with the initial work of Bajcsy and
Tavakoli [1], follows an ad-hoc approach. A popular approach involves first extracting
edges or other primitives and then applying grouping and pruning techniques to obtain
the final road network. Laptev et al. [5] use scale space theory to extract a coarse road
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(a) (b)

(c) (d)

Fig. 5. a) and c) Visualization of the predictions made byOTHER. b) and d) Visualizations of the
predictions made byPOSTPROC. See the electronic version for colour. True positives are shown
in green, false positives are shown in red, false negatives are shown in blue, and the background
colour is used for true negatives. We used the threshold thatcorresponds to the break-even point
on the completeness/correctness curves.

network and then apply a ribbon snake model to refine the road network, while Mena
and Malpica [18] use segmentation followed by skeleton extraction. Another common
strategy involves tracking roads from either expert-provided or automatically extracted
starting points [19, 4].

One of the earliest attempts to learn to detect roads in aerial imagery is due to
Boggess [7]. A neural network was used to predict road/non-road labels for a pixel
given a small (5× 5 pixels) aerial image context. Not surprisingly such a smallcontext
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(a) (b)

Fig. 6. Failure modes of the modelPOSTPROC. See the electronic version for colour.

is not sufficient for detecting roads in a wide variety of settings. Subsequent attempts to
use neural networks for road detection [6, 9] did not achievesignificant improvements
over the results of Boggess as they also relied on a small context (9× 9 pixels being the
largest) for prediction and used very little training data.

Dollar et al. [10] presented some results on road detection for their general approach
to learning object boundaries. They extract tens of thousands of predefined features
(such as Haar filter responses) from a large context around each pixel and use a proba-
bilistic boosting tree to make predictions. However, they only offer a proof-of-concept
qualitative evaluation on three small images. While our approach shares many of the
same characteristics, the key difference is that we learn the features and exploit the
dependencies among the labels.

There is a vast literature on methods for exploiting dependencies among pixel labels
to which our post-processing procedure is related. He et al.[20] applied Conditional
Random Fields (CRFs) to the image labelling problem after extending them to the im-
age domain. In the road detection literature, active contour models are often used to
incorporate prior knowledge about the structure of road networks for improved detec-
tion results [5, 21]. Porway et al. [22] used a grammar to model relationships between
objects such as cars, trees, and roofs for the purpose of parsing aerial images. As we
have already mentioned, our post-processing step is similar to the approach of Jain
and Seung [15] to image denoising. One advantage of this typeof approach over using
MRFs and CRFs with unrestricted potentials is that it avoidsthe need for performing
approximate inference by directly learning a mapping.
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7 Future Directions

The Gaussian-binary RBM that was used to initialize the feature-detecting layer of
the neural network is not a very good generative model of images because it assumes
that the pixels are independent given the features. A bettergenerative model would
include an explicit representation of the covariance structure of the image. This has been
shown to improve discriminative performance for an object recognition task (reference
withheld for anonymity).

Most of the “errors” in the current system are due to the ambiguous nature of the
labelling task. Our system often finds real roads that are simply not large enough to be
labelled as roads by an expert. The use of vector maps that lack road width information
also means that our system is penalized for correctly findingroad pixels in wide roads
such as highways. In addition to hurting the test performance, errors of this type hurt
the training because the network is trying to fit inconsistent labels. A better way to
handle ambiguous labels during training is to view the labels extracted from the map
as noisy versions of an underlying set of true labels. This allows the neural network to
override labels that are clearly incorrect during training. On an object recognition task
(reference withheld), explicitly modeling the label noisegreatly improves performance
when a substantial proportion of the labels are incorrect.

8 Conclusions

We have presented an approach for automatically detecting roads in aerial imagery us-
ing neural networks. By using synthetic road/non-road labels and a consumer GPU
board we were able to efficiently train much larger neural networks on much more data
than was feasible before. We also showed how unsupervised pretraining and supervised
post-processing substantially improves the performance of our road detector. The re-
sulting road detection system works reliably on two large datasets of challenging urban
data. To the best of our knowledge, no other published road detection system has been
shown to work well on challenging urban data on such a scale.
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