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Abstract

We introduce a two-layer undirected graphical model, called a “Replicated Soft-
max”, that can be used to model and automatically extract low-dimensional latent
semantic representations from a large unstructured collection of documents. We
present efficient learning and inference algorithms for this model, and show how a
Monte-Carlo based method, Annealed Importance Sampling, can be used to pro-
duce an accurate estimate of the log-probability the model assigns to test data.
This allows us to demonstrate that the proposed model is ableto generalize much
better compared to Latent Dirichlet Allocation in terms of both the log-probability
of held-out documents and the retrieval accuracy.

1 Introduction

Probabilistic topic models [2, 9, 6] are often used to analyze and extract semantic topics from large
text collections. Many of the existing topic models are based on the assumption that each document
is represented as a mixture of topics, where each topic defines a probability distribution over words.
The mixing proportions of the topics are document specific, but the probability distribution over
words, defined by each topic, is the same across all documents.

All these models can be viewed as graphical models in which latent topic variables have directed
connections to observed variables that represent words in adocument. One major drawback is that
exact inference in these models is intractable, so one has toresort to slow or inaccurate approxima-
tions to compute the posterior distribution over topics. A second major drawback, that is shared by
all mixture models, is that these models can never make predictions for words that are sharper than
the distributions predicted by any of the individual topics. They are unable to capture the essential
idea of distributed representations which is that the distributions predicted by individual active fea-
tures get multiplied together (and renormalized) to give the distribution predicted by a whole set of
active features. This allows individual features to be fairly general but their intersection to be much
more precise. For example, distributed representations allow the topics “government”, ”mafia” and
”playboy” to combine to give very high probability to a word “Berlusconi” that is not predicted
nearly as strongly by each topic alone.

To date, there has been very little work on developing topic models using undirected graphical mod-
els. Several authors [4, 17] used two-layer undirected graphical models, called Restricted Boltzmann
Machines (RBMs), in which word-count vectors are modeled asa Poisson distribution. While these
models are able to produce distributed representations of the input and perform well in terms of re-
trieval accuracy, they are unable to properly deal with documents of different lengths, which makes
learning very unstable and hard. This is perhaps the main reason why these potentially powerful
models have not found their application in practice. Directed models, on the other hand, can eas-
ily handle unobserved words (by simply ignoring them), which allows them to easily deal with
different-sized documents. For undirected models marginalizing over unobserved variables is gen-
erally a non-trivial operation, which makes learning far more difficult. Recently, [13] attempted to
fix this problem by proposing a Constrained Poisson model that would ensure that the mean Poisson
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rates across all words sum up to the length of the document. While the parameter learning has been
shown to be stable, the introduced model no longer defines a proper probability distribution over the
word counts.

In the next section we introduce a “Replicated Softmax” model. The model can be efficiently trained
using Contrastive Divergence, it has a better way of dealingwith documents of different lengths, and
computing the posterior distribution over the latent topicvalues is easy. We will also demonstrate
that the proposed model is able to generalize much better compared to a popular Bayesian mixture
model, Latent Dirichlet Allocation (LDA) [2], in terms of both the log-probability on previously
unseen documents and the retrieval accuracy.

2 Replicated Softmax: A Generative Model of Word Counts

Consider modeling discrete visible unitsv using a restricted Boltzmann machine, that has a two-
layer architecture as shown in Fig. 1. Letv ∈ {1, ..., K}D, whereK is the dictionary size andD
is the document size, and leth ∈ {0, 1}F be binary stochastic hidden topic features. LetV be a
K×D observed binary matrix withvk

i = 1 if visible unit i takes onkth value. We define the energy
of the state{V,h} as follows:
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where{W, a, b} are the model parameters:W k
ij is a symmetric interaction term between visible

unit i that takes on valuek, and hidden featurej, bk
i is the bias of uniti that takes on valuek, andaj

is the bias of hidden featurej (see Fig. 1). The probability that the model assigns to a visible binary
matrixV is:
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whereZ is known as the partition function or normalizing constant.The conditional distributions
are given by softmax and logistic functions:
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whereσ(x) = 1/(1 + exp(−x)) is the logistic function.

Now suppose that for each document we create a separate RBM with as many softmax units as there
are words in the document. Assuming we can ignore the order ofthe words, all of these softmax units
can share the same set of weights, connecting them to binary hidden units. Consider a document
that containsD words. In this case, we define the energy of the state{V,h} to be:

E(V,h) = −
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wherev̂k =
∑D

i=1 vk
i denotes the count for thekth word. Observe that the bias terms of the hidden

units are scaled up by the length of the document. This scaling is crucial and allows hidden topic
units to behave sensibly when dealing with documents of different lengths.

Given a collection ofN documents{Vn}
N
n=1, the derivative of the log-likelihood with respect to

parametersW takes the form:

1
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,

where EPdata
[·] denotes an expectation with respect to the data distribution Pdata(h,V) =

p(h|V)Pdata(V), with Pdata(V) = 1
N

∑

n δ(V − Vn) representing the empirical distribution,
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Figure 1:Replicated Softmax model. The top layer represents a vectorh of stochastic, binary topic features
and and the bottom layer represents softmax visible unitsv. All visible units share the same set of weights,
connecting them to binary hidden units.Left: The model for a document containing two and three words.
Right: A different interpretation of the Replicated Softmax model, in which D softmax units with identical
weights are replaced by a single multinomial unit which is sampledD times.

and EPModel
[·] is an expectation with respect to the distribution defined bythe model. Exact maxi-

mum likelihood learning in this model is intractable because exact computation of the expectation
EPModel

[·] takes time that is exponential inmin{D, F}, i.e the number of visible or hidden units. To
avoid computing this expectation, learning is done by following an approximation to the gradient of
a different objective function, called the “Contrastive Divergence” (CD) ([7]):

∆W k
j = α

(

EPdata

[

v̂khj

]

− EPT

[

v̂khj

]

)

, (6)

whereα is the learning rate andPT represents a distribution defined by running the Gibbs chain,
initialized at the data, forT full steps. The special bipartite structure of RBM’s allowsfor quite an
efficient Gibbs sampler that alternates between sampling the states of the hidden units independently
given the states of the visible units, and vise versa (see Eqs. 3, 4). SettingT =∞ recovers maximum
likelihood learning.

The weights can now be shared by the whole family of different-sized RBM’s that are created for
documents of different lengths (see Fig. 1). We call this the“Replicated Softmax” model. A pleasing
property of this model is that computing the approximate gradients of the CD objective (Eq. 6) for a
document that contains 100 words is computationally not much more expensive than computing the
gradients for a document that contains only one word. A key observation is that usingD softmax
units with identical weights is equivalent to having a single multinomial unit which is sampledD
times, as shown in Fig. 1, right panel. If instead of sampling, we use real-valued softmax proba-
bilities multiplied byD, we exactly recover the learning algorithm of a ConstrainedPoisson model
[13], except for the scaling of the hidden biases withD.

3 Evaluating Replicated Softmax as a Generative Model

Assessing the generalization performance of probabilistic topic models plays an important role in
model selection. Much of the existing literature, particularly for undirected topic models [4, 17],
uses extremely indirect performance measures, such as information retrieval or document classifica-
tion. More broadly, however, the ability of the model to generalize can be evaluated by computing
the probability that the model assigns to the previously unseen documents, which is independent of
any specific application.

For undirected models, computing the probability of held-out documents exactly is intractable, since
computing the global normalization constant requires enumeration over an exponential number of
terms. Evaluating the same probability for directed topic models is also difficult, because there are
an exponential number of possible topic assignments for thewords.

Recently, [14] showed that a Monte Carlo based method, Annealed Importance Sampling (AIS) [12],
can be used to efficiently estimate the partition function ofan RBM. We also find AIS attractive
because it not only provides a good estimate of the partitionfunction in a reasonable amount of
computer time, but it can also just as easily be used to estimate the probability of held-out documents
for directed topic models, including Latent Dirichlet Allocation (for details see [16]). This will
allow us to properly measure and compare generalization capabilities of Replicated Softmax and
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Algorithm 1 Annealed Importance Sampling (AIS) run.
1: Initialize0 = β0 < β1 < ... < βS = 1.
2: SampleV1 from p0.
3: for s = 1 : S − 1 do
4: SampleVs+1 givenVs usingTs(Vs+1←Vs).
5: end for
6: SetwAIS =

Q

S

s=1
p∗

s(Vs)/p∗

s−1(Vs).

LDA models. We now show how AIS can be used to estimate the partition function of a Replicated
Softmax model.

3.1 Annealed Importance Sampling

Suppose we have two distributions:pA(x) = p∗A(x)/ZA andpB(x) = p∗B(x)/ZB. Typically
pA(x) is defined to be some simple proposal distribution with knownZA, whereaspB represents
our complex target distribution of interest. One way of estimating the ratio of normalizing constants
is to use a simple importance sampling method:

ZB

ZA

=
∑

x

p∗B(x)

p∗A(x)
pA(x) = EpA

[

p∗B(x)

p∗A(x)

]

≈
1

N

N
∑

i=1

p∗B(x(i))

p∗A(x(i))
, (7)

wherex(i) ∼ pA. However, if thepA andpB are not close enough, the estimator will be very poor.
In high-dimensional spaces, the variance of the importancesampling estimator will be very large, or
possibly infinite, unlesspA is a near-perfect approximation topB.

Annealed Importance Sampling can be viewed as simple importance sampling defined on a much
higher dimensional state space. It uses many auxiliary variables in order to make the proposal distri-
butionpA be closer to the target distributionpB. AIS starts by defining a sequence of intermediate
probability distributions:p0, ..., pS , with p0 = pA andpS = pB. One general way to define this
sequence is to set:

pk(x) ∝ p∗A(x)1−βkp∗B(x)βk , (8)

with “inverse temperatures”0 = β0 < β1 < ... < βK = 1 chosen by the user. For each intermediate
distribution, a Markov chain transition operatorTk(x′;x) that leavespk(x) invariant must also be
defined.

Using the special bipartite structure of RBM’s, we can devise a better AIS scheme [14] for estimating
the model’s partition function. Let us consider a Replicated Softmax model withD words. Using
Eq. 5, the joint distribution over{V,h} is defined as1:

p(V,h) =
1

Z
exp
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k



 , (9)

wherev̂k =
∑D

i=1 vk
i denotes the count for thekth word. By explicitly summing out the latent topic

unitsh we can easily evaluate an unnormalized probabilityp∗(V). The sequence of intermediate
distributions, parameterized byβ, can now be defined as follows:

ps(V) =
1

Zs

p∗(V) =
1

Zs

∑

h

p∗s(V,h) =
1

Zs

F
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(
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βs

K
∑
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W k
j v̂k
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. (10)

Note that fors = 0, we haveβs = 0, and sop0 represents a uniform distribution, whose partition
function evaluates toZ0 = 2F , whereF is the number of hidden units. Similarly, whens = S, we
haveβs = 1, and sopS represents the distribution defined by the Replicated Softmax model. For the
intermediate values ofs, we will have some interpolation between uniform and targetdistributions.
Using Eqs. 3, 4, it is also straightforward to derive an efficient Gibbs transition operator that leaves
ps(V) invariant.

1We have omitted the bias terms for clarity of presentation
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A single run of AIS procedure is summarized in Algorithm 1. Itstarts by first sampling from a sim-
ple uniform distributionp0(V) and then applying a series of transition operatorsT1, T2, . . . , TS−1

that “move” the sample through the intermediate distributionsps(V) towards the target distribution
pS(V). Note that there is no need to compute the normalizing constants of any intermediate distri-

butions. After performingM runs of AIS, the importance weightsw(i)
AIS can be used to obtain an

unbiased estimate of our model’s partition functionZS :

ZS

Z0
≈

1

M

M
∑

i=1

w
(i)
AIS, (11)

whereZ0 = 2F . Observe that the Markov transition operators do not necessarily need to be ergodic.
In particular, if we were to choose dumb transition operators that do nothing,Ts(V

′ ← V) =
δ(V′ −V) for all s, we simply recover the simple importance sampling procedure of Eq. 7.

When evaluating the probability of a collection of several documents, we need to perform a separate
AIS run per document, if those documents are of different lengths. This is because each different-
sized document can be represented as a separate RBM that has its own global normalizing constant.

4 Experimental Results

In this section we present experimental results on three three text datasets: NIPS proceedings pa-
pers, 20-newsgroups, and Reuters Corpus Volume I (RCV1-v2)[10], and report generalization per-
formance of Replicated Softmax and LDA models.

4.1 Description of Datasets
The NIPS proceedings papers2 contains 1740 NIPS papers. We used the first 1690 documents as
training data and the remaining 50 documents as test. The dataset was already preprocessed, where
each document was represented as a vector containing 13,649word counts.

The 20-newsgroups corpus contains 18,845 postings taken from the Usenet newsgroup collection.
The corpus is partitioned fairly evenly into 20 different newsgroups, each corresponding to a sepa-
rate topic.3 The data was split by date into 11,314 training and 7,531 testarticles, so the training and
test sets were separated in time. We further preprocessed the data by removing common stopwords,
stemming, and then only considering the 2000 most frequent words in the training dataset. As a re-
sult, each posting was represented as a vector containing 2000 word counts. No other preprocessing
was done.

The Reuters Corpus Volume I is an archive of 804,414 newswirestories4 that have been manually
categorized into 103 topics. The topic classes form a tree which is typically of depth 3. For this
dataset, we define the relevance of one document to another tobe the fraction of the topic labels that
agree on the two paths from the root to the two documents. The data was randomly split into 794,414
training and 10,000 test articles. The available data was already in the preprocessed format, where
common stopwords were removed and all documents were stemmed. We again only considered the
10,000 most frequent words in the training dataset.

For all datasets, each word countwi was replaced bylog(1 + wi), rounded to the nearest integer,
which slightly improved retrieval performance of both models. Table 1 shows description of all three
datasets.

4.2 Details of Training
For the Replicated Softmax model, to speed-up learning, we subdivided datasets into minibatches,
each containing 100 training cases, and updated the parameters after each minibatch. Learning
was carried out using Contrastive Divergence by starting with one full Gibbs step and gradually
increaing to five steps during the course of training, as described in [14]. For all three datasets, the
total number of parameter updates was set to 100,000, which took several hours to train. For the

2Available at http://psiexp.ss.uci.edu/research/programs data/toolbox.htm.
3Available at http://people.csail.mit.edu/jrennie/20Newsgroups (20news-bydate.tar.gz).
4Available at http://trec.nist.gov/data/reuters/reuters.html
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Data set Number of docs K D̄ St. Dev. Avg. Test perplexity per word (in nats)

Train Test LDA-50 LDA-200 R. Soft-50 Unigram

NIPS 1,690 50 13,649 98.0 245.3 3576 3391 3405 4385
20-news 11,314 7,531 2,000 51.8 70.8 1091 1058 953 1335
Reuters 794,414 10,000 10,000 94.6 69.3 1437 1142 988 2208

Table 1: Results for LDA using 50 and 200 topics, and Replaced Softmaxmodel that uses 50 topics.K is
the vocabulary size,̄D is the mean document length, St. Dev. is the estimated standard deviation in document
length.
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Figure 2: The average test perplexity scores for each of the 50 held-out documents under the learned 50-
dimensional Replicated Softmax and LDA that uses 50 topics.

LDA model, we used the Gibbs sampling implementation of the Matlab Topic Modeling Toolbox5

[5]. The hyperparameters were optimized using stochastic EM as described by [15]. For the 20-
newsgroups and NIPS datasets, the number of Gibbs updates was set to 100,000. For the large
Reuters dataset, it was set to 10,000, which took several days to train.

4.3 Assessing Topic Models as Generative Models

For each of the three datasets, we estimated the log-probability for 50 held-out documents.6 For both
the Replicated Softmax and LDA models we used 10,000 inversetemperaturesβs, spaced uniformly
from 0 to 1. For each held-out document, the estimates were averaged over 100 AIS runs. The

average test perplexity per word was then estimated asexp
(

−1/N
∑N

n=1
1/Dn log p(vn)

)

, where

N is the total number of documents,Dn andvn are the total number of words and the observed
word-count vector for a documentn.

Table 1 shows that for all three datasets the 50-dimensionalReplicated Softmax consistently outper-
forms the LDA with 50-topics. For the NIPS dataset, the undirected model achieves the average test
perplexity of 3405, improving upon LDA’s perplexity of 3576. The LDA with 200 topics performed
much better on this dataset compared to the LDA-50, but its performance only slightly improved
upon the 50-dimensional Replicated Softmax model. For the 20-newsgroups dataset, even with 200
topics, the LDA could not match the perplexity of the Replicated Softmax model with 50 topic units.

The difference in performance is particularly striking forthe large Reuters dataset, whose vocabulary
size is 10,000. LDA achieves an average test perplexity of 1437, substantially reducing it from
2208, achieved by a simple smoothed unigram model. The Replicated Softmax further reduces the
perplexity down to 986, which is comparable in magnitude to the improvement produced by the LDA
over the unigram model. LDA with 200 topics does improve uponLDA-50, achieving a perplexity
of 1142. However, its performance is still considerably worse than that of the Replicated Softmax
model.

5The code is available at http://psiexp.ss.uci.edu/research/programsdata/toolbox.htm
6For the 20-newsgroups and Reuters datasets, the 50 held-outdocuments were randomly sampled from the

test sets.
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Figure 3:Precision-Recall curves for the 20-newsgroups and Reutersdatasets, when a query document from
the test set is used to retrieve similar documents from the training corpus. Results are averaged over all 7,531
(for 20-newsgroups) and 10,000 (for Reuters) possible queries.

Figure 2 further shows three scatter plots of the average test perplexity per document. Observe that
for almost all test documents, the Replicated Softmax achieves a better perplexity compared to the
corresponding LDA model. For the Reuters dataset, as expected, there are many documents that are
modeled much better by the undirected model than an LDA. Clearly, the Replicated Softmax is able
to generalize much better.

4.4 Document Retrieval

We used 20-newsgroup and Reuters datasets to evaluate modelperformance on a document retrieval
task. To decide whether a retrieved document is relevant to the query document, we simply check if
they have the same class label. This is the only time that the class labels are used. For the Replicated
Softmax, the mapping from a word-count vector to the values of the latent topic features is fast,
requiring only a single matrix multiplication followed by acomponentwise sigmoid non-linearity.
For the LDA, we used 1000 Gibbs sweeps per test document in order to get an approximate posterior
over the topics. Figure 3 shows that when we use the cosine of the angle between two topic vectors to
measure their similarity, the Replicated Softmax significantly outperforms LDA, particularly when
retrieving the top few documents.

5 Conclusions and Extensions

We have presented a simple two-layer undirected topic modelthat be used to model and automati-
cally extract distributed semantic representations from large collections of text corpora. The model
can be viewed as a family of different-sized RBM’s that shareparameters. The proposed model have
several key advantages: the learning is easy and stable, it can model documents of different lengths,
and computing the posterior distribution over the latent topic values is easy. Furthermore, using
stochastic gradient descent, scaling up learning to billions of documents would not be particularly
difficult. This is in contrast to directed topic models, where most of the existing inference algorithms
are designed to be run in a batch mode. Therefore one would have to make further approximations,
for example by using particle filtering [3]. We have also demonstrated that the proposed model is
able to generalize much better than LDA in terms of both the log-probability on held-out documents
and the retrieval accuracy.

In this paper we have only considered the simplest possible topic model, but the proposed model can
be extended in several ways. For example, similar to supervised LDA [1], the proposed Replicated
Softmax can be easily extended to modeling the joint the distribution over words and a document
label, as shown in Fig. 4, left panel. Recently, [11] introduced a Dirichlet-multinomial regression
model, where a prior on the document-specific topic distributions was modeled as a function of
observed metadata of the document. Similarly, we can define aconditional Replicated Softmax
model, where the observed document-specific metadata, suchas author, references, etc., can be used
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Figure 4:Left: A Replicated Softmax model that models the joint distribution of words and document label.
Right: Conditional Replicated Softmax model where the observed document-specific metadata affects binary
states of the hidden topic units.

to influence the states of the latent topic units, as shown in Fig. 4, right panel. Finally, as argued by
[13], a single layer of binary features may not the best way tocapture the complex structure in the
count data. Once the Replicated Softmax has been trained, wecan add more layers to create a Deep
Belief Network [8], which could potentially produce a better generative model and further improve
retrieval accuracy.
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