
Perceptually-Supported Image Editing of
Text and Graphics

Eric Saund, David Fleet, Daniel Larner, James Mahoney
Palo Alto Research Center

3333 Coyote Hill Rd.
Palo Alto, CA�

saund,fleet,larner,jvmahon � @parc.com

ABSTRACT
This paper presents a novel image editing program emphasiz-
ing easy selection and manipulation of material found in in-
formal, casual documents such as sketches, handwritten notes,
whiteboard images, screen snapshots, and scanned documents.
The program, called ScanScribe, offers four significant ad-
vances. First, it presents a new, intuitive model for maintain-
ing image objects and groups, along with underlying logic for
updating these in the course of an editing session. Second,
ScanScribe takes advantage of newly developed image pro-
cessing algorithms to separate foreground markings from a
white or light background, and thus can automatically ren-
der the background transparent so that image material can be
rearranged without occlusion by background pixels. Third,
ScanScribe introduces new interface techniques for selecting
image objects with a pointing device without resorting to a
palette of tool modes. Fourth, ScanScribe presents a platform
for exploiting image analysis and recognition methods to make
perceptually significant structure readily available to the user.
As a research prototype, ScanScribe has proven useful in the
work of members of our laboratory, and has been released on
a limited basis for user testing and evaluation.

KEYWORDS: ScanScribe, rough document, WYPIWYG,
perceptual document editing, foreground/background, lattice
grouping, bitmap image

INTRODUCTION
Computer editing tools can be characterized along the dimen-
sions shown in Figure 1. The horizontal axis represents the
type of imagery the editor is designed to handle on a dimen-
sion ranging from richly complex to highly constrained. Three
major categories are photorealistic scenes, 2D graphics, and
text. The vertical axis represents the degree of structure avail-
able to a computer program. This ranges from unstructured,
when individual pixel intensities are represented without any
coherent object identities relating them, to highly structured

Figure 1: A two-dimensional conceptual view of com-
puter editing tools.

objects such as 3D CAD-type models, vector graphics, and
ascii text.

The class of structured image editors includes ascii text edi-
tors such as Gnu Emacs, Microsoft Word, and Wordperfect,
and structured vector graphics editors such as Microsoft Pow-
erpoint, Corel Draw, and Adobe Illustrator. These tools al-
low the import of bitmap images as independent objects, and
some are increasingly integrating tools for manipulating the
content of these bitmap images.

The class of unstructured pixel-based editors includes “paint”
style image creation programs such as Microsoft Paint and
JASC Paint Shop Pro. Other programs are aimed toward edit-
ing images of existing bitmap images, such as Adobe Pho-
toshop and GIMP. These are targeted largely to editing im-
ages of natural photographic imagery. As such, they provide
a host of features and options for choosing colors, selecting
image regions, for painting and filling, organizing collections
of pixels on different layers, and applying image processing
filters. A significant trend is to provide intelligent tools whose
behavior is governed by the underlying image material, such
as “smart” scissors that follow lightness or color boundaries,
and “red-eye removal” tools that find the pupils of peoples’

fleet
To Appear in UIST '03, Nov 2-5, Vancouver, Canada



eyes and remove photographic flash artifacts. The number
and complexity of features and options in sophisticated pho-
tographic image editing programs tends to render these pro-
grams difficult to learn and cumbersome to use. For targeted
tasks and imagery of interest, we propose that a simpler and
more accessible model is available.

We suggest that an unexplored region of the Structure/Imagery
space lies between photographicbitmap image editors and struc-
tured document editors. This is a class of editors targeted to-
ward what may be broadly construed as document images,
that is, bitmap images derived from written textual or graph-
ical material. This includes, but is not limitied to, scanned or
rendered representations of formatted text.

One neglected class of document image can be referred to as
rough documents. These are casual, informal documents such
as handwritten notes, sketches, scribbles, doodles, annotations,
diagrams, line art, graphics, and figures. Rough documents
are often associated with creative, informal work processes.
They are found on note pads, whiteboards, post-its, index cards,
books, magazines, and on the backs of envelopes. Increas-
ingly, means are becoming available for capturing rough doc-
uments not only via inexpensive flatbed scanners but through
digital cameras, whiteboard scanners, tablet computers, and
instrumented pens. Yet tools for editing rough documents—
excerpting, cleaning, rearranging, and combining image mat-
erial—are lacking.

Despite their diversity, images of rough and formal documents
are substantially more constrained in their stylistic appearance
and semantic content than general photographic imagery. By
and large, documents consist of relatively dark markings, or
foreground, set on a relatively light background (although the
dark/light foreground/background relationship is sometimes
reversed). Furthermore, by virtue of their purpose as convey-
ors of visual patterns for human communication, documents
typically contain just a few kinds of markings, namely text,
graphics, and photographs (although there are certainly ex-
ceptions and blurring between these classes). These constraints
imply that editing tools can be designed to facilitate selection
and manipulation of this kind of imagery specifically, and that
such tools might serve some users’ purposes more faithfully
than general photographic image editors. Such is a principal
motivation for ScanScribe.

One of the most critical properties of any editor is the facil-
ity it provides for selecting material. Once selected, standard
manipulation operations include translating, rotating, scaling,
duplicating, deleting, and copying to a clipboard. Vector graph-
ics editors typically provide for selection by two means, by
clicking the mouse on an image object, or by dragging a rect-
angle enclosure around one or more objects. Paint and pho-
tographic image editors provide a palette of enclosure-based
selection tools, including typically rectangle drag, lasso, and
polygon. Some programs also provide color based selection.
Depending upon the pointing device and the user’s dexter-

ity, selection by dragging an encircling or rectangle can be
marginally to substantially more cumbersome than simply
pointing and clicking. Therefore we believe that greater facil-
ity is provided to the user to the extent that they can perform
selection by direct means such as pointing and clicking.

Our long term goal is WYPIWYG image editing: “What You
Perceive Is What You Get.” The tool should maintain repre-
sentations of the image objects and visual structures the user
is likely to perceive as sensible chunks or objects to select,
and make these readily available via the interface. This en-
tails image analysis and recognition which can become arbi-
trarily complex. ScanScribe’s architecture provides a frame-
work in which recognition algorithms can be brought in in-
crementally, and are not required to work perfectly to provide
useful results.

The paper is organized as follows. Section 2 reviews related
work. Section 3 describes ScanScribe’s design and novel fea-
tures, including the maintenance of image objects, fore-
ground/backgroundseparation, overloaded drag selection, and
flat grouping model. Section 4 discusses our current and on-
going efforts in recognition of document image structure in
casual line art and written text. Section 5 reviews our expe-
riences using ScanScribe and deploying it to users. Section 6
concludes with directions for future work.

RELATED WORK
Over the past decade a number of groups have contributed to
the notion of “smart” editors that reflect awareness, at some
perceptual or semantic level, of the content of the image ma-
terial being manipulated [1, 3, 6, 12, 13, 17]. Implementa-
tions have focused on online pen/stylus-based systems, largely
because recognition of markings on a stroke-by-stroke basis
is more tractable than recognizing text and graphics in static
images. For example, the SATIN toolkit for building pen-
based applications provides for modular interchange of dig-
ital ink stroke recognizers, whose output can then be routed
as command gestures or content strokes [7]. But this system
does not attempt to interpret gestures with respect to any un-
derlying content image layer. Indeed, while accurate OCR of
scanned, printed text has become commonplace, recognition
of scanned engineering graphics remains on the edge of re-
search, and recognition of rough documents, such as hand-
writing and sketched drawings, lies today beyond the capabil-
ities of computer vision and document image analysis meth-
ods.

Commercially, stylus-based smart sketching tools are mainly
limited to stroke-by-strokeconversion of digital ink input into
vector graphic objects such as straight lines, circles, and rect-
angles. Research systems extend these capabilities to snap-
ping objects to critical points and constrained configurations
[5, 8] and to recognition of objects consisting of several strokes
[1, 3]. Both research and commercial systems also display
capabilities for parsing handwriting into a logical hierarchy
of words, lines, and columns of text [18, 20]. In yet further



work, logical relations among collections of digital ink strokes
are maintained through recognition of characteristic devices
of visual language such as encirclings, linear separators, and
arrows [11].

As mentioned above, photographic image editors such as Adobe
Photoshop are powerful but are overly complicated for many
purposes and are not designed to facilitate editing of docu-
ment image material in particular. Their notion of image lay-
ers provides an organizing principle for the critical function
of grouping collections of pixels together and operating on
them independently from other collections. ScanScribe’s con-
ceptual model of divisible image objects can be viewed as a
variant of layers, but one that operates fully automatically and
beneath the level of users’ awareness.

Close in spirit to the present work is the Image Emacs sys-
tem [2], which performed spatial analysis of scanned images
of formatted printed documents in order to support structured
editing of the bitmap itself. In this system, the bitmap is carved
into independent image objects consisting of connected com-
ponents of foreground (printed) characters, organized into
groupings representing words, lines and columns reflecting
the document layout. Editing operations consists of selecting
and then manipulating the spatial positions of these objects.

SCANSCRIBE DESIGN AND FUNCTION
As a package, the ScanScribe document image editor com-
bines new user interface techniques, a novel arrangement of
extant methods, and newly developed image processing algo-
rithms, amounting to a uniquely distinct user experience and
a framework for enhancing this experience as document im-
age analysis techniques improve over time.

Selecting Image Material
At the heart of ScanScribe lies the ability for the user to easily
select whatever image material they intend. Once selected,
the standard operations of dragging, cutting, duplicating, scal-
ing, rotating, as well as others, all apply. In ScanScribe, users
may select image material by any of four methods:

� Drag a rectangle.
� Drag a lasso.
� Drop the vertices of an encircling polygon.
� Click on an object.

The first three of these are always available. The last, click-
ing on an object, becomes available any time image objects
have become established within the program. If the user se-
lects a collection of pixels by rectangle drag, for example, and
then moves it, these pixels automatically become an indepen-
dent image object that can subsequently be selected simply by
clicking on it.

The standard method for providing the user with an array of
selection functions is through a tool palette; clicking a tool
icon puts the system in that tool’s mode, often reflected by the
cursor shape. For instance, one tool would put the system in

Figure 2: Overloaded lasso/rectangle mouse drag se-
lection technique obviates the need to choose between
these selection modes with a prior toolbar selection.

Rectangle Drag mode, while another puts the system in Lasso
mode.

To facilitate fluid interaction with image material, ScanScribe
aims to minimize the necessity for prior mode setting and tool
palettes. Accordingly, we have found power in an alterna-
tive novel overloaded mouse drag selection technique. When
the left mouse button is pressed on a defined image object,
that object becomes selected and is so indicated by a highlight
halo. But when mouse-left is pressed over freespace (back-
ground), it simultaneously initiates a lasso selection path and
a rectangle selection path. As the mouse is dragged, these are
both displayed in an unsaturated color (light grey), making it
easy for the user to visually focus on the either the rectangle
or the lasso and ignore the other. See Figure 2. If the selection
path proceeds to substantially close on itself, then the rectan-
gle disappears. If the user releases the mouse button while
the selection rectangle is visible, then the material enclosed
by the rectangle is selected. If on the other hand the user re-
leases the mouse button when the path has closed enough that
the rectangle has been discarded, then the image material se-
lected is that enclosed by the lasso. In other words, the pro-
gram infers by the user’s selection path whether they are at-
tempting a rectangle selection or a lasso selection.

A fourth, polygon selection option is also available, again with-
out resorting to a tool palette. This is invoked by double left
clicking the mouse. Polygon selection is useful when the user
would like to be able to visually adjust the boundaries of a se-
lection region as they go. Vertices are dropped by left mouse
clicks, and a left double click completes the polygon selection
gesture.



Figure 3: Representinga scene in terms of an arrange-
ment of bitmap image objects. a. A graphic image
whose underlying representation consists of two im-
age objects positioned as shown in c. When the user
performs a selection gesture, b, the image objects are
carved into smaller pieces, d. This figure is an abstrac-
tion; issues of depth ordering, transparency, and the
dimensions and effective shapes of the bitmap objects
comprising a rendered scene are addressed later in
the text.

Image Objects

At the start of an editing session, an image loaded onto the
ScanScribe canvas consists of an undifferentiated bitmap of
pixels. Once a collection of pixels are selected by an encir-
cling operation (rectangle, lasso, or polygon), however, a new
object is created representing this image material. In imple-
mentation, the selected pixels are copied into a new bitmap
whose dimension spans the selected region and whose loca-
tion is displaced to align with the original selected pixels, which
are erased from the original bitmap. See Figure 3. The user
is then free to drag this new image object around by holding
the left mouse button. When the mouse is released, the im-
age object remains a separate object, unlike a paint program
which pastes selected pixels back into a common flat canvas
layer. Once this image object has been created, it may sub-
sequently be selected by positioning the mouse over any of
its foreground pixels, and clicking left. Subsequent drag se-
lection operations carve the existing bitmap objects into yet
smaller pieces. This organization is akin to image layers, but
without any demand on the user’s conscious attention, and
without consuming screen space with complex layer control
apparatus. One subtlety of this interaction pertains to the dis-
tinction between foreground and transparent background pix-
els. This is elaborated below.

Figure 4: Hierarchical tree versus lattice grouping
models. a. A scene which may be conveniently seg-
mented into nine primitive bitmap objects. b. A hierar-
chical tree structure is capable of representing groups
corresponding to, for example, the row structure and
the entirety of this tabular image, but not both the row
and column structure. c. A flat lattice grouping model
permits simultaneous representationof rows, columns,
and the entire table, because primitive objects may be
linked to more than one parent composite object.

Lattice Grouping
An important facility in image editors is the ability to form
groups, or temporary bindings of primitive objects, to which
translation, scale, copy, or other operations will apply in com-
mon. The standard model for grouping is a hierarchical tree
structure, as illustrated in Figure 4b. Most users of Power-
Point are familiar with the tedious
ungroup-ungroup-ungroup:change:regroup-regroup-regroup
procedure required to modify one object nested at the bottom
of a grouping hierarchy. Also unfortunately, the hierarchical
grouping model imposes the severe constraint that an object
can belong to at most one group. This prohibits the simultane-
ous existence of multiple overlapping yet meaningful groups.

ScanScribe departs from the hierarchical tree grouping model
and instead follows a flat lattice grouping structure as pro-
posed in [17]. Any primitive image object may belong to any
number of groups, or composite objects, as illustrated in Fig-
ure 4b.

The user interface problem raised by the flat grouping model
is, how to invoke any given target group that may have been
established. Related to this question is, how to display to the
user what groups have indeed been established so they can
choose among them. One possibility is to pop up a menu of
choices; another is to overlay graphical visualizations of se-
lectable image structures. These approaches could face prob-
lems of visual clutter and scalability, but they bear investiga-
tion and creative exploration. ScanScribe settles on a simple
technique: clicking the mouse on an image object selects just
that object. Clicking again selects the set of objects repre-



Figure 5: Mouse-right pop-up menu showing locally
available edit operations.

sented by the first group, in a sequence of groups, that are as-
sociated with the primitive object clicked. Subsequent mouse
clicks cycle through the groups in the sequence.

Each primitive image object maintains its own ordered list of
groups that it belongs to. Each time any group is operated on,
for example moving or rotating it, that group is promoted to
the front of the group list for each constituent object in the
group. In this way each primitive object maintains its partic-
ipant groups in most-recently-used order.

Groups may be established by an explicit “group” command,
or they may be created automatically. Clicking the mouse-
right button on any selected object(s) invokes a pop-up menu
of commands, as shown in Figure 5. One available command
is to form a group, assuming the selected set contains more
than one primitive object. Note also the availability of a merge
command which permanently binds a selected set of primi-
tives into a single bitmap image object. A group is established
automatically whenever the user selects and then operates on
two or more primitives. And, an object is automatically ex-
pelled from a group any time it is moved far from that group’s
spatial locus.

Because primitive image objects can be carved into smaller
objects at any time by drag selection, and sets of primitives
can be merged into a single object, some bookkeeping must
go on to maintain consistent and coherent grouping structure
as editing proceeds. For example, if an object belonging to
a group is divided by selection into two smaller objects, both

Figure 6: Illustrations of representative logic for main-
taining consistency of grouping relations through edit-
ing operations. a. An image containing a group (Com-
posite Object) of four primitive image objects is cut into
smaller pieces by a selection stroke. b. The resulting
grouping structure must reflect the fragmentation of
this image object, “C”. A second group is formed by
virtue of the encircling selection. c. A grouping of five
primitive image objects. d. When two of these are
dragged away, the single group is destroyed but the
resulting groups should preserve sensible remnants of
the original bindings.

of these new objects must inherit the grouping links possessed
by the original. Some of the major bookkeepingrequirements
are illustrated in Figure 6.

The result of this model is a very intuitive interaction with
document image material. One can quickly individuate se-
mantically significant image objects by mouse dragging, and
once created, select them again by clicking. The shift key per-
mits editing of the selection, that is, adding and removing ob-
jects from the highlighted selected set. Once any collection of
objects have been operated on as a group, this group may be
readily revisited by clicking the mouse some number of times
on any member of the group. One shortcoming of this inter-
action design, which is also common to PowerPoint and other
programs with hierarchical grouping, is that it is not visually
apparent what groups are actually in existence. In the most
common condition, however, users seem to maintain a back-



ground awareness of the groups they have been using recently
on the basis of constituent objects’ visual layout and their se-
mantic roles in the scene. This matter bears further investiga-
tion through in-depth observational studies.

Foreground/Background Separation
Although ScanScribe’s editing functions can be applied to any
bitmap image, the program is designed toward editing of rough
and formal document images in which foreground markings
are arrayed against a white or light background. Important
purposes for editing in this image domain include cleaning
up image clutter and noise, rearranging text and graphics, and
combining material from different sources. Only the foreground
pixels are significant in these regards, and it is important that
background pixels never occlude foreground pixels as image
objects are moved around. Therefore it is normally critical
that background pixels be rendered transparent.

Modern photographic image editors provide “magic wand”
facilities for selecting collections of pixels on the basis of color
or lightness, which can then be set transparent. Depending on
the image source, this can be a tedious process. For exam-
ple, users in one field study we have undertaken report that
using Photoshop it takes on average 20 minutes to clean up
the background in images of graphic charts captured with a
digital camera. A recent commercial product, called White-
Board Photo, addresses this problem by providing image pro-
cessing that normalizes image lightness and contrast across
an unevenly lighted document image in a one-step process,
leaving the background a uniform white.

ScanScribe includes an image processing module that performs
this kind of document image color normalization and setting
of a transparent background. One shortcoming of Whiteboard
Photo and other techniques employing high-pass filtering to
distinguish relatively compact dark markings against white
or light background [15], is that they corrupt the interiors of
larger foreground objects. See Figure 7. For ScanScribe, we
have developed a foreground/backgroundseparation algorithm
that uses an iterative technique to estimate and interpolate the
color distribution of light background across the scene. To
distinguish foreground from background we employ a combi-
nation of high-pass filtering and distance measures on pixels’
HSB values. Figure 7c shows a representative result. Fore-
ground/background separation can be applied selectively to
entire images or regions of images that have been loaded into
ScanScribe, or not at all. Under one user option this process-
ing can also be applied automatically whenever an image is
loaded.

Anchoring Image Objects
Once foreground/background separation has been achieved,
the mouse behaves differently when positioned over visible
foregroundor transparent background, and the cursor changes
accordingly as it passes across the image. When pressed on a
foreground image object, the mouse selects that object. Hold-
ing the mouse button and dragging permits moving of that ob-
ject. Repeated clicking cycles through the groups that object
belongs to. When the mouse is pressed over transparent back-
ground, drag selection is initiated via the overloaded rectan-
gle/lasso technique described above. This division of func-
tion works well under the assumption that drag selection op-

a

b

c

Figure 7: a. Original digital camera image. b. Pro-
cessing by the commercial product, Whiteboard Photo.
Note degradation of the solid color regions. c. Re-
sult of our algorithm which detects large foreground
regions.



erations will be used to select visible foreground image ob-
jects mostly or entirely surrounded by transparent background.

On occasion, however, it is necessary to perform drag selec-
tion initiated on foreground pixels, for example to perform
lasso selection on a person’s face in a photograph. For these
instances, it is possible to anchor an image object, via the right-
mouse invoked pop-up menu. When anchored, an image ob-
ject cannot be selected by positioning the mouse and clicking
on it. Instead, a mouse press on an anchored image object in-
vokes the standard drag selection facility. Image objects that
are anchored may be un-anchored by completely enclosing
them with a lasso, rectangle, or polygon encircling selector,
or via the Edit menu items, “Select All” or “Select Anchored
Image Objects.”

In our experience, the notion of anchoring is the single most
confusing aspect of ScanScribe to novice users. To under-
stand the rationale for the concept requires understanding the
notion of differentiated image objects, the dual click/drag
modes of selecting, and the distinction between visible fore-
ground and transparent background. The novice user does not
sit down with these concepts immediately to hand. The great-
est danger of confusion occurs when editing a document con-
taining pure white background, but for which foreground/
background separation has not been applied. Then, no back-
ground pixels have yet been set transparent, yet background
pixels do not visibly appear. Drag selection results in large re-
gions of white pixels which occlude other objects when moved
around. One approach which we have yet to explore is to ren-
der transparent pixels in some visible manner, preferably less
visually distracting than the checkerboard pattern which has
become a standard in modern applications.

Text
One purpose for ScanScribe is the cleanup and organization
of sketchy, scribbled, handwritten notes and graphics. Often
the results of a meeting or collaborative session consists of
handwritten items amongst drawn figures. A common prac-
tice is to document these results by transcribing handwritten
text into a formatted document such as an ascii email mes-
sage or web page. Current tools do not well support carrying
sketches, figures, and diagrams through this process. Scan-
Scribe seeks to address this problem by providing means not
only to extract and organize graphical material, but to also re-
place scribbled written material with typed text as well as en-
ter new text.

Text entry is initiated anywhere on the canvas by positioning
the mouse where the text is to begin, and typing keystrokes.
A text entry region then appears superimposed on the canvas,
and standard text editing features (e.g. drag select, cut, copy)
become available. To render this text to the canvas, the user
may press the End key or click the mouse anywhere outside
the text entry region.

To replace handwritten text with typed text, the user selects
the bitmap region containing handwritten text, and commences
typing. When text entry is completed by pressing the End
key, the selected bitmap object is removed from the canvas
and replaced with a typed-text object. ScanScribe does not
currently employ handwriting recognition software but it is

straightforward to augment text replacement-by-typing with
this functionality to the degree it becomes technically avail-
able. In this way, ScanScribe is in accord with the Multivalent
Document framework [14] which suggests interaction with
static image content via different semantic layers built by au-
tomatic processing steps.

Typed text objects are a subtype of the standard bitmap ob-
ject. They are rendered as bitmaps on the canvas, and can be
carved into smaller bitmap pieces and rearranged. But they
also retain the ascii representation of the character string en-
tered, so they can be selected and re-edited as typed text.

Miscellaneous Features
ScanScribe supports a number of other miscellaneous features.
Although we have not addressed the potential for entering vec-
tor graphic objects, there is a freeform drawing tool for free-
hand sketching with the mouse.

Images edited in ScanScribe can be written in standard bitmap
formats such as JPEG and PNG. Also, images can be pub-
lished as HTML for viewing in web browsers. Via the right
button pop-up menu, it is possible to establish hyperlinks from
image objects which then become HTML links in resulting
web pages. The HTML Cascading Style Sheet protocol is used
to position image objects.

ScanScribe is implemented in Java and makes use of the sys-
tem clipboard facilities. One of the common uses for Scan-
Scribe is as a clip-art collection tool, in conjunction with a
search engine. Having browsed to an intersting web site, the
user can employ the computer’s screen hardcopy facility to
grab an image, then paste into ScanScribe and proceed to ex-
tract and borrow desired graphic imagery for re-purposing in
other documents.

AUTOMATIC STRUCTURE RECOGNITION
As described thus far, ScanScribe is a very functional and use-
ful bitmap image editor that facilitates the manipulation of
foreground markings in rough and formal document images.
Beyond this, it a platform for introducing increasingly sophis-
ticated image structure recognition tools as they become avail-
able.

The hook for this is ScanScribe’s lattice framework for main-
taining groups, which in the current design is accessed through
the repeated-click cycling method for point-and-click selec-
tion of grouped primitives, as described above. Image recog-
nition occurs in two stages. First, the original undifferenti-
ated bitmap is segmented into primitive image objects by an
automatic mechanism. Second, sensible groupings of these
primitives are automatically formed and established as groups,
or composite objects, in the lattice groupingstructure. In other
words, image recognition becomes a power assist on the group-
ing paradigm already available to the user through manual se-
lection.

Procedures for accomplishing these steps are the subject of
ongoing research. One question is, at what level of abstrac-
tion is image structure made available as groups? We envi-
sion a spectrum of recognition algorithms possessing knowl-
edge of specific document domains and graphical communi-
cation language constructs, eventually specifically facilitat-



ing editing of image content found in engineering diagrams,
schedules, calendars, charts, graphs, mathematical notation,
and so on.

ScanScribe’s initial capabilities are focused at the level of vi-
sual perceptual organization. This type of structure roughly
aligns with the Gestalt laws of visual perception, which in-
clude proximity, smooth continuation, feature similarity, and
figural closure [4, 9, 10, 19]. We have implemented fragmen-
tation algorithms to decompose a document image into prim-
itive objects labeled as curvilinear “strokes”, which typically
comprise line art, and compact “blobs”, which typically cor-
respond to characters of handwritten or printed text. Then,
grouping algorithms assemble these into composite groups
based on two kinds of criteria. Stroke primitives are grouped
according to rules following the principles of curvilinear
smoothness and closure, as illustrated in Figure 8. Blob prim-
itives are grouped into composite objects reflecting words and
lines of text based on spatial proximity and curvilinear align-
ment. Examples of these are shown in Figure 9. Note that
the lattice organization for composite objects is important be-
cause any given image primitive may belong to multiple per-
ceptual groups that may not necessarily bear subset/superset
relationship to one another.

Structure recognition is invoked in ScanScribe through an Edit
menu item, and can be applied to only a selected region of the
image. In our current implementation this processing takes
on the order of tens of seconds, depending on complexity of
image material, so it must be used judiciously. Because struc-
ture recognition is used in an interactive editing context that
permits the objects included and excluded from a selection set
to be modified, even imperfect results can be useful even if
they happen to include or exclude some amount of image ma-
terial that to a human eye does or does not appear to belong
to perceptually coherent and salient visual objects.

USE EXPERIENCE
ScanScribe has been deployed to approximately 30 people dur-
ing its evolution, both within and outside our research center.
Feedback has been mainly anecdotal, while more systematic
testing and evaluation remains to be done. We have encoun-
tered great variability in the ease with which people are able
to learn to use ScanScribe. Some require deliberate step-by-
step training, while to others it just makes sense right away.
One issue is that the user interface model for selecting and
creating persistent bitmap objects and groupings of objects
is novel, and one is not lead to understand it through inspec-
tion of a tool palette or other obvious visual indicators. We
provide help in the form of video tutorial snippets accessi-
ble from the Help menu. Some users find these very satisfac-
tory instruction, while others are quite reasonably unwilling
to spend any time deliberately learning but expect the affor-
dances of the program to teach itself.

The range of things people have used ScanScribe for is quite
varied, including cleanup of notes from whiteboard sessions;
merging lists spread across multiple scanned pages onto a sin-
gle page; arranging an office floor plan by positioning scanned
furniture templates; and producingcasual cartoons. Our com-
mercial test study site has incorporated ScanScribe into their
work flow because of its superior quality of its color normal-

a

b

c

Figure 8: Visual structure found in a hand-drawn
graphic figure. a. Original image after fore-
ground/background separation. b. “Exploded view”
of perceptually salient structures reflected as groups
(composite objects) found by ScanScribe’s automatic
structuring processes. Each of these was selected for
moving from its original location by pointing and click-
ing the mouse (at most four mouse clicks). c. Exploded
view of bitmap image objects comprising the full set of
image primitives. These objects’ spatial relationships
were analyzed by the structure recognition algorithms
to form the groups reflected in b.



Figure 9: Visual structure found in handwritten text.
a. Original image after foreground/background sep-
aration. b. Boxes indicate groups found by Scan-
Scribe’s automatic structuring processes. Because
this is cursive handwriting, in many cases full words
were represented by individualprimitive bitmap objects
(not shown by bounding rectangles).

ization on digital images of graphic charts.

CONCLUSION AND FURTHER WORK
We feel that future progress in increasing the capability and
ease of use of editing programs will come from making their
designs more closely reflect the nature of human perception.
ScanScribe illustrates how the design of an editor for rough
material can respect at a foundational level the perceptual phe-
nomena of figure/ground separation and visual grouping. Au-
tomated foreground/background separation mirrors the natu-
ral human perceptual figure/ground interpretation of most doc-
uments presented to the system consisting of dark markings
on a light background. ScanScribe’s built-in support for con-
structing and manipulating groups departs from the strictly
hierarchical group organization of conventional editors and
enables flexible, overlapping grouping structures more com-
mensurate with the phenomena of human visual grouping.

The application of perceptual principles in the design of an
editor’s core capabilities has strong implications for its user
interface design. For example, ScanScribe’s lattice grouping
capability requires specialized interaction techniques for ac-
cessing the various groups the user may wish to access. We
have explored one point in the design space, namely multi-
ple clicking to cycle through groups associated with an ob-
ject. Others interaction modes are possible, for example, the
rough shape and size of selection gestures[17], and speech or
other multimodal interfaces.

The ScanScribe user interface is designed for mouse interac-
tion. We have also developed a prototype application, called
InkScribe, sharing the ScanScribe architecture but designed
to be used with a pen or stylus. The fundamental problem

here is providing seamless means to switch between selection
and editing of image material (command mode), and marking
with digital ink (draw mode).

A remaining issue regarding the potential for widespread adop-
tion of image editors especially targeted toward rough, or in-
formal documents, is ease of image capture. We believe that
the increased availability of low-cost, high-quality digital cam-
eras will help to bridge the physical/virtual barrier for written
and graphical communication. The ScanScribe document im-
age editor offers a helpful tool for making use of formal or
printed sketches, notes, and diagrams that have been brought
into in the electronic world.

ACKNOWLEDGEMENTS
We thank Thomas P. Moran for substantial contributions in
the conceptual and initial design stages of this project. We are
also indebted to the testers and users of ScanScribe for their
comments and feedback.

REFERENCES
1. Alvarado, C., and Davis, R.; [2001]; “Resolving ambi-

guities to create a natural computer-based sketching en-
vironment,” Proc IJCAI, Seattle, Vol.2: 1365-1371.

2. Bagley, S., and Kopec, G.; [1994]; “Editing Images of
text,” Comm. ACM, Vol. 37, No. 12, 63-72.

3. Forbus, K., Furguson, R.W., and Usher, J.M.; [2001];
“Towards a Computational Model of Sketching,” Proc.
IUI ’01, Santa Fe.

4. Green, C.; [2000]; “Introduction to: ‘Perception: An in-
troduction to the Gestalt-theorie’
by Kurt Kaffka (1922)”,
“http://psychclassics.yorku.ca/Koffka/Perception/intro.htm”.

5. Gross, M.; [1992]; “Graphical Constraints in CoDraw,”
Proc. IEEE Workshop on Visual Languages, Seattle, 81-
87.

6. Gross, M.; [1996]; “The electronic cocktail napkin -
computer support for working with diagrams,” Design
Studies, 17(1):53-70.

7. Hong, J.I., and Landay, J.A.; [2000]; “SATIN: A
Toolkit for Informal Ink-based Applications,” Proc.
ACM UIST, San Diego, 63-72.

8. Igarashi, T., Matsuoka, S., Kawachiya, S., and Tanaka,
H.; [1997]; “Interactive Beautification: A Technique
for Rapid Geometric Design”, Proc ACM UIST, Banff,
105-114.

9. Kanizsa, G.; [1979]; Organization in Vision: Essays on
Gestalt Perception, Praeger, New York.

10. Koffka, K.; [1922]; “Perception: An introduction to
Gestalt-theorie. Psychological Bulletin, 19: 531-585.

11. Li, Y., Guan, Z., Wang, H., Dai, G., and Ren, X.; [2002];
“Structuralizing Freeform Notes by Implicit Sketch Un-
derstanding,” in AAAI Spring Symposium on Sketch Un-
derstanding, Stanford University, AAAI TR. SS-02-08.



12. Landay, J.A., and Myers, B.A.;[2001]; “Sketching In-
terfaces: Toward More Human Interface Design,” IEEE
Computer V. 34. No. 3, March 2001, 56-64.

13. Pedersen, E., McCall, K., Moran, T, and Halasz, F.;
[1993]; “Tivoli: An electronic whiteboard for informal
workgroup meetings,” Proc ACM CHI, 391-398.

14. Phelps, T.A., and Wilensky, R.; [1996]; “Multivalent
Documents: Inducing Structure and Behaviors in On-
line Digital Documents,” Proc. 29th Hawaii Interna-
tional Conference on System Sciences, Maui, 144-152.

15. Pilu, M., and Pollard, S.; [2002]; “A light-weight text
image processing method for handheld embedded cam-
eras,” Proc. British Machine Vision Conference, Cardiff
University.

16. Saund, E.; [2003]; “Finding Perceptually Closed Paths
in Sketches and Drawings,” IEEE TPAMI, V. 25, No. 4.,
475-491.

17. Saund, E. and Moran, T.; [1994]; “A perceptually sup-
ported sketch editor” Proc ACM UIST, Marina del Rey,
175-184.

18. Shilman, M., Wei, Z., Sashi, R., Simard, P., and Jones,
D.; [2003]; “Discerning Structure From Freeform
Handwritten Notes,” Proc. Int. Conf. Document Anal-
ysis and Recognition, Edinburgh.

19. Wertheimer, M.; [1923]; “Laws of Organization in Per-
ceptual Forms”, in Ellis, W., ed, A source book of
Gestalt psychology, Routledge & Kegan Paul, London,
1938.

20. Wilcox, L., Schilit, B.N., and Sawhney, N.; [1997];
“Dynomite: A Dynamically Organized Ink and Audio
Notebook,” Proc. ACM CHI, Atlanta, 186-193.




